Impact of Alternative Splicing Variants on Liver Cancer Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Intron Removal Process
3. Liver Cancer-Associated Alterations in the Spliceosome Machinery
Gene | Change | Consequences | Clinical Impact | Cancer | Refs. |
---|---|---|---|---|---|
ESRP1 | Up | Impaired exon inclusion | Enhanced migration; Distant metastasis | HCC iCCA | [89,90] |
hnRNPAB | Up | Enhanced migration Enhanced EMT | Promote tumor recurrence | HCC | [77] |
hnRNPE2 | Controversial | Controversial | Change in OS | HCC | [43,74] |
hnRNPK | Down | Transactivation of p53 Decreased proliferation | Shorter OS | HCC | [43] |
hnRNPK | O-glycosyl-N-acetylation | Progression and Metastasis | Shorter OS | iCCA | [44] |
hnRNPL | Down | Unknown | Shorter OS | HCC | [43] |
hnRNPM | Up | Enhanced exon skipping | Enhanced migration; Distant metastasis | HCCi CCA | [91,92] |
PTBP3 | Up | Correlated with tumor size and metastasis | Shorter OS | HCC | [78] |
SF3B1 | Up | Enhanced proliferation, migration, and tumor growth | Shorter OS; Higher aggressiveness | HCC | [47] |
SF3B4 | Up | Promote tumorigenesis and metastasis | Reduced OS | HCC | [59,60] |
SLU7 | Down | Enhanced genome instability and de-differentiation | May favor hepatocarcinogenesis from cirrhotic liver | HCC | [66,67,68,69] |
SNRPB | Up | Enhanced proliferation and migration | Shorter OS; Metastasis | HCC | [43] |
SNRPD1 | Up | Unknown | Shorter OS | HCC | [43] |
SRSF2 | Down | Enhanced proliferation Liver tumorigenesis in vivo | Longer OS | HCC | [43,88] |
SRSF3 | Down | Enhanced EMT and cell proliferation | Metastasis | HCC | [87] |
4. Altered Splicing of Genes Involved in Liver Carcinogenesis and Metastasis
4.1. Role of SVs in the Onset, Progression, and Metastasis of HCC
4.1.1. TP53
4.1.2. TP73
4.1.3. CDH17
4.1.4. KLF6
4.1.5. FGFR2
4.1.6. FGFR3
4.1.7. DNMT3b3
4.1.8. PDSS2
4.1.9. AXL
4.1.10. NF2
4.1.11. XBP1
4.1.12. OPN
4.1.13. CD44
4.1.14. Genome Instability
Gene | Variant | Splicing Event | Consequences | Refs. |
---|---|---|---|---|
AXL | AXL-S | Exon 10 skipping | Enhanced migration; Distant metastasis | [124] |
CD44 | CD44v3 | Lacks multiple coding exons compared to variant 1 | Promotes metastasis | [131] |
CDH17 | ΔEX7CDH17 | Exon 7 skipping | Decreased OS; High tumor recurrence | [109] |
DNMT3b3 | DNMT3b4 | Loss of methyltransferase motifs IX and X | Induced DNA hypomethylation and carcinogenesis | [121] |
FGFR2 | FGFR2-IIIb/IIIc | Mutually exclusive exons | Promoted invasion and metastasis | [114] |
FGFR3 | FGFR3-IIIb | Alternative exon 8 inclusion | Increased proliferation in vitro; Increased tumor growth in vivo; Apoptosis inhibition | [118] |
FGFR3 | FGFR3-IIIc | Alternative exon 9 inclusion | Increased tumor growth in vivo; Apoptosis inhibition | [118] |
FGFR3 | FGFR3Δ7–9 | Exons 7 to 9 skipping | Activation of AKT and decreased expression of PTEN; Enhanced cell proliferation and tumor growth; Enhanced cell motility; Activation of EMT; Distant metastasis in vivo | [119] |
KLF6 | KLF6-SV(1,2) | Exons 2 (partial) and 3 skipping | Enhanced tumorigenesis and aggressiveness | [112,113] |
NF2 | Merlin Δ2–4 | Exons 2–4 skipping | Enhanced migration and invasion; Activation of stemness; Distant metastasis. | [125] |
OPN | OPN-b | Exon 5 skipping | Enhanced invasiveness | [127] |
PDSS2 | PDSS2Δ2 | Exon 2 skipping | Enhanced migration; Distant metastasis; Decreased OS | [123] |
TP53 | Short SVs Δ40p53α | Several exons skipping | Various effects on cell proliferation | [101,103,104,106] |
TP73 | ΔEx2/3p73 | Exon 2 and 3 skipping | Tumor development in vivo | [108] |
XPB1 | XBP1s | Intron skipping and frameshift | Distant metastasis; Poor prognosis | [112] |
4.2. Role of SVs in the Onset, Progression, and Metastasis of iCCA
4.2.1. FOXP3
4.2.2. TFF2
4.2.3. BAP1
4.2.4. AGR2
4.2.5. WISP1
4.2.6. PKM
4.2.7. PTGER3
4.2.8. CD44
Gene | Variant | Splicing Event | Consequence | Refs. |
---|---|---|---|---|
AGR2 | AGR2vA to H | Several combinations of exons 2 to 7 skipping | Affect cancer cell survival and migration | [148] |
BAP1 | BAP1 p.E685V | Multiple SV lacking exons 14–17 | Promote tumorigenesis | [142] |
CD44 | CD44v6; CD44v8–10 | Exon 6 skipping; exon 8–10 skipping | Decreased OS and RFS; Tumor recurrence | [156] |
FOXP3 | FOXP3 | Exons 2–4 skipping | Immune suppression | [138,139] |
PKM | PKM2 | Mutual exclusive exons: exon 9 skipping/exon 10 retention | Decreased OS; Enhanced risk of metastasis | [151,152] |
PTGER3 | EP3–4 | Contains exon 1, 2a, 5, and 10 | Enhanced cell proliferation, migration, and invasion | [153,154] |
TFF2 | ΔEX2TFF2 | Exon 2 skipping | Increased OS | [141] |
WISP1 | WISP1v | Exon 3 skipping | Decreased OS; Induction of invasion | [150] |
5. Altered Splicing of Genes Involved in the Resistance of Liver Cancer to Anticancer Drugs
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Yosudjai, J.; Wongkham, S.; Jirawatnotai, S.; Kaewkong, W. Aberrant mRNA splicing generates oncogenic RNA isoforms and contributes to the development and progression of cholangiocarcinoma. Biomed. Rep. 2019, 10, 147–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, M.P.; Armero, V.E.; Allaire, A.; Boudreault, S.; Martenon-Brodeur, C.; Durand, M.; Lapointe, E.; Thibault, P.; Tremblay-Letourneau, M.; Perreault, J.P.; et al. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma. BMC Genom. 2016, 17, 683. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hu, Z.; Zhao, Y.; Huang, S.; He, X. Transcriptome-Wide Analysis Reveals the Landscape of Aberrant Alternative Splicing Events in Liver Cancer. Hepatology 2019, 69, 359–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Yang, G.; Wang, K.; Riaz, M.; Xu, J.; Lv, Z.; Zhou, H.; Li, Q.; Li, W.; Sun, J.; et al. Genome-Wide Transcriptional Analysis Reveals Alternative Splicing Event Profiles in Hepatocellular Carcinoma and Their Prognostic Significance. Front. Genet. 2020, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Duan, Y.; Wang, Z.; Lin, J. Systematic profiling of a novel prognostic alternative splicing signature in hepatocellular carcinoma. Oncol. Rep. 2019, 42, 2450–2472. [Google Scholar] [CrossRef]
- Wu, H.Y.; Wei, Y.; Liu, L.M.; Chen, Z.B.; Hu, Q.P.; Pan, S.L. Construction of a model to predict the prognosis of patients with cholangiocarcinoma using alternative splicing events. Oncol. Lett. 2019, 18, 4677–4690. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Gong, J.; Zhong, G.; Hu, J.; Cai, D.; Zhao, L.; Zhao, Z. Identification of Mutator-Derived Alternative Splicing Signatures of Genomic Instability for Improving the Clinical Outcome of Cholangiocarcinoma. Front. Oncol. 2021, 11, 666847. [Google Scholar] [CrossRef]
- Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463, 457–463. [Google Scholar] [CrossRef] [Green Version]
- van den Hoogenhof, M.M.; Pinto, Y.M.; Creemers, E.E. RNA Splicing: Regulation and Dysregulation in the Heart. Circ. Res. 2016, 118, 454–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Mthembu, N.N.; Mbita, Z.; Hull, R.; Dlamini, Z. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers. HIV AIDS 2017, 9, 77–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameyama, T.; Suzuki, H.; Mayeda, A. Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites. Nucleic Acids Res. 2012, 40, 7896–7906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, H.H.; Kameyama, T.; Mayeda, A.; Yeh, T.H. Cancer-Specifically Re-Spliced TSG101 mRNA Promotes Invasion and Metastasis of Nasopharyngeal Carcinoma. Int. J. Mol. Sci. 2019, 20, 773. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.L.; Padgett, R.A. Requirement of U12 snRNA for in vivo splicing of a minor class of eukaryotic nuclear pre-mRNA introns. Science 1996, 271, 1716–1718. [Google Scholar] [CrossRef]
- Chen, M.; Manley, J.L. Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 2009, 10, 741–754. [Google Scholar] [CrossRef]
- Tarn, W.Y.; Steitz, J.A. Pre-mRNA splicing: The discovery of a new spliceosome doubles the challenge. Trends Biochem. Sci. 1997, 22, 132–137. [Google Scholar] [CrossRef]
- Patel, A.A.; Steitz, J.A. Splicing double: Insights from the second spliceosome. Nat. Rev. Mol. Cell Biol. 2003, 4, 960–970. [Google Scholar] [CrossRef]
- Tacke, R.; Manley, J.L. Determinants of SR protein specificity. Curr. Opin. Cell Biol. 1999, 11, 358–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Madl, T.; Bagdiul, I.; Kern, T.; Kang, H.S.; Zou, P.; Mausbacher, N.; Sieber, S.A.; Kramer, A.; Sattler, M. Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3’-splice site recognition. Nucleic Acids Res. 2013, 41, 1343–1354. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Newnham, C.M.; Kameoka, S.; Huang, T.; Konarska, M.M.; Query, C.C. Prp5 bridges U1 and U2 snRNPs and enables stable U2 snRNP association with intron RNA. EMBO J. 2004, 23, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Fredericks, A.M.; Cygan, K.J.; Brown, B.A.; Fairbrother, W.G. RNA-Binding Proteins: Splicing Factors and Disease. Biomolecules 2015, 5, 893–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charenton, C.; Wilkinson, M.E.; Nagai, K. Mechanism of 5′ splice site transfer for human spliceosome activation. Science 2019, 364, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Sidarovich, A.; Will, C.L.; Anokhina, M.M.; Ceballos, J.; Sievers, S.; Agafonov, D.E.; Samatov, T.; Bao, P.; Kastner, B.; Urlaub, H.; et al. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. Elife 2017, 6, e23533. [Google Scholar] [CrossRef] [PubMed]
- Fica, S.M.; Tuttle, N.; Novak, T.; Li, N.S.; Lu, J.; Koodathingal, P.; Dai, Q.; Staley, J.P.; Piccirilli, J.A. RNA catalyses nuclear pre-mRNA splicing. Nature 2013, 503, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Jacquier, A. Self-splicing group II and nuclear pre-mRNA introns: How similar are they? Trends Biochem. Sci. 1990, 15, 351–354. [Google Scholar] [CrossRef]
- Will, C.L.; Luhrmann, R. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 2011, 3, a003707. [Google Scholar] [CrossRef] [Green Version]
- Makarova, O.V.; Makarov, E.M.; Liu, S.; Vornlocher, H.P.; Luhrmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002, 21, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 2000, 6, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Long, J.C.; Caceres, J.F. The SR protein family of splicing factors: Master regulators of gene expression. Biochem. J. 2009, 417, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blencowe, B.J. Exonic splicing enhancers: Mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 2000, 25, 106–110. [Google Scholar] [CrossRef]
- Martinez-Contreras, R.; Cloutier, P.; Shkreta, L.; Fisette, J.F.; Revil, T.; Chabot, B. hnRNP proteins and splicing control. Adv. Exp. Med. Biol. 2007, 623, 123–147. [Google Scholar] [CrossRef] [PubMed]
- Naro, C.; Sette, C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int. J. Cell Biol. 2013, 2013, 151839. [Google Scholar] [CrossRef] [PubMed]
- Padgett, R.A. New connections between splicing and human disease. Trends Genet. 2012, 28, 147–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, C.; Zhou, F.; Zuo, Z.; Cheng, H.; Zhou, R. A global view of cancer-specific transcript variants by subtractive transcriptome-wide analysis. PLoS ONE 2009, 4, e4732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebestyen, E.; Zawisza, M.; Eyras, E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res. 2015, 43, 1345–1356. [Google Scholar] [CrossRef] [Green Version]
- Danan-Gotthold, M.; Golan-Gerstl, R.; Eisenberg, E.; Meir, K.; Karni, R.; Levanon, E.Y. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res. 2015, 43, 5130–5144. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Cheng, Y.; Liu, Y.; Chen, L.; Liu, L.; Wei, N.; Xie, Z.; Wu, W.; Feng, Y. SRSF2 Regulates Alternative Splicing to Drive Hepatocellular Carcinoma Development. Cancer Res. 2017, 77, 1168–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, D.; Liu, P.; Chen, Y.; Yu, H.; Zhang, Q. Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data. Mol. Med. Rep. 2017, 15, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Goren, A.; Ast, G. Insights into the connection between cancer and alternative splicing. Trends Genet. 2008, 24, 7–10. [Google Scholar] [CrossRef]
- Srebrow, A.; Kornblihtt, A.R. The connection between splicing and cancer. J. Cell Sci. 2006, 119, 2635–2641. [Google Scholar] [CrossRef] [Green Version]
- Berasain, C.; Goni, S.; Castillo, J.; Latasa, M.U.; Prieto, J.; Avila, M.A. Impairment of pre-mRNA splicing in liver disease: Mechanisms and consequences. World J. Gastroenterol. 2010, 16, 3091–3102. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, M.; Pelisch, F.; Srebrow, A. Signals, pathways and splicing regulation. Int. J. Biochem. Cell Biol. 2007, 39, 2031–2048. [Google Scholar] [CrossRef]
- Soto, M.; Reviejo, M.; Al-Abdulla, R.; Romero, M.R.; Macias, R.I.R.; Boix, L.; Bruix, J.; Serrano, M.A.; Marin, J.J.G. Relationship between changes in the exon-recognition machinery and SLC22A1 alternative splicing in hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165687. [Google Scholar] [CrossRef] [PubMed]
- Phoomak, C.; Park, D.; Silsirivanit, A.; Sawanyawisuth, K.; Vaeteewoottacharn, K.; Detarya, M.; Wongkham, C.; Lebrilla, C.B.; Wongkham, S. O-GlcNAc-induced nuclear translocation of hnRNP-K is associated with progression and metastasis of cholangiocarcinoma. Mol. Oncol. 2019, 13, 338–357. [Google Scholar] [CrossRef]
- Pereira, B.; Billaud, M.; Almeida, R. RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer 2017, 3, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Huang, H.; Yu, L.; Cao, L. Meta-analysis of gene expression profiles indicates genes in spliceosome pathway are up-regulated in hepatocellular carcinoma (HCC). Med. Oncol. 2015, 32, 96. [Google Scholar] [CrossRef]
- Lopez-Canovas, J.L.; Del Rio-Moreno, M.; Garcia-Fernandez, H.; Jimenez-Vacas, J.M.; Moreno-Montilla, M.T.; Sanchez-Frias, M.E.; Amado, V.; Fernando, L.; Fondevila, M.F.; Ciria, R.; et al. Splicing factor SF3B1 is overexpressed and implicated in the aggressiveness and survival of hepatocellular carcinoma. Cancer Lett. 2021, 496, 72–83. [Google Scholar] [CrossRef]
- Sun, C. The SF3b complex: Splicing and beyond. Cell Mol. Life Sci. 2020, 77, 3583–3595. [Google Scholar] [CrossRef] [Green Version]
- Kfir, N.; Lev-Maor, G.; Glaich, O.; Alajem, A.; Datta, A.; Sze, S.K.; Meshorer, E.; Ast, G. SF3B1 association with chromatin determines splicing outcomes. Cell Rep. 2015, 11, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, Z.; Jiang, Y.; Shen, R.; Gu, M.; Xu, W.; Gu, X. Inhibition of Splicing Factor 3b Subunit 1 (SF3B1) Reduced Cell Proliferation, Induced Apoptosis and Resulted in Cell Cycle Arrest by Regulating Homeobox A10 (HOXA10) Splicing in AGS and MKN28 Human Gastric Cancer Cells. Med. Sci. Monit. 2020, 26, e919460. [Google Scholar] [CrossRef]
- Hwang, H.M.; Heo, C.K.; Lee, H.J.; Kwak, S.S.; Lim, W.H.; Yoo, J.S.; Yu, D.Y.; Lim, K.J.; Kim, J.Y.; Cho, E.W. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma. J. Transl. Med. 2018, 16, 177. [Google Scholar] [CrossRef]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Maguire, S.L.; Leonidou, A.; Wai, P.; Marchio, C.; Ng, C.K.; Sapino, A.; Salomon, A.V.; Reis-Filho, J.S.; Weigelt, B.; Natrajan, R.C. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J. Pathol. 2015, 235, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Vacas, J.M.; Herrero-Aguayo, V.; Gomez-Gomez, E.; Leon-Gonzalez, A.J.; Saez-Martinez, P.; Alors-Perez, E.; Fuentes-Fayos, A.C.; Martinez-Lopez, A.; Sanchez-Sanchez, R.; Gonzalez-Serrano, T.; et al. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer. Transl. Res. 2019, 212, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Chew, G.L.; Liu, B.; Michel, B.C.; Pangallo, J.; D’Avino, A.R.; Hitchman, T.; North, K.; Lee, S.C.; Bitner, L.; et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 2019, 574, 432–436. [Google Scholar] [CrossRef] [PubMed]
- te Raa, G.D.; Derks, I.A.; Navrkalova, V.; Skowronska, A.; Moerland, P.D.; van Laar, J.; Oldreive, C.; Monsuur, H.; Trbusek, M.; Malcikova, J.; et al. The impact of SF3B1 mutations in CLL on the DNA-damage response. Leukemia 2015, 29, 1133–1142. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017, 169, 1327–1341.e1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nault, J.C.; Martin, Y.; Caruso, S.; Hirsch, T.Z.; Bayard, Q.; Calderaro, J.; Charpy, C.; Copie-Bergman, C.; Ziol, M.; Bioulac-Sage, P.; et al. Clinical Impact of Genomic Diversity From Early to Advanced Hepatocellular Carcinoma. Hepatology 2020, 71, 164–182. [Google Scholar] [CrossRef]
- Shen, Q.; Nam, S.W. SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma. BMB Rep. 2018, 51, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, W.; Pang, Y.; Zhou, Z.; Liu, S.; Cheng, K.; Qin, Q.; Jia, Y.; Liu, S. SF3B4 is regulated by microRNA-133b and promotes cell proliferation and metastasis in hepatocellular carcinoma. EBioMedicine 2018, 38, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, T.; Komatsu, H.; Masuda, T.; Nambara, S.; Kidogami, S.; Ogawa, Y.; Hu, Q.; Saito, T.; Hirata, H.; Sakimura, S.; et al. Increased Copy Number of the Gene Encoding SF3B4 Indicates Poor Prognosis in Hepatocellular Carcinoma. Anticancer Res. 2016, 36, 2139–2144. [Google Scholar] [PubMed]
- Peng, N.; Li, J.; He, J.; Shi, X.; Huang, H.; Mo, Y.; Ye, H.; Wu, G.; Wu, F.; Xiang, B.; et al. c-Myc-mediated SNRPB upregulation functions as an oncogene in hepatocellular carcinoma. Cell Biol. Int. 2020, 44, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Bielli, P.; Pagliarini, V.; Pieraccioli, M.; Caggiano, C.; Sette, C. Splicing Dysregulation as Oncogenic Driver and Passenger Factor in Brain Tumors. Cells 2019, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, B.R.; de Araujo, P.R.; Qiao, M.; Burns, S.C.; Chen, C.; Schlegel, R.; Agarwal, S.; Galante, P.A.; Penalva, L.O. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol. 2016, 17, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Wu, Z.; Chen, A.; Wang, Y.; Cai, D.; Zheng, J.; Liu, Y.; Zhang, L. SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26. Cell Death Dis. 2019, 10, 667. [Google Scholar] [CrossRef]
- Castillo, J.; Goni, S.; Latasa, M.U.; Perugorria, M.J.; Calvo, A.; Muntane, J.; Bioulac-Sage, P.; Balabaud, C.; Prieto, J.; Avila, M.A.; et al. Amphiregulin induces the alternative splicing of p73 into its oncogenic isoform DeltaEx2p73 in human hepatocellular tumors. Gastroenterology 2009, 137, 1805–1815. [Google Scholar] [CrossRef]
- Garate-Rascon, M.; Recalde, M.; Jimenez, M.; Elizalde, M.; Azkona, M.; Uriarte, I.; Latasa, M.U.; Urtasun, R.; Bilbao, I.; Sangro, B.; et al. Splicing Factor SLU7 Prevents Oxidative Stress-Mediated Hepatocyte Nuclear Factor 4alpha Degradation, Preserving Hepatic Differentiation and Protecting From Liver Damage. Hepatology 2021, 74, 2791–2807. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.; Urtasun, R.; Elizalde, M.; Azkona, M.; Latasa, M.U.; Uriarte, I.; Arechederra, M.; Alignani, D.; Barcena-Varela, M.; Alvarez-Sola, G.; et al. Splicing events in the control of genome integrity: Role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Res. 2019, 47, 3450–3466. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, M.; Urtasun, R.; Azkona, M.; Latasa, M.U.; Goni, S.; Garcia-Irigoyen, O.; Uriarte, I.; Segura, V.; Collantes, M.; Di Scala, M.; et al. Splicing regulator SLU7 is essential for maintaining liver homeostasis. J. Clin. Invest. 2014, 124, 2909–2920. [Google Scholar] [CrossRef] [Green Version]
- Ji, F.J.; Wu, Y.Y.; An, Z.; Liu, X.S.; Jiang, J.N.; Chen, F.F.; Fang, X.D. Expression of both poly r(C) binding protein 1 (PCBP1) and miRNA-3978 is suppressed in peritoneal gastric cancer metastasis. Sci. Rep. 2017, 7, 15488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, X.; Tan, J.; Zhao, M.; Lian, L.; Zhang, W. Poly r(C) binding protein (PCBP) 1 is a negative regulator of thyroid carcinoma. Am. J. Transl. Res. 2016, 8, 3567–3573. [Google Scholar]
- Luo, K.; Zhuang, K. High expression of PCBP2 is associated with progression and poor prognosis in patients with glioblastoma. Biomed. Pharmacother. 2017, 94, 659–665. [Google Scholar] [CrossRef]
- Chen, C.; Lei, J.; Zheng, Q.; Tan, S.; Ding, K.; Yu, C. Poly(rC) binding protein 2 (PCBP2) promotes the viability of human gastric cancer cells by regulating CDK2. FEBS Open Bio. 2018, 8, 764–773. [Google Scholar] [CrossRef]
- Zhang, X.; Hua, L.; Yan, D.; Zhao, F.; Liu, J.; Zhou, H.; Liu, J.; Wu, M.; Zhang, C.; Chen, Y.; et al. Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol. Rep. 2016, 36, 3456–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, G.; Tu, X.; Li, H.; Cao, P.; Chen, X.; Song, J.; Han, H.; Li, Y.; Guo, B.; Yang, L.; et al. Long Noncoding RNA p53-Stabilizing and Activating RNA Promotes p53 Signaling by Inhibiting Heterogeneous Nuclear Ribonucleoprotein K deSUMOylation and Suppresses Hepatocellular Carcinoma. Hepatology 2020, 71, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Hu, J.; Deng, H. miR-1249-3p accelerates the malignancy phenotype of hepatocellular carcinoma by directly targeting HNRNPK. Mol. Genet. Genomic. Med. 2019, 7, e00867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.J.; Dai, Z.; Zhou, S.L.; Hu, Z.Q.; Chen, Q.; Zhao, Y.M.; Shi, Y.H.; Gao, Q.; Wu, W.Z.; Qiu, S.J.; et al. HNRNPAB induces epithelial-mesenchymal transition and promotes metastasis of hepatocellular carcinoma by transcriptionally activating SNAIL. Cancer Res. 2014, 74, 2750–2762. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Qu, S.; Wang, L.; Zhang, H.; Yang, Z.; Wang, J.; Dai, B.; Tao, K.; Shang, R.; Liu, Z.; et al. PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612. Oncogene 2018, 37, 6399–6413. [Google Scholar] [CrossRef]
- Yu, L.; Kim, J.; Jiang, L.; Feng, B.; Ying, Y.; Ji, K.Y.; Tang, Q.; Chen, W.; Mai, T.; Dou, W.; et al. MTR4 drives liver tumorigenesis by promoting cancer metabolic switch through alternative splicing. Nat. Commun. 2020, 11, 708. [Google Scholar] [CrossRef]
- Karni, R.; de Stanchina, E.; Lowe, S.W.; Sinha, R.; Mu, D.; Krainer, A.R. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 2007, 14, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, B.; Xiao, Y.; Xiong, H.M.; Li, J.; Feng, D.Q.; Chen, X.M.; Zhang, H.B.; Wang, X.Z. Aberrant expression of splicing factors in newly diagnosed acute myeloid leukemia. Oncol. Res. Treat. 2012, 35, 335–340. [Google Scholar] [CrossRef]
- Yang, S.; Jia, R.; Bian, Z. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Dai, M.; Xu, Q.; Zhu, X.; Zhou, Y.; Jiang, S.; Wang, Y.; Ai, Z.; Ma, L.; Zhang, Y.; et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-kappaB-CD47 axis. Oncogene 2018, 37, 2394–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Wang, R.; Li, X.; Yu, L.; Hua, D.; Sun, C.; Shi, C.; Luo, W.; Rao, C.; Jiang, Z.; et al. Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B. J. Clin. Invest. 2019, 129, 676–693. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Jumaa, H.; Webster, N.J. Splicing factor SRSF3 is crucial for hepatocyte differentiation and metabolic function. Nat. Commun. 2013, 4, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, S.; Langiewicz, M.; Jumaa, H.; Webster, N.J. Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. Hepatology 2015, 61, 171–183. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Z.; Chen, L.; Li, Q.; Zou, J.; Liu, S. PPM1G promotes the progression of hepatocellular carcinoma via phosphorylation regulation of alternative splicing protein SRSF3. Cell Death Dis. 2021, 12, 722. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, L.; Yuan, W.; Liu, Y.; Guo, R.; Luo, Y.; Zhan, Z.; Xie, Z.; Wu, G.; Wu, W.; et al. Loss of SRSF2 triggers hepatic progenitor cell activation and tumor development in mice. Commun. Biol. 2020, 3, 210. [Google Scholar] [CrossRef]
- Lowdon, R.F.; Wang, T. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer. PLoS ONE 2017, 12, e0174032. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Gao, X.D.; Lee, J.H.; Huang, H.; Tan, H.; Ahn, J.; Reinke, L.M.; Peter, M.E.; Feng, Y.; Gius, D.; et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes Dev. 2014, 28, 1191–1203. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Liu, J.; Sun, K.; Liu, Y.; Yu, J.; Ma, S.; Zhang, M.; Jia, G.; Zhou, X.; Shang, Y.; et al. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front. Oncol. 2020, 10, 597996. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Shen, S.; Dai, D.; Cheng, S.; Dong, X.; Sun, L.; Guo, X. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J. Cell Mol. Med. 2020, 24, 11111–11119. [Google Scholar] [CrossRef]
- Lee, Y.; Rio, D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 2015, 84, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Pensabene, M.; Spagnoletti, I.; Capuano, I.; Condello, C.; Pepe, S.; Contegiacomo, A.; Lombardi, G.; Bevilacqua, G.; Caligo, M.A. Two mutations of BRCA2 gene at exon and splicing site in a woman who underwent oncogenetic counseling. Ann. Oncol. 2009, 20, 874–878. [Google Scholar] [CrossRef]
- Matsukuma, K.E.; Mullins, F.M.; Dietz, L.; Zehnder, J.L.; Ford, J.M.; Chun, N.M.; Schrijver, I. Hereditary diffuse gastric cancer due to a previously undescribed CDH1 splice site mutation. Hum. Pathol. 2010, 41, 1200–1203. [Google Scholar] [CrossRef] [PubMed]
- Hansford, S.; Kaurah, P.; Li-Chang, H.; Woo, M.; Senz, J.; Pinheiro, H.; Schrader, K.A.; Schaeffer, D.F.; Shumansky, K.; Zogopoulos, G.; et al. Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol. 2015, 1, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartram, M.P.; Mishra, T.; Reintjes, N.; Fabretti, F.; Gharbi, H.; Adam, A.C.; Gobel, H.; Franke, M.; Schermer, B.; Haneder, S.; et al. Characterization of a splice-site mutation in the tumor suppressor gene FLCN associated with renal cancer. BMC Med. Genet. 2017, 18, 53. [Google Scholar] [CrossRef]
- Diederichs, S.; Bartsch, L.; Berkmann, J.C.; Frose, K.; Heitmann, J.; Hoppe, C.; Iggena, D.; Jazmati, D.; Karschnia, P.; Linsenmeier, M.; et al. The dark matter of the cancer genome: Aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations. EMBO Mol. Med. 2016, 8, 442–457. [Google Scholar] [CrossRef]
- Petasny, M.; Bentata, M.; Pawellek, A.; Baker, M.; Kay, G.; Salton, M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet. 2021, 37, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Murthy, T.; Bluemn, T.; Gupta, A.K.; Reimer, M., Jr.; Rao, S.; Pillai, M.M.; Minella, A.C. Cyclin-dependent kinase 1 (CDK1) and CDK2 have opposing roles in regulating interactions of splicing factor 3B1 with chromatin. J. Biol. Chem. 2018, 293, 10220–10234. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Kataoka, K.; Chiba, K.; Okada, A.; Kogure, Y.; Tanaka, H.; Ogawa, S.; Miyano, S. A comprehensive characterization of cis-acting splicing-associated variants in human cancer. Genome Res. 2018, 28, 1111–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, M.Y.; Chang, H.C.; Li, H.P.; Ku, C.K.; Chen, P.J.; Sheu, J.C.; Huang, G.T.; Lee, P.H.; Chen, D.S. Splicing mutations of the p53 gene in human hepatocellular carcinoma. Cancer Res. 1993, 53, 1653–1656. [Google Scholar]
- Braakhuis, B.J.; Rietbergen, M.M.; Buijze, M.; Snijders, P.J.; Bloemena, E.; Brakenhoff, R.H.; Leemans, C.R. TP53 mutation and human papilloma virus status of oral squamous cell carcinomas in young adult patients. Oral Dis. 2014, 20, 602–608. [Google Scholar] [CrossRef]
- Supek, F.; Minana, B.; Valcarcel, J.; Gabaldon, T.; Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 2014, 156, 1324–1335. [Google Scholar] [CrossRef] [Green Version]
- Marcel, V.; Dichtel-Danjoy, M.L.; Sagne, C.; Hafsi, H.; Ma, D.; Ortiz-Cuaran, S.; Olivier, M.; Hall, J.; Mollereau, B.; Hainaut, P.; et al. Biological functions of p53 isoforms through evolution: Lessons from animal and cellular models. Cell Death Differ. 2011, 18, 1815–1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, A.; Nakao, H.; Sawada, Y.; Karnan, S.; Wahiduzzaman, M.; Inoue, T.; Kobayashi, Y.; Yamamoto, T.; Ishii, N.; Ohashi, T.; et al. Delta40p53alpha suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells. J. Cell Sci. 2017, 130, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Stiewe, T.; Tuve, S.; Peter, M.; Tannapfel, A.; Elmaagacli, A.H.; Putzer, B.M. Quantitative TP73 transcript analysis in hepatocellular carcinomas. Clin. Cancer Res. 2004, 10, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiewe, T.; Zimmermann, S.; Frilling, A.; Esche, H.; Putzer, B.M. Transactivation-deficient DeltaTA-p73 acts as an oncogene. Cancer Res. 2002, 62, 3598–3602. [Google Scholar]
- Wang, X.Q.; Luk, J.M.; Leung, P.P.; Wong, B.W.; Stanbridge, E.J.; Fan, S.T. Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin. Cancer Res. 2005, 11, 483–489. [Google Scholar]
- Wang, X.Q.; Luk, J.M.; Garcia-Barcelo, M.; Miao, X.; Leung, P.P.; Ho, D.W.; Cheung, S.T.; Lam, B.Y.; Cheung, C.K.; Wong, A.S.; et al. Liver intestine-cadherin (CDH17) haplotype is associated with increased risk of hepatocellular carcinoma. Clin. Cancer Res. 2006, 12, 5248–5252. [Google Scholar] [CrossRef] [Green Version]
- Narla, G.; Difeo, A.; Reeves, H.L.; Schaid, D.J.; Hirshfeld, J.; Hod, E.; Katz, A.; Isaacs, W.B.; Hebbring, S.; Komiya, A.; et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 2005, 65, 1213–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, D.; Cohen-Naftaly, M.; Villanueva, A.; Lee, Y.A.; Kocabayoglu, P.; Hannivoort, R.; Narla, G.; Llovet, J.M.; Thung, S.N.; Friedman, S.L. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing. Hepatology 2012, 56, 1361–1370. [Google Scholar] [CrossRef]
- Hanoun, N.; Bureau, C.; Diab, T.; Gayet, O.; Dusetti, N.; Selves, J.; Vinel, J.P.; Buscail, L.; Cordelier, P.; Torrisani, J. The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. J. Hepatol. 2010, 53, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, V.D.; Ittmann, M.; Spencer, D.M. Paths of FGFR-driven tumorigenesis. Cell Cycle 2009, 8, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Venables, J.P.; Brosseau, J.P.; Gadea, G.; Klinck, R.; Prinos, P.; Beaulieu, J.F.; Lapointe, E.; Durand, M.; Thibault, P.; Tremblay, K.; et al. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol. Cell Biol. 2013, 33, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradella, D.; Naro, C.; Sette, C.; Ghigna, C. EMT and stemness: Flexible processes tuned by alternative splicing in development and cancer progression. Mol. Cancer 2017, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Amann, T.; Bataille, F.; Spruss, T.; Dettmer, K.; Wild, P.; Liedtke, C.; Muhlbauer, M.; Kiefer, P.; Oefner, P.J.; Trautwein, C.; et al. Reduced expression of fibroblast growth factor receptor 2IIIb in hepatocellular carcinoma induces a more aggressive growth. Am. J. Pathol. 2010, 176, 1433–1442. [Google Scholar] [CrossRef] [Green Version]
- Paur, J.; Nika, L.; Maier, C.; Moscu-Gregor, A.; Kostka, J.; Huber, D.; Mohr, T.; Heffeter, P.; Schrottmaier, W.C.; Kappel, S.; et al. Fibroblast growth factor receptor 3 isoforms: Novel therapeutic targets for hepatocellular carcinoma? Hepatology 2015, 62, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Shen, B.; Cheng, X.; Ma, D.; Jing, X.; Liu, X.; Yang, W.; Peng, C.; Qiu, W. Phenotypic and Signaling Consequences of a Novel Aberrantly Spliced Transcript FGF Receptor-3 in Hepatocellular Carcinoma. Cancer Res. 2016, 76, 4205–4215. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Feng, H.; Liang, J.; Jing, X.; Zhao, Q.; Zhan, L.; Shen, B.; Cheng, X.; Su, L.; Qiu, W. FGFR3 big up tri, open7-9 promotes tumor progression via the phosphorylation and destabilization of ten-eleven translocation-2 in human hepatocellular carcinoma. Cell Death Dis. 2020, 11, 903. [Google Scholar] [CrossRef]
- Saito, Y.; Kanai, Y.; Sakamoto, M.; Saito, H.; Ishii, H.; Hirohashi, S. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 10060–10065. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, S.; Li, L.; Tang, Z.; Hu, Y.; Ban, X.; Zeng, T.; Zhou, Y.; Zhu, Y.; Gao, S.; et al. PDSS2 Deficiency Induces Hepatocarcinogenesis by Decreasing Mitochondrial Respiration and Reprogramming Glucose Metabolism. Cancer Res. 2018, 78, 4471–4481. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Tang, Z.; Liang, L.; Suo, D.; Li, L.; Li, J.; Yuan, Y.; Guan, X.Y.; Li, Y. PDSS2-Del2, a new variant of PDSS2, promotes tumor cell metastasis and angiogenesis in hepatocellular carcinoma via activating NF-kappaB. Mol. Oncol. 2020, 14, 3184–3197. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Lei, S.; Zhang, B.; Li, S.; Huang, L.; Czachor, A.; Breitzig, M.; Gao, Y.; Huang, M.; Mo, X.; et al. Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Theranostics 2020, 10, 5719–5735. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.L.; Cheng, S.Q.; Shi, J.; Zhang, H.L.; Zhang, C.Z.; Chen, H.Y.; Qiu, B.J.; Tang, L.; Hu, C.L.; Wang, H.Y.; et al. A splicing variant of Merlin promotes metastasis in hepatocellular carcinoma. Nat. Commun. 2015, 6, 8457. [Google Scholar] [CrossRef]
- Wu, S.; Du, R.; Gao, C.; Kang, J.; Wen, J.; Sun, T. The role of XBP1s in the metastasis and prognosis of hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2018, 500, 530–537. [Google Scholar] [CrossRef]
- Chae, S.; Jun, H.O.; Lee, E.G.; Yang, S.J.; Lee, D.C.; Jung, J.K.; Park, K.C.; Yeom, Y.I.; Kim, K.W. Osteopontin splice variants differentially modulate the migratory activity of hepatocellular carcinoma cell lines. Int. J. Oncol. 2009, 35, 1409–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, K.; Oh, S.; Lee, K.M.; Yoo, S.A.; Shin, I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 2015, 27, 1882–1894. [Google Scholar] [CrossRef]
- Ponta, H.; Sherman, L.; Herrlich, P.A. CD44: From adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 2003, 4, 33–45. [Google Scholar] [CrossRef]
- Brown, R.L.; Reinke, L.M.; Damerow, M.S.; Perez, D.; Chodosh, L.A.; Yang, J.; Cheng, C. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J. Clin. Investig. 2011, 121, 1064–1074. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; You, S.; Zhang, S.; Hu, Q.; Wang, F.; Chi, X.; Zhao, W.; Xie, C.; Zhang, C.; Yu, Y.; et al. Elevated N-methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Mol. Oncol. 2019, 13, 1993–2009. [Google Scholar] [CrossRef] [Green Version]
- Marzese, D.M.; Liu, M.; Huynh, J.L.; Hirose, H.; Donovan, N.C.; Huynh, K.T.; Kiyohara, E.; Chong, K.; Cheng, D.; Tanaka, R.; et al. Brain metastasis is predetermined in early stages of cutaneous melanoma by CD44v6 expression through epigenetic regulation of the spliceosome. Pigment Cell Melanoma Res. 2015, 28, 82–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yao, Y.; Sun, L.; Zhou, J.; Miao, M.; Luo, S.; Deng, G.; Li, J.; Wang, J.; Tang, J. Snail Driving Alternative Splicing of CD44 by ESRP1 Enhances Invasion and Migration in Epithelial Ovarian Cancer. Cell Physiol. Biochem. 2017, 43, 2489–2504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.L.; Cao, J.L.; Xie, H.Y.; Sun, R.; Yang, L.F.; Shao, Z.M.; Li, D.Q. Cancer-Associated MORC2-Mutant M276I Regulates an hnRNPM-Mediated CD44 Splicing Switch to Promote Invasion and Metastasis in Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 5780–5792. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, M.; Arechederra, M.; Avila, M.A.; Berasain, C. Splicing alterations contributing to cancer hallmarks in the liver: Central role of dedifferentiation and genome instability. Transl. Gastroenterol. Hepatol. 2018, 3, 84. [Google Scholar] [CrossRef]
- Sze, K.M.; Ching, Y.P.; Jin, D.Y.; Ng, I.O. Role of a novel splice variant of mitotic arrest deficient 1 (MAD1), MAD1beta, in mitotic checkpoint control in liver cancer. Cancer Res. 2008, 68, 9194–9201. [Google Scholar] [CrossRef] [Green Version]
- Yasen, M.; Mizushima, H.; Mogushi, K.; Obulhasim, G.; Miyaguchi, K.; Inoue, K.; Nakahara, I.; Ohta, T.; Aihara, A.; Tanaka, S.; et al. Expression of Aurora B and alternative variant forms in hepatocellular carcinoma and adjacent tissue. Cancer Sci. 2009, 100, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Ebert, L.M.; Tan, B.S.; Browning, J.; Svobodova, S.; Russell, S.E.; Kirkpatrick, N.; Gedye, C.; Moss, D.; Ng, S.P.; MacGregor, D.; et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res. 2008, 68, 3001–3009. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Shimoda, S.; Kimura, Y.; Sato, Y.; Ikeda, H.; Igarashi, S.; Ren, X.S.; Sato, H.; Nakanuma, Y. Significance of immunoglobulin G4 (IgG4)-positive cells in extrahepatic cholangiocarcinoma: Molecular mechanism of IgG4 reaction in cancer tissue. Hepatology 2012, 56, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosriwong, K.; Menheniott, T.R.; Giraud, A.S.; Jearanaikoon, P.; Sripa, B.; Limpaiboon, T. Trefoil factors: Tumor progression markers and mitogens via EGFR/MAPK activation in cholangiocarcinoma. World J. Gastroenterol. 2011, 17, 1631–1641. [Google Scholar] [CrossRef]
- Kamlua, S.; Patrakitkomjorn, S.; Jearanaikoon, P.; Menheniott, T.R.; Giraud, A.S.; Limpaiboon, T. A novel TFF2 splice variant (EX2TFF2) correlates with longer overall survival time in cholangiocarcinoma. Oncol. Rep. 2012, 27, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.; Chekaluk, Y.; Bacares, R.; Ladanyi, M.; Zhang, L. BAP1 missense mutation c.2054 A>T (p.E685V) completely disrupts normal splicing through creation of a novel 5′ splice site in a human mesothelioma cell line. PLoS ONE 2015, 10, e0119224. [Google Scholar] [CrossRef] [PubMed]
- Ventii, K.H.; Devi, N.S.; Friedrich, K.L.; Chernova, T.A.; Tighiouart, M.; Van Meir, E.G.; Wilkinson, K.D. BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Res. 2008, 68, 6953–6962. [Google Scholar] [CrossRef] [Green Version]
- Brandi, G.; Deserti, M.; Palloni, A.; Turchetti, D.; Zuntini, R.; Pedica, F.; Frega, G.; De Lorenzo, S.; Abbati, F.; Rizzo, A.; et al. Intrahepatic cholangiocarcinoma development in a patient with a novel BAP1 germline mutation and low exposure to asbestos. Cancer Genet. 2020, 248–249, 57–62. [Google Scholar] [CrossRef]
- Obacz, J.; Takacova, M.; Brychtova, V.; Dobes, P.; Pastorekova, S.; Vojtesek, B.; Hrstka, R. The role of AGR2 and AGR3 in cancer: Similar but not identical. Eur. J. Cell Biol. 2015, 94, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Yosudjai, J.; Inpad, C.; Pothipan, P.; Saisomboon, S.; Surangkul, D.; Phimsen, S.; Hongsrichan, N.; Wongkham, S.; Jirawatnotai, S.; Roytrakul, S.; et al. Overexpression of AGR2vH, an oncogenic AGR2 spliced transcript, potentiates tumorigenicity and proteomic alterations in cholangiocarcinoma cell. Biosci. Biotechnol. Biochem. 2021, 85, 2263–2273. [Google Scholar] [CrossRef]
- Suwanmanee, G.; Yosudjai, J.; Phimsen, S.; Wongkham, S.; Jirawatnotai, S.; Kaewkong, W. Upregulation of AGR2vH facilitates cholangiocarcinoma cell survival under endoplasmic reticulum stress via the activation of the unfolded protein response pathway. Int. J. Mol. Med. 2020, 45, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Yosudjai, J.; Inpad, C.; Chomwong, S.; Dana, P.; Sawanyawisuth, K.; Phimsen, S.; Wongkham, S.; Jirawatnotai, S.; Kaewkong, W. An aberrantly spliced isoform of anterior gradient-2, AGR2vH promotes migration and invasion of cholangiocarcinoma cell. Biomed. Pharmacother. 2018, 107, 109–116. [Google Scholar] [CrossRef]
- Weiskirchen, R. CCN proteins in normal and injured liver. Front. Biosci. 2011, 16, 1939–1961. [Google Scholar] [CrossRef]
- Tanaka, S.; Sugimachi, K.; Kameyama, T.; Maehara, S.; Shirabe, K.; Shimada, M.; Wands, J.R.; Maehara, Y. Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 2003, 37, 1122–1129. [Google Scholar] [CrossRef]
- Qian, Z.; Hu, W.; Lv, Z.; Liu, H.; Chen, D.; Wang, Y.; Wu, J.; Zheng, S. PKM2 upregulation promotes malignancy and indicates poor prognosis for intrahepatic cholangiocarcinoma. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 162–173. [Google Scholar] [CrossRef]
- Yu, G.; Yu, W.; Jin, G.; Xu, D.; Chen, Y.; Xia, T.; Yu, A.; Fang, W.; Zhang, X.; Li, Z.; et al. PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol. Cancer 2015, 14, 193. [Google Scholar] [CrossRef] [Green Version]
- Kotelevets, L.; Foudi, N.; Louedec, L.; Couvelard, A.; Chastre, E.; Norel, X. A new mRNA splice variant coding for the human EP3-I receptor isoform. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 195–201. [Google Scholar] [CrossRef]
- Du, M.; Shi, F.; Zhang, H.; Xia, S.; Zhang, M.; Ma, J.; Bai, X.; Zhang, L.; Wang, Y.; Cheng, S.; et al. Prostaglandin E2 promotes human cholangiocarcinoma cell proliferation, migration and invasion through the upregulation of beta-catenin expression via EP3-4 receptor. Oncol. Rep. 2015, 34, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Yun, K.J.; Yoon, K.H.; Han, W.C. Immunohistochemical Study for CD44v6 in Hepatocellular Carcinoma and Cholangiocarcinoma. Cancer Res. Treat. 2002, 34, 170–174. [Google Scholar] [CrossRef]
- Padthaisong, S.; Thanee, M.; Namwat, N.; Phetcharaburanin, J.; Klanrit, P.; Khuntikeo, N.; Titapun, A.; Sungkhamanon, S.; Saya, H.; Loilome, W. Overexpression of a panel of cancer stem cell markers enhances the predictive capability of the progression and recurrence in the early stage cholangiocarcinoma. J. Transl. Med. 2020, 18, 64. [Google Scholar] [CrossRef] [Green Version]
- Reviejo, M.; Soto, M.; Lozano, E.; Asensio, M.; Martínez-Augustin, O.; de Medina, F.S.; Marin, J.J.G. Impact of alternative splicing on mechanisms of resistance to anticancer drugs. Biochem. Pharmacol. 2021, 193, 114810. [Google Scholar] [CrossRef]
- Marin, J.J.G.; Macias, R.I.R.; Monte, M.J.; Romero, M.R.; Asensio, M.; Sanchez-Martin, A.; Cives-Losada, C.; Temprano, A.G.; Espinosa-Escudero, R.; Reviejo, M.; et al. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers 2020, 12, 1663. [Google Scholar] [CrossRef]
- Marin, J.J.; Macias, R.I. Understanding drug resistance mechanisms in cholangiocarcinoma: Assisting the clinical development of investigational drugs. Expert. Opin. Investig. Drugs 2021, 30, 675–679. [Google Scholar] [CrossRef]
- Lozano, E.; Herraez, E.; Briz, O.; Robledo, V.S.; Hernandez-Iglesias, J.; Gonzalez-Hernandez, A.; Marin, J.J. Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. Biomed. Res. Int. 2013, 2013, 692071. [Google Scholar] [CrossRef] [Green Version]
- Herraez, E.; Lozano, E.; Macias, R.I.; Vaquero, J.; Bujanda, L.; Banales, J.M.; Marin, J.J.; Briz, O. Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib. Hepatology 2013, 58, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Dauki, A.M.; Blachly, J.S.; Kautto, E.A.; Ezzat, S.; Abdel-Rahman, M.H.; Coss, C.C. Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Res. 2020, 80, 561–575. [Google Scholar] [CrossRef]
- Bao, M.H.; Wong, C.C. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ramadori, P.; Pfister, D.; Seehawer, M.; Zender, L.; Heikenwalder, M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat. Rev. Cancer 2021, 21, 541–557. [Google Scholar] [CrossRef]
- Sperandio, R.C.; Pestana, R.C.; Miyamura, B.V.; Kaseb, A.O. Hepatocellular Carcinoma Immunotherapy. Annu. Rev. Med. 2022, 73. [Google Scholar] [CrossRef]
- Charalampakis, N.; Papageorgiou, G.; Tsakatikas, S.; Fioretzaki, R.; Kole, C.; Kykalos, S.; Tolia, M.; Schizas, D. Immunotherapy for cholangiocarcinoma: A 2021 update. Immunotherapy 2021, 13, 1113–1134. [Google Scholar] [CrossRef]
- Luo, D.; Zhao, D.; Zhang, M.; Hu, C.; Li, H.; Zhang, S.; Chen, X.; Huttad, L.; Li, B.; Jin, C.; et al. Alternative Splicing-Based Differences between Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: Genes, Immune Microenvironment, and Survival Prognosis. Front. Oncol. 2021, 11, 731993. [Google Scholar] [CrossRef]
- Salton, M.; Misteli, T. Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy. Trends Mol. Med. 2016, 22, 28–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnal, S.C.; Lopez-Oreja, I.; Valcarcel, J. Roles and mechanisms of alternative splicing in cancer—Implications for care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, J.J.G.; Reviejo, M.; Soto, M.; Lozano, E.; Asensio, M.; Ortiz-Rivero, S.; Berasain, C.; Avila, M.A.; Herraez, E. Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers 2022, 14, 18. https://doi.org/10.3390/cancers14010018
Marin JJG, Reviejo M, Soto M, Lozano E, Asensio M, Ortiz-Rivero S, Berasain C, Avila MA, Herraez E. Impact of Alternative Splicing Variants on Liver Cancer Biology. Cancers. 2022; 14(1):18. https://doi.org/10.3390/cancers14010018
Chicago/Turabian StyleMarin, Jose J. G., Maria Reviejo, Meraris Soto, Elisa Lozano, Maitane Asensio, Sara Ortiz-Rivero, Carmen Berasain, Matias A. Avila, and Elisa Herraez. 2022. "Impact of Alternative Splicing Variants on Liver Cancer Biology" Cancers 14, no. 1: 18. https://doi.org/10.3390/cancers14010018