Significant Inter- and Intralaboratory Variation in Gleason Grading of Prostate Cancer: A Nationwide Study of 35,258 Patients in The Netherlands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source and Study Population
2.2. Data Extraction
2.3. Analysis of Histologic Grading
2.4. Statistical Analysis
3. Results
3.1. Interlaboratory Differences in ISUP Grading
3.2. Case-Mix Correction
3.3. Intralaboratory Differences in Histologic Grading
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef]
- Cijfers Over Kanker. Netherlands Cancer Registry supplied by IKNL. Published 2020. Available online: www.cijfersoverkanker.nl (accessed on 25 May 2020).
- Pierorazio, P.M.; Walsh, P.C.; Partin, A.W.; Epstein, J.I. Prognostic Gleason grade grouping: Data based on the modified Gleason- scoring system. BJU Int. 2013, 111, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Joniau, S.; Briganti, A.; Gontero, P.; Gandaglia, G.; Tosco, L.; Fieuws, S.; Tombal, B.; Marchioro, G.; Walz, J.; Kneitz, B.; et al. Stratification of High-risk Prostate Cancer into Prognostic Categories: A European Multi-institutional Study. Eur. Urol. 2015, 67, 157–164. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Ozkan, T.A.; Eruyar, A.T.; Cebeci, O.O.; Memik, O.; Ozcan, L.; Kuskonmaz, I. Interobserver variability in Gleason histological grading of prostate cancer. Scand. J. Urol. 2016, 50, 420–424. [Google Scholar] [CrossRef]
- Van Santvoort, B.W.H.; van Leenders, G.J.L.H.; Kiemeney, L.A.; van Oort, I.M.; Wieringa, S.E.; Jansen, H.; Vernooij, R.W.M.; de Kaa, C.A.H.-V.; Aben, K.K.H. Histopathological re-evaluations of biopsies in prostate cancer: A nationwide observational study. Scand. J. Urol. 2020, 54, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Oyama, T.; Allsbrook, J.W.C.; Kurokawa, K.; Matsuda, H.; Segawa, A.; Sano, T.; Suzuki, K.; Epstein, J.I. A Comparison of Interobserver Reproducibility of Gleason Grading of Prostatic Carcinoma in Japan and the United States. Arch. Pathol. Lab. Med. 2005, 129, 1004–1010. [Google Scholar] [CrossRef]
- Allsbrook, W.C.; Mangold, K.A.; Johnson, M.H.; Lane, R.B.; Lane, C.G.; Epstein, J.I. Interobserver reproducibility of Gleason grading of prostatic carcinoma: General pathologist. Hum. Pathol. 2001, 32, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kweldam, C.F.; Nieboer, D.; Algaba, F.; Amin, M.B.; Berney, D.; Billis, A.; Bostwick, D.G.; Bubendorf, L.; Cheng, L.; Compérat, E.; et al. Gleason grade 4 prostate adenocarcinoma patterns: An interobserver agreement study among genitourinary pathologists. Histopathology 2016, 69, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsbrook, W.C.; Mangold, K.; Johnson, M.H.; Lane, R.B.; Lane, C.G.; Amin, M.B.; Bostwick, D.G.; Humphrey, P.A.; Jones, E.C.; Reuter, V.E.; et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: Urologic pathologists. Hum. Pathol. 2001, 32, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dooijeweert, C.; Van Diest, P.J.; Willems, S.M.; Kuijpers, C.C.H.J.; Van Der Wall, E.; Overbeek, L.I.H.; Deckers, I.A.G. Significant inter- and intra-laboratory variation in grading of invasive breast cancer: A nationwide study of 33,043 patients in the Netherlands. Int. J. Cancer 2019, 146, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Van Dooijeweert, C.; Van Diest, P.J.; Willems, S.M.; Kuijpers, C.C.H.J.; Overbeek, L.I.H.; Deckers, I.A.G. Significant inter- and intra-laboratory variation in grading of ductal carcinoma in situ of the breast: A nationwide study of 4901 patients in the Netherlands. Breast Cancer Res. Treat. 2018, 174, 479–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuijpers, C.C.; Sluijter, C.E.; von der Thusen, J.; Grünberg, K.; Van Oijen, M.G.; Van Diest, P.J.; Jiwa, M.; Nagtegaal, I.D.; Overbeek, L.I.; Willems, S.M. Interlaboratory variability in the grading of dysplasia in a nationwide cohort of colorectal adenomas. Histopathology 2016, 69, 187–197. [Google Scholar] [CrossRef]
- Madani, A.; Kuijpers, C.C.H.J.; Sluijter, C.E.; von der Thusen, J.; Grünberg, K.; Lemmens, V.E.P.P.; Overbeek, L.I.H.; Nagtegaal, I. Decrease of variation in the grading of dysplasia in colorectal adenomas with a national e-learning module. Histopathology 2019, 74, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Van Dooijeweert, C.; Deckers, I.A.G.; De Ruiter, E.J.; Ter Hoeve, N.D.; Vreuls, C.P.H.; Van Der Wall, E.; Van Diest, P.J. The effect of an e-learning module on grading variation of (pre)malignant breast lesions. Mod. Pathol. 2020, 33, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Van Dooijeweert, C.; Van Diest, P.J.; Baas, I.O.; Van Der Wall, E.; Deckers, I.A. Variation in breast cancer grading: The effect of creating awareness through laboratory-specific and pathologist-specific feedback reports in 16,734 patients with breast cancer. J. Clin. Pathol. 2020, 73, 793–799. [Google Scholar] [CrossRef]
- Casparie, M.; Tiebosch, A.T.M.G.; Burger, G.; Blauwgeers, H.; van de Pol, A.; van Krieken, J.H.J.M.; Meijer, G.A. Pathology Databanking and Biobanking in The Netherlands, a Central Role for PALGA, the Nationwide Histopathology and Cytopathology Data Network and Archive. Cell. Oncol. 2007, 29, 19–24. [Google Scholar] [CrossRef]
- Netherlands Cancer Registry Supplied by IKNL. Available online: https://iknl.nl/en/ncr (accessed on 20 January 2021).
- Crook, J.; Malone, S.; Perry, G.; Bahadur, Y.; Robertson, S.; Abdolell, M. Postradiotherapy prostate biopsies: What do they really mean? results for 498 patients. Int. J. Radiat. Oncol. 2000, 48, 355–367. [Google Scholar] [CrossRef]
- Histopathological changes induced by therapies in the benign prostate and prostate adenocarcinoma. Histol. Histopathol. 2006, 22, 107–118.
- Epstein, J.I. The Gleason Grading System, 1st ed.; Pine, J., Ed.; Wolters Kluwer Health|Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Wickham, H. Stringr: Simple, Consistent Wrappers for Common String Operations. 2019. Available online: https://CRAN.R-project.org/package=stringr (accessed on 20 January 2021).
- Pettersson, A.; Robinson, D.; Garmo, H.; Holmberg, L.; Stattin, P. Age at diagnosis and prostate cancer treatment and prognosis: A population-based cohort study. Ann. Oncol. 2018, 29, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, N.L.; Barrett, T.; Lloyd, T.; Warren, A.; Samel, C.; Bratt, O.; Kastner, C. Optimising the number of cores for magnetic resonance imaging -guided targeted and systematic transperineal prostate biopsy. BJU Int. 2020, 125, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafoori, M.; Velayati, M.; Ghasabeh, M.A.; Shakiba, M.; Alavi, M. Prostate Biopsy Using Transrectal Ultrasonography; The Optimal Number of Cores Regarding Cancer Detection Rate and Complications. Iran. J. Radiol. 2015, 12, e13257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoef, E.I.; Kweldam, C.F.; Kümmerlin, I.P.; Nieboer, D.; Bangma, C.H.; Incrocci, L.; van der Kwast, T.H.; Roobol, M.J.; van Leenders, G.J. Characteristics and outcome of prostate cancer patients with overall biopsy Gleason score 3 + 4 = 7 and highest Gleason score 3 + 4 = 7 or > 3 + 4 = 7. Histopathology 2018, 72, 760–765. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 20 January 2021).
- Freeman, A. Perineural and lymphovascular invasion on prostatic biopsy: Pathological assessment and significance. Surg. Oncol. 2009, 18, 200–202. [Google Scholar] [CrossRef]
- Cheng, L.; Jones, T.D.; Lin, H.; Eble, J.N.; Zeng, G.; Carr, M.D.; Koch, M.O. Lymphovascular invasion is an independent prognostic factor in prostatic adenocarcinoma. J. Urol. 2005, 174, 2181–2185. [Google Scholar] [CrossRef]
- Roobol, M.J.; van Vugt, H.A.; Loeb, S.; Zhu, X.; Bul, M.; Bangma, C.H.; van Leenders, A.G.; Steyerberg, E.W.; Schröder, F.H. Prediction of Prostate Cancer Risk: The Role of Prostate Volume and Digital Rectal Examination in the ERSPC Risk Calculators. Eur. Urol. 2012, 61, 577–583. [Google Scholar] [CrossRef]
- Bosland, M.C.; Cremers, R.G.; Kiemeney, L.A. Words of wisdom. Re: Effect of dutasteride on the risk of prostate cancer. Eur. Urol. 2010, 58, 631–632. [Google Scholar] [CrossRef]
- Siddiqui, M.; Rais-Bahrami, S.; Turkbey, B.; George, A.K.; Rothwax, J.; Shakir, N.; Okoro, C.; Raskolnikov, D.; Parnes, H.L.; Linehan, W.M.; et al. Comparison of MR/Ultrasound Fusion–Guided Biopsy With Ultrasound-Guided Biopsy for the Diagnosis of Prostate Cancer. JAMA 2015, 313, 390–397. [Google Scholar] [CrossRef]
- Goel, S.; Shoag, J.E.; Gross, M.D.; Awamlh, B.A.H.A.; Robinson, B.; Khani, F.; Nelson, B.B.; Margolis, D.J.; Hu, J.C. Concordance Between Biopsy and Radical Prostatectomy Pathology in the Era of Targeted Biopsy: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2020, 3, 10–20. [Google Scholar] [CrossRef]
- Rapisarda, S.; Bada, M.; Crocetto, F.; Barone, B.; Arcaniolo, D.; Polara, A.; Imbimbo, C.; Grosso, G. The role of multiparametric resonance and biopsy in prostate cancer detection: Comparison with definitive histological report after laparoscopic/robotic radical prostatectomy. Abdom. Radiol. 2020, 45, 4178–4184. [Google Scholar] [CrossRef]
- Mikami, Y.; Manabe, T.; Epstein, J.I.; Shiraishi, T.; Furusato, M.; Tsuzuki, T.; Matsuno, Y.; Sasano, H. Accuracy of gleason grading by practicing pathologists and the impact of education on improving agreement. Hum. Pathol. 2003, 34, 658–665. [Google Scholar] [CrossRef]
- Abdollahi, A.; Sheikhbahaei, S.; Meysamie, A.; Bakhshandeh, M.; Hosseinzadeh, H. Inter-observer reproducibility before and after web-based education in the Gleason grading of the prostate adenocarcinoma among the Iranian pathologists. Acta Med. Iran. 2014, 52, 370–374. [Google Scholar]
- Steiner, D.F.; Nagpal, K.; Sayres, R.; Foote, D.J.; Wedin, B.D.; Pearce, A.; Cai, C.J.; Winter, S.R.; Symonds, M.; Yatziv, L.; et al. Evaluation of the Use of Combined Artificial Intelligence and Pathologist Assessment to Review and Grade Prostate Biopsies. JAMA Netw. Open 2020, 3, e2023267. [Google Scholar] [CrossRef] [PubMed]
- Ström, P.; Kartasalo, K.; Olsson, H.; Solorzano, L.; Delahunt, B.; Berney, D.M.; Bostwick, D.G.; Evans, A.J.; Grignon, D.J.; Humphrey, P.A.; et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: A population-based, diagnostic study. Lancet Oncol. 2020, 21, 222–232. [Google Scholar] [CrossRef]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; Hulsbergen-van de Kaa, C.; Litjens, G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020, 21, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Raciti, P.; Sue, J.; Ceballos, R.; Godrich, R.; Kunz, J.D.; Kapur, S.; Reuter, V.; Grady, L.; Kanan, C.; Klimstra, D.S.; et al. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Mod. Pathol. 2020, 33, 1–9. [Google Scholar] [CrossRef]
Total (n = 38,321) | ISUP Grade 1 (n = 13,067) | ISUP Grade 2–5 (n = 25,254) | p | |
---|---|---|---|---|
Age (years) mean (SD) | 69.9 (7.5) | 67.9 (7.0) | 70.9 (7.6) | <0.001a |
Year, n (%) | <0.001b | |||
2017 | 11,962 (31.2) | 4434 (33.9) | 7528 (29.8) | |
2018 | 12,681 (33.1) | 4243 (32.5) | 8438 (33.4) | |
2019 | 13,678 (35.7) | 4390 (33.6) | 9288 (36.8) | |
Report type, n (%) | 0.23 b | |||
Synoptic | 12,954 (33.8) | 4529 (34.7) | 8425 (33.4) | |
Narrative | 25,367 (66.2) | 8538 (65.3) | 16,829 (66.7) |
Mean Proportion (%) | Lowest Proportion per Laboratory (%) | Highest Proportion per Laboratory (%) | Total Range (%) | Number of Laboratories Outside 95% Confidence Interval n, (%) | |
---|---|---|---|---|---|
ISUP Grade 1 | 33.5 | 19.7 | 44.3 | 24.6 | 26 (65.0) |
ISUP Grade 2 | 23.4 | 10.2 | 36.1 | 25.9 | 21 (52.5) |
ISUP Grade 3 | 13.7 | 7.1 | 22.7 | 15.6 | 20 (50.0) |
ISUP Grade 4 | 12.9 | 4.8 | 26.4 | 21.6 | 21 (52.5) |
ISUP Grade 5 | 15.9 | 6.1 | 37.0 | 30.9 | 25 (62.5) |
Total (n = 10,294) | ISUP Grade 1 (n = 3228) | ISUP Grade 2–5 (n = 7066) | p | |
---|---|---|---|---|
Age (years), mean (SD) | 70.2 (7.6) | 68.1 (7.1) | 71.2 (7.6) | <0.001 a |
Number of cores, mean (SD) | 9.6 (3.1) | 10.1 (2.9) | 9.9 (3.1) | <0.001 a |
Number of positive cores, median; (Q1–Q3) | 4 (2–7) | 2 (1–4) | 5 (4–8) | <0.001 b |
Prostate-specific antigen, median (Q1–Q3) | 10.8 (6.9–25.0) | 7.7 (5.8–11.0) | 14.4 (8.0–45.1) | <0.001 b |
Year of diagnosis, n (%) | 0.01 c | |||
2017 | 1715 (16.7) | 590 (18.3) | 1125 (15.9) | |
2018 | 3763 (36.6) | 1160 (35.9) | 2603 (36.8) | |
2019 | 4816 (46.8) | 1478 (45.8) | 3338 (47.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flach, R.N.; Willemse, P.-P.M.; Suelmann, B.B.M.; Deckers, I.A.G.; Jonges, T.N.; van Dooijeweert, C.; van Diest, P.J.; Meijer, R.P. Significant Inter- and Intralaboratory Variation in Gleason Grading of Prostate Cancer: A Nationwide Study of 35,258 Patients in The Netherlands. Cancers 2021, 13, 5378. https://doi.org/10.3390/cancers13215378
Flach RN, Willemse P-PM, Suelmann BBM, Deckers IAG, Jonges TN, van Dooijeweert C, van Diest PJ, Meijer RP. Significant Inter- and Intralaboratory Variation in Gleason Grading of Prostate Cancer: A Nationwide Study of 35,258 Patients in The Netherlands. Cancers. 2021; 13(21):5378. https://doi.org/10.3390/cancers13215378
Chicago/Turabian StyleFlach, Rachel N., Peter-Paul M. Willemse, Britt B. M. Suelmann, Ivette A. G. Deckers, Trudy N. Jonges, Carmen van Dooijeweert, Paul J. van Diest, and Richard P. Meijer. 2021. "Significant Inter- and Intralaboratory Variation in Gleason Grading of Prostate Cancer: A Nationwide Study of 35,258 Patients in The Netherlands" Cancers 13, no. 21: 5378. https://doi.org/10.3390/cancers13215378
APA StyleFlach, R. N., Willemse, P.-P. M., Suelmann, B. B. M., Deckers, I. A. G., Jonges, T. N., van Dooijeweert, C., van Diest, P. J., & Meijer, R. P. (2021). Significant Inter- and Intralaboratory Variation in Gleason Grading of Prostate Cancer: A Nationwide Study of 35,258 Patients in The Netherlands. Cancers, 13(21), 5378. https://doi.org/10.3390/cancers13215378