Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Data Collection
2.2. Statistics
3. Results
3.1. Descriptive Characteristics
3.2. Significant Seasonal Patterns in the Incidence of TGCT Diagnoses
3.3. Reproducibility of Data Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambe, M.; Blomqvist, P.; Bellocco, R. Seasonal variation in the diagnosis of cancer: A study based on national cancer registration in Sweden. Br. J. Cancer 2003, 88, 1358–1360. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and cancer. Front. Endocrinol. (Lausanne) 2012, 23, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EAU Guidelines. Edn. Presented at the EAU Annual Congress Milan 2021; European Association of Urology (EAU): Arnhem, The Netherlands, 2021; ISBN 978-94-92671-13-4. [Google Scholar]
- Gurney, J.K.; Florio, A.A.; Znaor, A.; Ferlay, J.; Laversanne, M.; Sarfati, D.; Bray, F.; McGlynn, K.A. International Trends in the Incidence of Testicular Cancer: Lessons from 35 Years and 41 Countries. Eur. Urol. 2019, 76, 615–623. [Google Scholar] [CrossRef]
- Hackl, M.; Waldhoer, T. Estimation of completeness of case ascertainment of Austrian cancer incidence data using the flow method. Eur. J. Public Health 2013, 23, 889–893. [Google Scholar]
- Przyborowski, J.; Wilenski, H. Homogeneity of Results In Testing Samples From Poisson Series: With An Application To Testing Clover Seed For Dodder. Biometrika 1940, 31, 313–323. [Google Scholar] [CrossRef]
- Eatough, J.P. Evidence of seasonality in the diagnosis of monocytic leukaemia. Br. J. Cancer 2002, 87, 509–510. [Google Scholar] [CrossRef]
- Borchmann, S.; Müller, H.; Engert, A. Hodgkin Lymphoma has a seasonal pattern of incidence and mortality that depends on latitude. Sci. Rep. 2017, 7, 14903. [Google Scholar] [CrossRef] [Green Version]
- Znaor, A.; Lortet-Tieulent, J.; Jemal, A.; Bray, F. International variations and trends in testicular cancer incidence and mortality. Eur. Urol. 2014, 65, 1095–1106. [Google Scholar] [CrossRef]
- Nigam, M.; Aschebrook-Kilfoy, B.; Shikanov, S.; Eggener, S. Increasing incidence of testicular cancer in the United States and Europe between 1992 and 2009. World J. Urol. 2015, 33, 623–631. [Google Scholar] [CrossRef]
- Chun, R.F.; Liu, P.T.; Modlin, R.L.; Adams, J.S.; Hewison, M. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front. Physiol. 2014, 5, 151. [Google Scholar] [CrossRef] [Green Version]
- Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: Effect on haematopoiesis and immune system and clinical applications. Int. J. Mol. Sci. 2018, 19, 2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balomenos, D.; Martin-Caballero, J.; Garcia, M.I.; Prieto, I.; Flores, J.M.; Serrano, M.; Martinez, A.C. The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nat. Med. 2000, 6, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.; Velleuer, E. Vitamin D and the risk for cancer: A molecular analysis. Biochem. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Cyprian, F.; Lefkou, E.; Varoudi, K.; Girardi, G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond. Front. Immunol. 2019, 10, 2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balogh, G.; de Boland, A.R.; Boland, R.; Barja, P. Effect of 1,25(OH)(2)-vitamin D(3) on the activation of natural killer cells: Role of protein kinase C and extracellular calcium. Exp. Mol. Pathol. 1999, 67, 63–74. [Google Scholar] [CrossRef]
- Liang, S.; Cai, J.; Li, Y.; Yang, R. 1,25-Dihydroxy-Vitamin D3 induces macrophage polarization to M2 by upregulating T-cell Ig-mucin-3 expression. Mol. Med. Rep. 2019, 19, 3707–3713. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.D.; Lutz, W.H.; Phan, V.A.; Bachman, L.A.; McKean, D.J.; Kumar, R. Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem. Biophys. Res. Commun. 2000, 270, 701–708. [Google Scholar] [CrossRef]
- Palmer, M.T.; Lee, Y.K.; Maynard, C.L.; Oliver, J.R.; Bikle, D.D.; Jetten, A.M.; Weaver, C.T. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J. Biol. Chem. 2011, 286, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Hawrylowicz, C.M. The impact of vitamin D on regulatory T cells. Curr. Allergy Asthma Rep. 2011, 11, 29–36. [Google Scholar] [CrossRef]
- Mocanu, V.; Oboroceanu, T.; Zugun-Eloae, F. Current status in vitamin D and regulatory T cells--immunological implications. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013, 117, 965–973. [Google Scholar]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef] [Green Version]
- Tetlow, L.C.; Smith, S.J.; Mawer, E.B.; Woolley, D.E. Vitamin D receptors in the rheumatoid lesion: Expression by chondrocytes, macrophages, and synoviocytes. Ann. Rheum. Dis. 1999, 58, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Piantoni, S.; Andreoli, L.; Scarsi, M.; Zanola, A.; Dall’Ara, F.; Pizzorni, C.; Cutolo, M.; Airò, P.; Tincani, A. Phenotype modifications of T-cells and their shift toward a Th2 response in patients with systemic lupus erythematosus supplemented with different monthly regimens of vitamin D. Lupus 2015, 24, 490–498. [Google Scholar] [CrossRef]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006, 296, 2832–2838. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.A.M.; Zahran, A.M.; Hussien, A.M.; Elsayh, K.I.; Askar, E.A.; Farghaly, H.S. In neonates with vitamin D deficiency, low lymphocyte activation markers are risk factors for infection. Paediatr. Int. Child Health 2019, 39, 111–118. [Google Scholar] [CrossRef]
- Peila, R.; Xue, X.; Cauley, J.A.; Chlebowski, R.; Manson, J.E.; Nassir, R.; Saquib, N.; Shadyab, A.H.; Zhang, Z.; Wassertheil-Smoller, S.; et al. A Randomized Trial of Calcium Plus Vitamin D Supplementation and Risk of Ductal Carcinoma In Situ of the Breast. JNCI Cancer Spectr. 2021, 5, pkab072. [Google Scholar] [CrossRef] [PubMed]
- Stroomberg, H.V.; Vojdeman, F.J.; Madsen, C.M.; Helgstrand, J.T.; Schwarz, P.; Heegaard, A.M.; Olsen, A.; Tjønneland, A.; Struer Lind, B.; Brasso, K.; et al. Vitamin D levels and the risk of prostate cancer and prostate cancer mortality. Acta Oncol. 2021, 60, 316–322. [Google Scholar] [CrossRef]
- Nair-Shalliker, V.; Bang, A.; Egger, S.; Clements, M.; Gardiner, R.A.; Kricker, A.; Seibel, M.J.; Chambers, S.K.; Kimlin, M.G.; Armstrong, B.K.; et al. Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Sci. Rep. 2020, 10, 7736. [Google Scholar] [CrossRef]
- Kotlarz, A.; Przybyszewska, M.; Swoboda, P.; Neska, J.; Miłoszewska, J.; Grygorowicz, M.A.; Kutner, A.; Markowicz, S. Imatinib inhibits the regrowth of human colon cancer cells after treatment with 5-FU and cooperates with vitamin D analogue PRI-2191 in the downregulation of expression of stemness-related genes in 5-FU refractory cells. J. Steroid. Biochem. Mol. Biol. 2019, 189, 48–62. [Google Scholar] [CrossRef]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.M.; Giovannucci, E.L.; Willett, W.; Buring, J.E.; et al. Effect of vitamin D3 supplements on development of advanced cancer: A secondary analysis of the VITAL randomized cinical trial. JAMA Netw. Open 2020, 3, e2025850. [Google Scholar] [CrossRef]
- Jeremy, M.; Gurusubramanian, G.; Roy, V.K. Vitamin D3 regulates apoptosis and proliferation in the testis of D-galactose-induced aged rat model. Sci. Rep. 2019, 9, 14103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremmer, F.; Thelen, P.; Pottek, T.; Behnes, C.L.; Radzun, H.J.; Schweyer, S. Expression and function of the vitamin D receptor in malignant germ cell tumour of the testis. Anticancer Res. 2012, 32, 341–349. [Google Scholar] [PubMed]
- Nappi, L.; Damiano, V.; Ottaviano, M.; Rescigno, P.; Condello, C.; Curcio, C.; Candido, C.; Matano, E.; Palmieri, G. Correlation between plasmatic levels of vitamin D and testicular cancer. Ann. Oncol. 2015, 26, vi58. [Google Scholar] [CrossRef]
- Linder, N.; Taylor, J.C.; Colling, R.; Pell, R.; Alveyn, E.; Joseph, J.; Protheroe, A.; Lundin, M.; Lundin, J.; Verrill, C. Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours. J. Clin. Pathol. 2019, 72, 157–164. [Google Scholar] [CrossRef]
- Torres, A.; Casanova, J.F.; Nistal, M.; Regadera, J. Quantification of immunocompetent cells in testicular germ cell tumours. Histopathology 1997, 30, 23–30. [Google Scholar] [CrossRef]
- Grant, W.B.; Garland, C.F. The association of solar ultraviolet B (UVB) with reducing risk of cancer: Multifactorial ecologic analysis of geographic variation in age-adjusted cancer mortality rates. Anticancer Res. 2006, 26, 2687–2699. [Google Scholar] [PubMed]
Groups | Month | Cases 1 2008–2018 Total (%) | Rate Ratio (95% CI) 2 | p-Value | Pinteraction |
---|---|---|---|---|---|
Per month analysis | |||||
January | 349 (9.7) | 1.14 (0.97 to 1.34) | 0.123 | - | |
February | 312 (8.6) | 1.11 (0.94 to 1.32) | 0.203 | ||
March | 319 (8.8) | 1.04 (0.88 to 1.23) | 0.650 | ||
April | 299 (8.3) | 1.01 (0.85 to 1.19) | 0.941 | ||
May | 307 (8.5) | 1.00 (Ref) | |||
June | 275 (7.6) | 0.93 (0.78 to 1.10) | 0.380 | ||
July | 310 (8.6) | 1.01 (0.85 to 1.19) | 0.909 | ||
August | 260 (7.2) | 0.85 (0.71 to 1.01) | 0.064 | ||
September | 247 (6.8) | 0.83 (0.70 to 0.99) | 0.043 | ||
October | 314 (8.7) | 1.02 (0.87 to 1.21) | 0.791 | ||
November | 316 (8.7) | 1.06 (0.90 to 1.26) | 0.467 | ||
December | 307 (8.5) | 1.00 (0.85 to 1.18) | 1.000 | ||
Per season analysis | |||||
Winter | Jan–Mar | 980 (27.1) | 1.22 (1.11 to 1.35) | <0.001 | - |
Spring | Apr–Jun | 881 (24.4) | 1.09 (0.99 to 1.21) | 0.0958 | |
Summer | Jul–Sep | 817 (22.6) | 1.00 (Ref) | - | |
Fall | Oct–Dec | 937 (25.9) | 1.15 (1.04 to 1.27) | 0.0078 | |
Per half year analysis | |||||
Warm months | Apr–Sep | 1698 (47.0) | 1.00 (Ref) | - | - |
Cold months | Oct–Mar | 1917 (53.0) | 1.13 (1.06 to 1.22) | <0.001 | - |
Stratification by time period | |||||
2008 to 2013 | Apr–Sep | 842 (47.5) | 1.00 (Ref) | - | 0.559 |
Oct–Mar | 931 (52.5) | 1.11 (1.00 to 1.23) | 0.048 | ||
2014 to 2018 | Apr–Sep | 856 (46.5) | 1.00 (Ref) | - | |
Oct–Mar | 986 (53.5) | 1.16 (1.05 to 1.27) | 0.0045 | ||
Histology 3 | |||||
Pure Seminoma | Apr–Sep | 1090 (45.6) | 1.00 (Ref) | - | 0.029 |
Oct–Mar | 1302 (54.4) | 1.20 (1.10 to 1.31) | <0.001 | ||
Non-Seminoma | Apr–Sep | 428 (51.0) | 1.00 (Ref) | - | |
Oct–Mar | 412 (49.0) | 0.97 (0.84 to 1.11) | 0.64 | ||
Mixed TGCT | Apr–Sep | 57 (45.6) | 1.00 (Ref) | - | |
Oct–Mar | 68 (54.4) | 1.20 (0.86 to 1.68) | 0.30 | ||
Age | |||||
<40 years | Apr–Sep | 971 (47.1) | 1.00 (Ref) | - | 0.852 |
Oct–Mar | 1090 (52.9) | 1.13 (1.04 to 1.22) | 0.0046 | ||
≥40 years | Apr–Sep | 727 (46.8) | 1.00 (Ref) | - | |
Oct–Mar | 827 (53.2) | 1.13 (1.04 to 1.22) | 0.0046 | ||
Tumor spread | |||||
Localized (T0 N0 M0) | Apr–Sep | 1291 (46.7) | 1.00 (Ref) | - | 0.659 |
Oct–Mar | 1474 (53.3) | 1.15 (1.06 to 1.24) | 0.0013 | ||
Generalized (T0–2, N1–4, M0; T3–4, N0–4, M0; Tx, N1–4, M0) | Apr–Sep | 193 (49.2) | 1.00 (Ref) | - | |
Oct–Mar | 199 (50.8) | 1.04 (0.85 to 1.26) | 0.73 | ||
Disseminated (T0–X, N0–X, M1) | Apr–Sep | 80 (46.2) | 1.00 (Ref) | - | |
Oct–Mar | 93 (53.8) | 1.17 (0.85 to 1.61) | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tulchiner, G.; Staudacher, N.; Fritz, J.; Hackl, M.; Pichler, M.; Seles, M.; Shariat, S.F.; D’Andrea, D.; Gust, K.; Albrecht, W.; et al. Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria. Cancers 2021, 13, 5377. https://doi.org/10.3390/cancers13215377
Tulchiner G, Staudacher N, Fritz J, Hackl M, Pichler M, Seles M, Shariat SF, D’Andrea D, Gust K, Albrecht W, et al. Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria. Cancers. 2021; 13(21):5377. https://doi.org/10.3390/cancers13215377
Chicago/Turabian StyleTulchiner, Gennadi, Nina Staudacher, Josef Fritz, Monika Hackl, Martin Pichler, Maximilian Seles, Shahrokh F. Shariat, David D’Andrea, Kilian Gust, Walter Albrecht, and et al. 2021. "Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria" Cancers 13, no. 21: 5377. https://doi.org/10.3390/cancers13215377
APA StyleTulchiner, G., Staudacher, N., Fritz, J., Hackl, M., Pichler, M., Seles, M., Shariat, S. F., D’Andrea, D., Gust, K., Albrecht, W., Grubmüller, K., Madersbacher, S., Graf, S., Lusuardi, L., Augustin, H., Berger, A., Loidl, W., Horninger, W., & Pichler, R. (2021). Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria. Cancers, 13(21), 5377. https://doi.org/10.3390/cancers13215377