Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities—A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Design
2.2. Patients
2.3. Study Groups
2.4. Data Collection
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Xerostomia and Salivary Flow Rates
3.3. Risk Factor Analysis
4. Discussion
4.1. Hyposalivation
4.1.1. Prevalence
4.1.2. Risk Factors
4.2. Xerostomia
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geenen, M.M.; Cardous-Ubbink, M.C.; Kremer, L.C.M.; Van Den Bos, C.; Van Der Pal, H.J.H.; Heinen, R.C.; Jaspers, M.W.M.; Koning, C.C.E.; Oldenburger, F.; Langeveld, N.E.; et al. Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. J. Am. Med. Assoc. 2007, 297, 2705–2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bågesund, M.; Richter, S.; Ringdén, O.; Dahllöf, G. Longitudinal scintigraphic study of parotid and submandibular gland function after total body irradiation in children and adolescents. Int. J. Paediatr. Dent. 2007, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Bagesund, M.; Winiarski, J.; Dahllöf, G. Subjective xerostomia in long-term surviving children and adolescents after pediatric bone marrow transplantation. Transplantation 2000, 69, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, S.A.; van Luijk, P.; Pino, R.; Ronckers, C.M.; Kremer, L.C.; Gidley, P.W.; Grosshans, D.R.; Laskar, S.; Okcu, M.F.; Constine, L.S.; et al. Salivary and Dental Complications in Childhood Cancer Survivors Treated With Radiation Therapy to the Head and Neck: A Pediatric Normal Tissue Effects in the Clinic (PENTEC) Comprehensive Review. Int. J. Radiat. Oncol. Biol. Phys. 2021, 1–15. [Google Scholar] [CrossRef]
- Van Leeuwen, S.J.M.; Potting, C.M.J.; Huysmans, M.C.D.N.J.M.; Blijlevens, N.M.A. Salivary Changes before and after Hematopoietic Stem Cell Transplantation: A Systematic Review. Biol. Blood Marrow Transplant. 2019, 25, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Brand, H.S.; Bots, C.P.; Raber-Durlacher, J.E. Xerostomia and chronic oral complications among patients treated with haematopoietic stem cell transplantation. Br. Dent. J. 2009, 207, E17. [Google Scholar] [CrossRef]
- Epstein, J.B.; Thariat, J.; Bensadoun, R.-J.; Barasch, A.; Murphy, B.A.; Kolnick, L.; Popplewell, L.; Maghami, E. Oral complications of cancer and cancer therapy. CA. Cancer J. Clin. 2012, 62, 400–422. [Google Scholar] [CrossRef]
- Jensen, S.B.; Pedersen, A.M.L.; Vissink, A.; Andersen, E.; Brown, C.G.; Davies, A.N.; Dutilh, J.; Fulton, J.S.; Jankovic, L.; Lopes, N.N.F.; et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: Prevalence, severity and impact on quality of life. Support. Care Cancer 2010, 18, 1039–1060. [Google Scholar] [CrossRef]
- Yuwanati, M.; Gondivkar, S.; Sarode, S.C.; Gadbail, A.; Desai, A.; Mhaske, S.; Pathak, S.K.; Khatib, M.N. Oral health-related quality of life in oral cancer patients: Systematic review and meta-analysis. Future Oncol. 2021, 17, 979–990. [Google Scholar] [CrossRef]
- Niklander, S.; Veas, L.; Barrera, C.; Fuentes, F.; Chiappini, G.; Marshall, M. Risk factors, hyposalivation and impact of xerostomia on oral health-related quality of life. Braz. Oral Res. 2017, 31, e14. [Google Scholar] [CrossRef] [Green Version]
- Vissink, A.; Jansma, J.; Spijkervet, F.K.L.; Burlage, F.R.; Coppes, R.P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral Biol. Med. 2003, 14, 199–212. [Google Scholar] [CrossRef]
- Mawardi, H.; Hashmi, S.K.; Elad, S.; Aljurf, M.; Treister, N. Chronic graft-versus-host disease: Current management paradigm and future perspectives. Oral Dis. 2019, 25, 931–948. [Google Scholar] [CrossRef]
- Dahllöf, G.; Bågesund, M.; Remberger, M.; Ringdén, O. Risk factors for salivary dysfunction in children 1 year after bone marrow transplantation. Oral Oncol. 1997, 33, 327–331. [Google Scholar] [CrossRef]
- Garming-Legert, K.; Remberger, M.; Ringdén, O.; Hassan, M.; Dahllöf, G. Long-term salivary function after conditioning with busulfan, fractionated or single-dose TBI. Oral Dis. 2011, 17, 670–676. [Google Scholar] [CrossRef]
- Robison, L.L.; Mertens, A.C.; Boice, J.D.; Breslow, N.E.; Donaldson, S.S.; Green, D.M.; Li, F.P.; Meadows, A.T.; Mulvihill, J.J.; Neglia, J.P.; et al. Study design and cohort characteristics of the Childhood Cancer Survivor Study: A multi-institutional collaborative project. Med. Pediatr. Oncol. 2002, 38, 229–239. [Google Scholar] [CrossRef]
- Winther, J.F.; Kenborg, L.; Byrne, J.; Hjorth, L.; Kaatsch, P.; Kremer, L.C.M.; Kuehni, C.E.; Auquier, P.; Michel, G.; de Vathaire, F.; et al. Childhood cancer survivor cohorts in Europe. Acta Oncol. 2015, 54, 655–668. [Google Scholar] [CrossRef]
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; et al. Temporal Trends in Treatment and Subsequent Neoplasm Risk Among 5-Year Survivors of Childhood Cancer, 1970–2015. JAMA 2017, 317, 814–824. [Google Scholar] [CrossRef] [Green Version]
- Kamps, W.A.; van der Pal-de Bruin, K.M.; Veerman, A.J.P.; Fiocco, M.; Bierings, M.; Pieters, R. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia 2010, 24, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Christopherson, K.M.; Rotondo, R.L.; Bradley, J.A.; Pincus, D.W.; Wynn, T.T.; Fort, J.A.; Morris, C.G.; Mendenhall, N.P.; Marcus, R.B.J.; Indelicato, D.J. Late toxicity following craniospinal radiation for early-stage medulloblastoma. Acta Oncol. 2014, 53, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Van Kempen-Harteveld, M.L.; Struikmans, H.; Kal, H.B.; van der Tweel, I.; Mourits, M.P.; Verdonck, L.F.; Schipper, J.; Battermann, J.J. Cataract after total body irradiation and bone marrow transplantation: Degree of visual impairment. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 1375–1380. [Google Scholar] [CrossRef]
- Steinmeier, T.; Schulze Schleithoff, S.; Timmermann, B. Evolving Radiotherapy Techniques in Paediatric Oncology. Clin. Oncol. R. Coll. Radiol. 2019, 31, 142–150. [Google Scholar] [CrossRef]
- Navazesh, M.; Kumar, S.K.S. Measuring salivary flow. J. Am. Dent. Assoc. 2008, 139, 35S–40S. [Google Scholar] [CrossRef]
- Saliva: Its role in health and disease. Working Group 10 of the Commission on Oral Health, Research and Epidemiology (CORE). Int. Dent. J. 1992, 42, 287–304.
- Van Nieuw Amerongen, A.; Veerman, E.C.I.; Vissink, A. Research methods in dentistry 2. Methods for determining the flow rate of saliva. Ned. Tijdschr. Tandheelkd. 2004, 111, 276–282. [Google Scholar]
- Thomson, W.M.; Chalmers, J.M.; Spencer, A.J.; Williams, S.M. The Xerostomia Inventory: A multi-item approach to measuring dry mouth. Community Dent. Health 1999, 16, 12–17. [Google Scholar]
- Assy, Z.; Bots, C.P.; Arisoy, H.Z.; Gülveren, S.S.; Bikker, F.J.; Brand, H.S. Differences in perceived intra-oral dryness in various dry-mouth patients as determined using the Regional Oral Dryness Inventory. Clin. Oral Investig. 2021, 25, 4031–4043. [Google Scholar] [CrossRef]
- Knol, M.J.; Le Cessie, S.; Algra, A.; Vandenbroucke, J.P.; Groenwold, R.H.H. Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. CMAJ Can. Med. Assoc. J. 2012, 184, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Steliarova-Foucher, E.; Stiller, C.; Lacour, B.; Kaatsch, P. International classification of childhood cancer, third edition. Cancer 2005, 103, 1457–1467. [Google Scholar] [CrossRef]
- Maciel, J.C.C.; de Castro, C.G.J.; Brunetto, A.L.; Di Leone, L.P.; da Silveira, H.E.D. Oral health and dental anomalies in patients treated for leukemia in childhood and adolescence. Pediatr. Blood Cancer 2009, 53, 361–365. [Google Scholar] [CrossRef]
- Nemeth, O.; Kivovics, M.; Pinke, I.; Marton, K.; Kivovics, P.; Garami, M. Late effects of multiagent chemotherapy on salivary secretion in children cancer survivors. J. Am. Coll. Nutr. 2014, 33, 186–191. [Google Scholar] [CrossRef]
- Avşar, A.; Elli, M.; Darka, Ö.; Pinarli, G. Long-term effects of chemotherapy on caries formation, dental development, and salivary factors in childhood cancer survivors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 104, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Crossner, C.G. Salivary flow rate in children and adolescents. Swed. Dent. J. 1984, 8, 271–276. [Google Scholar] [PubMed]
- Flink, H.; Bergdahl, M.; Tegelberg, A.; Rosenblad, A.; Lagerlöf, F. Prevalence of hyposalivation in relation to general health, body mass index and remaining teeth in different age groups of adults. Community Dent. Oral Epidemiol. 2008, 36, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Dodds, M.W.J.; Johnson, D.A.; Yeh, C.-K. Health benefits of saliva: A review. J. Dent. 2005, 33, 223–233. [Google Scholar] [CrossRef]
- Dahllöf, G.; Wondimu, B.; Barr-Agholme, M.; Garming-Legert, K.; Remberger, M.; Ringdén, O. Xerostomia in children and adolescents after stem cell transplantation conditioned with total body irradiation or busulfan. Oral Oncol. 2011, 47, 915–919. [Google Scholar] [CrossRef]
- Garming Legert, K.; Remberger, M.; Ringdèn, O.; Heimdahl, A.; Dahllöf, G. Salivary secretion in children after fractionated or single-dose TBI. Bone Marrow Transplant. 2012, 47, 404–410. [Google Scholar] [CrossRef]
- Bågesund, M.; Richter, S.; Agren, B.; Ringdén, O.; Dahllöf, G. Scintigraphic study of the major salivary glands in pediatric bone marrow transplant recipients. Bone Marrow Transplant. 2000, 26, 775–779. [Google Scholar] [CrossRef] [Green Version]
- Dahllöf, G.; Bågesund, M.; Ringdén, O. Impact of conditioning regimens on salivary function, caries-associated microorganisms and dental caries in children after bone marrow transplantation. A 4-year longitudinal study. Bone Marrow Transplant. 1997, 20, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Näsman, M.; Björk, O.; Söderhäll, S.; Ringdén, O.; Dahllöf, G. Disturbances in the oral cavity in pediatric long-term survivors after different forms of antineoplastic therapy. Pediatr. Dent. 1994, 16, 217–223. [Google Scholar]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Van Luijk, P.; Pringle, S.; Deasy, J.O.; Moiseenko, V.V.; Faber, H.; Hovan, A.; Baanstra, M.; van der Laan, H.P.; Kierkels, R.G.J.; van der Schaaf, A.; et al. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci. Transl. Med. 2015, 7, 305ra147. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, M.; Ramseier, A.M.; Rovó, A.; Jensen, S.B.; Raber-Durlacher, J.E.; Zitzmann, N.U.; Waltimo, T. Longitudinal assessment of hematopoietic stem cell transplantation and hyposalivation. J. Dent. Res. 2011, 90, 1177–1182. [Google Scholar] [CrossRef]
- Inoue, H.; Ono, K.; Masuda, W.; Morimoto, Y.; Tanaka, T.; Yokota, M.; Inenaga, K. Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch. Oral Biol. 2006, 51, 1055–1060. [Google Scholar] [CrossRef]
- Percival, R.S.; Challacombe, S.J.; Marsh, P.D. Flow rates of resting whole and stimulated parotid saliva in relation to age and gender. J. Dent. Res. 1994, 73, 1416–1420. [Google Scholar] [CrossRef]
- Di Ying Joanna, N.; Thomson, W.M. Dry mouth—An overview. Singapore Dent. J. 2015, 36, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Saleh, J.; Figueiredo, M.A.Z.; Cherubini, K.; Salum, F.G. Salivary hypofunction: An update on aetiology, diagnosis and therapeutics. Arch. Oral Biol. 2015, 60, 242–255. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE) Version 5; U.S. Department of Health and Human Services: Washington, DC, USA, 2017.
- Kaste, S.C.; Goodman, P.; Leisenring, W.; Stovall, M.; Hayashi, R.J.; Yeazel, M.; Beiraghi, S.; Hudson, M.M.; Sklar, C.A.; Robison, L.L.; et al. Impact of Radiation and Chemotherapy on Risk of Dental Abnormalities: A Report from the Childhood Cancer Survivor Study. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2009, 115, 5817–5827. [Google Scholar] [CrossRef]
Variable | Total n = 292 (100.0%) | Group 1: No H&N RT n = 198 (67.8%) | Group 2: H&N RT n = 94 (32.2%) | p |
---|---|---|---|---|
Gender | ||||
Male | 155 (53.1) | 96 (48.5) | 59 (62.8) | 0.024 * |
Female | 137 (46.9) | 102 (51.5) | 35 (37.2) | |
Diagnosis | ||||
Hematological malignancy | 216 (74.0) | 147 (74.2) | 69 (73.4) | <0.001 * |
Brain tumor | 19 (6.5) | 1 (0.5) | 18 (19.1) | |
Solid tumor | 57 (19.5) | 50 (25.3) | 7 (7.4) | |
Age at enrollment (y) | 32.15 (16.77–59.47) | 29.93 (16.77–59.47) | 39.34 (18.44–57.61) | <0.001 ** |
Age at cancer diagnosis (y) | 5.20 (0.01–17.00) | 3.97 (0.01–17.00) | 7.47 (0.38–16.87) | <0.001 ** |
0 < 5 | 140 (47.9) | 114 (57.6) | 26 (27.7) | |
5 < 10 | 89 (30.5) | 47 (23.7) | 42 (44.7) | |
10 < 15 | 50 (17.1) | 27 (13.6) | 23 (24.5) | |
>15 | 13 (4.5) | 10 (5.1) | 3 (3.2) | |
Time since diagnosis (y) | 25.26 (15.94–49.04) | 23.96 (15.94–49.04) | 32.61 (16.50–45.57) | <0.001 ** |
0 < 10 | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
10 < 20 | 64 (21.9) | 51 (25.8) | 13 (13.8) | |
20 < 30 | 132 (45.2) | 106 (53.5) | 26 (27.7) | |
>30 | 96 (32.9) | 41 (20.7) | 55 (58.5) | |
Chemotherapy | 281 (96.2) | 198 (100.0) | 83 (88.3) | <0.001 * |
Alkylating agents | 200 (68.5) | 135 (68.2) | 65 (69.1) | 0.894 * |
Vinca alkaloids | 241 (82.5) | 170 (85.9) | 71 (75.5) | 0.033 * |
Epipodophyllotoxins | 84 (28.8) | 50 (25.3) | 34 (36.2) | 0.072 * |
Anthracyclines | 185 (63.4) | 134 (67.7) | 51 (54.3) | 0.028 * |
Platinum compounds | 31 (10.6) | 21 (10.6) | 10 (10.6) | 1.000 * |
Antimetabolites | 202 (69.2) | 134 (67.7) | 68 (72.3) | 0.498 * |
Radiotherapy | 114 (39.0) | 20 (10.1) a | 94 (100.0) | |
H&N RT, to salivary glands | 81 (86.2) | |||
H&N RT, not to salivary glands b | 6 (6.4) | |||
H&N RT to salivary glands unclear c | 7 (7.4) | |||
RT yes/no unclear d | 1 (0.5) | |||
Stem Cell Transplantation | ||||
Autologous | 11 (3.8) | 4 (2.0) | 7 (7.4) | <0.001 * |
Allogeneic | 38 (13.0) | 16 (8.1) | 22 (23.4) | |
SCT unclear | 1 (0.3) | 1 (0.5) | 0 (0.0) | |
cGVHD | 3 (1.0) | 1 (0.5) | 2 (2.1) | <0.001 * |
Use of medication | ||||
Unknown | 7 (2.4) | 6 (3.0) | 1 (1.1) | 0.004 * |
≤3 medicines | 249 (85.3) | 176 (88.9) | 73 (77.7) | |
≥4 medicines | 36 (12.3) | 16 (8.1) | 20 (21.3) |
Radiation Field | Total n (%) | Radiation Dose | |
---|---|---|---|
Mean (sd) | Median (Range) | ||
Group 2: H&N RT | 94 (100.0) | 27.80 (17.91) | 25.00 (5.00–100.80) |
RT to salivary glands a | 81 (86.2) | 25.17 (17.27) | 24.00 (5.00–100.80) |
Full brain | 45 | 31.26 (11.99) | 25.00 (18.00–55.70) |
Face | 8 | 46.69 (26.46) | 37.80 (25.00–100.80) |
TBI | 29 | 9.33 (2.34) | 8.00 (5.00–12.00) |
RT not to salivary glands b | 6 (6.4) | 33.20 (10.30) | 39.70 (19.80–40.00) |
Unclear RT to salivary glands c | 7 (7.4) | 53.57 (3.58) | 54.00 (50.40–60.00) |
Variable | Total | Group 1: No H&N RT | Group 2: H&N RT | Subgroup 2A: RT to Salivary Glands e | p ¥ | Male | Female | p µ |
---|---|---|---|---|---|---|---|---|
Xerostomia inventory (XI) (n) | n = 233 | n = 156 | n = 77 | n = 65 | n = 125 | n = 108 | ||
Median XI-score (range) a | 17.00 (11.00–41.00) | 17.00 (11.00–39.00) | 16.00 (11.00–41.00) | 17.00 (11.00–36.00) | 0.980 ** | 16.00 (11.00–39.00) | 17.00 (11.00–41.00) | 0.174 ** |
Mean XI-score (sd) a | 17.77 (6.01) | 17.80 (5.79) | 17.71 (6.48) | 17.75 (5.71) | 17.20 (5.56) | 18.44 (6.46) | ||
Number with xerostomia (%) b | 22 (9.4) | 13 (8.3) | 9 (11.7) | 7 (10.8) | 0.444 * | 10 (8.0) | 12 (11.1) | 0.502 * |
UWS (n) | n = 269 | n = 184 | n = 85 | n = 73 | n = 144 | n = 125 | ||
Median (range) c | 0.29 (0.00–1.42) | 0.31 (0.03–1.36) | 0.21 (0.00–1.42) | 0.21 (0.00–1.42) | 0.003 ** | 0.31 (0.00–1.42) | 0.25 (0.01–1.36) | 0.007 ** |
Mean (sd) c | 0.35 (0.25) | 0.37 (0.25) | 0.30 (0.27) | 0.31 (0.28) | 0.39 (0.27) | 0.30 (0.22) | ||
Hyposalivation < 0.2 mL/min d | 86 (32.0) | 47 (25.5) | 39 (45.9) | 34 (46.6) | 0.002 * | 37 (25.7) | 49 (39.2) | 0.019 * |
Severe hyposalivation < 0.1 mL/min d | 24 (8.9) | 11 (6.0) | 13 (15.3) | 10 (13.7) | 0.074 * | 8 (5.6) | 16 (12.8) | 0.052 * |
SWS (n) | n = 271 | n = 186 | n = 85 | n = 73 | n = 146 | n = 125 | ||
Median (range) c | 0.98 (0.01–4.03) | 1.11 (0.01–3.35) | 0.78 (0.01–4.03) | 0.78 (0.01–4.03) | 0.003 ** | 1.14 (0.01–4.03) | 0.83 (0.01–3.35) | 0.001 ** |
Mean (sd) c | 1.14 (0.71) | 1.20 (0.69) | 0.99 (0.73) | 0.98 (0.73) | 1.27 (0.76) | 0.98 (0.61) | ||
Hyposalivation < 0.7 mL/min d | 86 (31.7) | 48 (25.8) | 38 (44.7) | 33 (45.2) | 0.004 * | 37 (25.3) | 49 (39.2) | 0.018 * |
Severe hyposalivation < 0.5 mL/min d | 38 (14.0) | 21 (11.3) | 17 (20.0) | 13 (17.8) | 0.219 * | 13 (8.9) | 25 (20.0) | 0.013 * |
Variable | UWS, >0.2 mL/min | UWS, ≤0.2 mL/min | Total | p * |
SWS, >0.7 mL/min | 150 (55.8) | 34 (12.6) | 184 (68.4) | <0.001 |
≤0.7 mL/min | 33 (12.3) | 52 (19.3) | 85 (31.6) | |
Total | 183 (68.0) | 86 (32.0) | 269 (100.0) | |
No xerostomia | Xerostomia | Total | p * | |
UWS, >0.2 mL/min | 129 (61.4) | 12 (5.7) | 141 (67.1) | 0.332 |
≤0.2 mL/min | 60 (28.6) | 9 (4.3) | 69 (32.9) | |
Total | 189 (90.0) | 21 (10.0) | 210 (100.0) | |
No xerostomia | Xerostomia a | Total | p * | |
SWS, >0.7 mL/min | 133 (62.7) | 15 (7.1) | 148 (69.8) | 1.000 |
≤0.7 mL/min | 57 (26.9) | 7 (3.3) | 64 (30.2) | |
Total | 190 (89.6) | 22 (10.4) | 212 (100.0) |
Variable | Number of Survivors a | Hyposalivation < 0.2 mL/min (n) | Risk Ratio | 95% CI | p |
---|---|---|---|---|---|
Gender | |||||
Male | 141 | 37 | 1.0 (ref) | ||
Female | 116 | 46 | 1.52 | 1.06 to 2.19 | 0.023 |
Age at diagnosis (per 1 year increase) | 257 | 83 | 1.01 | 0.97 to 1.04 | 0.805 |
Time since diagnosis (per 10 year increase) | 257 | 83 | 1.42 | 1.15 to 1.75 | 0.001 |
Radiotherapy dose (Gy) to salivary glands | |||||
0 Gy b | 184 | 49 | 1.0 (ref) | ||
>0 and ≤12 Gy | 26 | 10 | 1.48 | 0.89 to 2.47 | 0.128 |
>12 and ≤34 Gy | 32 | 16 | 1.31 | 0.83 to 2.07 | 0.240 |
>34 Gy | 15 | 8 | 2.10 | 1.21 to 3.63 | 0.008 |
Number of medications (per 1 number increase) | 257 | 83 | 1.02 | 0.94 to 1.11 | 0.621 |
Variable | Number of Survivors a | Hyposalivation < 0.7 mL/min (n) | Risk Ratio | 95% CI | p |
---|---|---|---|---|---|
Gender | |||||
Male | 144 | 37 | 1.0 (ref) | ||
Female | 120 | 45 | 1.57 | 1.10 to 2.23 | 0.013 |
Age at diagnosis (per 1 year increase) | 264 | 82 | 0.98 | 0.94 to 1.03 | 0.442 |
Time since diagnosis (per 10 year increase) | 264 | 82 | 0.91 | 0.71 to 1.16 | 0.433 |
Radiotherapy dose to salivary glands | |||||
0 Gy b | 191 | 49 | 1.0 (ref) | ||
>0 and ≤12 Gy | 26 | 10 | 1.74 | 0.95 to 3.20 | 0.073 |
>12 and ≤34 Gy | 32 | 14 | 2.15 | 1.26 to 3.67 | 0.005 |
>34 Gy | 15 | 9 | 2.25 | 1.35 to 3.76 | 0.002 |
Chemotherapy | |||||
No vinca alkaloids | 39 | 19 | 1.0 (ref) | ||
Vinca alkaloids | 225 | 63 | 0.67 | 0.44 to 1.02 | 0.059 |
No anthracyclines | 91 | 36 | 1.0 (ref) | ||
Anthracyclines | 173 | 46 | 0.81 | 0.56 to 1.18 | 0.281 |
No alkylating agents | 80 | 32 | 1.0 (ref) | ||
Alkylating agents | 184 | 50 | 0.81 | 0.55 to 1.19 | 0.282 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolze, J.; Teepen, J.C.; Raber-Durlacher, J.E.; Loonen, J.J.; Kok, J.L.; Tissing, W.J.E.; de Vries, A.C.H.; Neggers, S.J.C.M.M.; van Dulmen-den Broeder, E.; van den Heuvel-Eibrink, M.M.; et al. Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities—A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2). Cancers 2022, 14, 3379. https://doi.org/10.3390/cancers14143379
Stolze J, Teepen JC, Raber-Durlacher JE, Loonen JJ, Kok JL, Tissing WJE, de Vries ACH, Neggers SJCMM, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, et al. Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities—A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2). Cancers. 2022; 14(14):3379. https://doi.org/10.3390/cancers14143379
Chicago/Turabian StyleStolze, Juliette, Jop C. Teepen, Judith E. Raber-Durlacher, Jacqueline J. Loonen, Judith L. Kok, Wim J. E. Tissing, Andrica C. H. de Vries, Sebastian J. C. M. M. Neggers, Eline van Dulmen-den Broeder, Marry M. van den Heuvel-Eibrink, and et al. 2022. "Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities—A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2)" Cancers 14, no. 14: 3379. https://doi.org/10.3390/cancers14143379
APA StyleStolze, J., Teepen, J. C., Raber-Durlacher, J. E., Loonen, J. J., Kok, J. L., Tissing, W. J. E., de Vries, A. C. H., Neggers, S. J. C. M. M., van Dulmen-den Broeder, E., van den Heuvel-Eibrink, M. M., van der Pal, H. J. H., Versluys, A. B., van der Heiden-van der Loo, M., Louwerens, M., Kremer, L. C. M., Brand, H. S., & Bresters, D., on behalf of the DCCSS LATER Study Group. (2022). Prevalence and Risk Factors for Hyposalivation and Xerostomia in Childhood Cancer Survivors Following Different Treatment Modalities—A Dutch Childhood Cancer Survivor Study Late Effects 2 Clinical Study (DCCSS LATER 2). Cancers, 14(14), 3379. https://doi.org/10.3390/cancers14143379