Spinal Stabilization Exercises for Cancer Patients with Spinal Metastases of High Fracture Risk: Feasibility of the DISPO-II Training Program
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General Design
2.2. Participants
2.3. Interventions
2.4. Testing Procedures
2.5. Analysis of the Training Program
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Attendance Metrics.
3.3. Adherence Metrics
3.4. Changes in Muscle Strength
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipton, A.; Uzzo, R.; Amato, R.J.; Ellis, G.K.; Hakimian, B.; Roodman, G.D.; Smith, M.R. The science and practice of bone health in oncology: Managing bone loss and metastasis in patients with solid tumors. J. Natl. Compr. Cancer Netw. 2009, 7 (Suppl. 7), S1–S29. [Google Scholar] [CrossRef] [Green Version]
- Saad, F.; Lipton, A.; Cook, R.; Chen, Y.M.; Smith, M.; Coleman, R. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007, 110, 1860–1867. [Google Scholar] [CrossRef]
- Sheill, G.; Guinan, E.M.; Peat, N.; Hussey, J. Considerations for exercise prescription in patients with bone metastases: A comprehensive narrative review. PM R 2018, 10, 843–864. [Google Scholar] [CrossRef] [PubMed]
- Galvao, D.A.; Taaffe, D.R.; Spry, N.; Cormie, P.; Joseph, D.; Chambers, S.K.; Chee, R.; Peddle-McIntyre, C.; Hart, N.H.; Baumann, F.T.; et al. Exercise preserves physical function in prostate cancer patients with bone metastases. Med. Sci. Sports Exerc. 2018, 50, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormie, P.; Galvao, D.A.; Spry, N.; Joseph, D.; Taaffe, D.R.; Newton, R.U. Functional benefits are sustained after a program of supervised resistance exercise in cancer patients with bone metastases: Longitudinal results of a pilot study. Support. Care Cancer 2014, 22, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Newton, R.U.; Spry, N.; Joseph, D.; Taaffe, D.R.; Galvao, D.A. Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer Prostatic Dis. 2013, 16, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rief, H.; Petersen, L.C.; Omlor, G.; Akbar, M.; Bruckner, T.; Rieken, S.; Haefner, M.F.; Schlampp, I.; Forster, R.; Debus, J.; et al. The effect of resistance training during radiotherapy on spinal bone metastases in cancer patients—A randomized trial. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2014, 112, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Rief, H.; Welzel, T.; Omlor, G.; Akbar, M.; Bruckner, T.; Rieken, S.; Haefner, M.F.; Schlampp, I.; Gioules, A.; Debus, J. Pain response of resistance training of the paravertebral musculature under radiotherapy in patients with spinal bone metastases—A randomized trial. BMC Cancer 2014, 14, 485. [Google Scholar] [CrossRef] [Green Version]
- Sprave, T.; Rosenberger, F.; Verma, V.; Forster, R.; Bruckner, T.; Schlampp, I.; Bostel, T.; Welzel, T.; Akbaba, S.; Rackwitz, T.; et al. Paravertebral muscle training in patients with unstable spinal metastases receiving palliative radiotherapy: An exploratory randomized feasibility trial. Cancers 2019, 11, 1771. [Google Scholar] [CrossRef] [Green Version]
- Rief, H.; Omlor, G.; Akbar, M.; Welzel, T.; Bruckner, T.; Rieken, S.; Haefner, M.F.; Schlampp, I.; Gioules, A.; Habermehl, D.; et al. Feasibility of isometric spinal muscle training in patients with bone metastases under radiation therapy—First results of a randomized pilot trial. BMC Cancer 2014, 14, 67. [Google Scholar] [CrossRef] [Green Version]
- Rief, H.; Akbar, M.; Keller, M.; Omlor, G.; Welzel, T.; Bruckner, T.; Rieken, S.; Hafner, M.F.; Schlampp, I.; Gioules, A.; et al. Quality of life and fatigue of patients with spinal bone metastases under combined treatment with resistance training and radiation therapy- a randomized pilot trial. Radiat. Oncol. 2014, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Rief, H.; Bruckner, T.; Schlampp, I.; Bostel, T.; Welzel, T.; Debus, J.; Forster, R. Resistance training concomitant to radiotherapy of spinal bone metastases—Survival and prognostic factors of a randomized trial. Radiat. Oncol. 2016, 11, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taneichi, H.; Kaneda, K.; Takeda, N.; Abumi, K.; Satoh, S. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 1997, 22, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Fairman, C.M.; Nilsen, T.S.; Newton, R.U.; Taaffe, D.R.; Spry, N.; Joseph, D.; Chambers, S.K.; Robinson, Z.P.; Hart, N.H.; Zourdos, M.C.; et al. Reporting of Resistance Training Dose, Adherence, and Tolerance in Exercise Oncology. Med. Sci Sports Exerc 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsen, T.S.; Scott, J.M.; Michalski, M.; Capaci, C.; Thomas, S.; Herndonx, J.E., 2nd; Sasso, J.; Eves, N.D.; Jones, L.W. Novel methods for reporting of exercise dose and adherence: An exploratory analysis. Med. Sci. Sports Exerc. 2018, 50, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services, National Insitutes of Health, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0; HHS, NCI and NIH: Washington, DC, USA, 2009.
- Welte, S.E.; Wiskemann, J.; Scharhag-Rosenberger, F.; Forster, R.; Bostel, T.; Bruckner, T.; Schlampp, I.; Meyerhof, E.; Sprave, T.; Nicolay, N.H.; et al. Differentiated resistance training of the paravertebral muscles in patients with unstable spinal bone metastasis under concomitant radiotherapy: Study protocol for a randomized pilot trial. Trials 2017, 18, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [Green Version]
- Bourke, L.; Doll, H.; Crank, H.; Daley, A.; Rosario, D.; Saxton, J.M. Lifestyle intervention in men with advanced prostate cancer receiving androgen suppression therapy: A feasibility study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Bourke, L.; Gilbert, S.; Hooper, R.; Steed, L.A.; Joshi, M.; Catto, J.W.; Saxton, J.M.; Rosario, D.J. Lifestyle changes for improving disease-specific quality of life in sedentary men on long-term androgen-deprivation therapy for advanced prostate cancer: A randomised controlled trial. Eur. Urol. 2014, 65, 865–872. [Google Scholar] [CrossRef]
- Rosenberger, F.; Wiskemann, J.; Vallet, S.; Haag, G.M.; Schembri, E.; Jäger, D.; Grüllich, C. Resistance training as supportive measure in advanced cancer patients undergoing TKI therapy—A controlled feasibility trial. Support. Care Cancer 2017, 25, 3655–3664. [Google Scholar] [CrossRef]
- Uth, J.; Hornstrup, T.; Christensen, J.F.; Christensen, K.B.; Jorgensen, N.R.; Helge, E.W.; Schmidt, J.F.; Brasso, K.; Helge, J.W.; Jakobsen, M.D.; et al. Football training in men with prostate cancer undergoing androgen deprivation therapy: Activity profile and short-term skeletal and postural balance adaptations. Eur. J. Appl. Physiol. 2016, 116, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Uth, J.; Hornstrup, T.; Christensen, J.F.; Christensen, K.B.; Jorgensen, N.R.; Schmidt, J.F.; Brasso, K.; Jakobsen, M.D.; Sundstrup, E.; Andersen, L.L.; et al. Efficacy of recreational football on bone health, body composition, and physical functioning in men with prostate cancer undergoing androgen deprivation therapy: 32-week follow-up of the FC prostate randomised controlled trial. Osteoporos. Int. 2016, 27, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Uth, J.; Hornstrup, T.; Schmidt, J.F.; Christensen, J.F.; Frandsen, C.; Christensen, K.B.; Helge, E.W.; Brasso, K.; Rorth, M.; Midtgaard, J.; et al. Football training improves lean body mass in men with prostate cancer undergoing androgen deprivation therapy. Scand. J. Med. Sci. Sports 2014, 24 (Suppl. 1), 105–112. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.; Davis, G.M.; Hackett, D.; Beith, J.M.; Wilcken, N.; Currow, D.; Emery, J.; Phillips, J.; Martin, A.; Hui, R.; et al. Physical activity for symptom management in women with metastatic breast cancer: A randomized feasibility trial on physical activity and breast metastases. J. Pain Symptom Manag. 2019, 58, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Uster, A.; Ruehlin, M.; Mey, S.; Gisi, D.; Knols, R.; Imoberdorf, R.; Pless, M.; Ballmer, P.E. Effects of nutrition and physical exercise intervention in palliative cancer patients: A randomized controlled trial. Clin. Nutr. 2018, 37, 1202–1209. [Google Scholar] [CrossRef]
- Bjerre, E.D.; Brasso, K.; Jorgensen, A.B.; Petersen, T.H.; Eriksen, A.R.; Tolver, A.; Christensen, J.F.; Poulsen, M.H.; Madsen, S.S.; Ostergren, P.B.; et al. Football compared with usual care in men with prostate cancer (FC Prostate Community Trial): A pragmatic multicentre randomized controlled trial. Sports Med. 2019, 49, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Bjerre, E.D.; Petersen, T.H.; Jorgensen, A.B.; Johansen, C.; Krustrup, P.; Langdahl, B.; Poulsen, M.H.; Madsen, S.S.; Ostergren, P.B.; Borre, M.; et al. Community-based football in men with prostate cancer: 1-year follow-up on a pragmatic, multicentre randomised controlled trial. PLoS Med. 2019, 16, e1002936. [Google Scholar] [CrossRef] [Green Version]
- Dawson, J.K.; Dorff, T.B.; Todd Schroeder, E.; Lane, C.J.; Gross, M.E.; Dieli-Conwright, C.M. Impact of resistance training on body composition and metabolic syndrome variables during androgen deprivation therapy for prostate cancer: A pilot randomized controlled trial. BMC Cancer 2018, 18, 368. [Google Scholar] [CrossRef]
- Litterini, A.J.; Fieler, V.K.; Cavanaugh, J.T.; Lee, J.Q. Differential effects of cardiovascular and resistance exercise on functional mobility in individuals with advanced cancer: A randomized trial. Arch. Phys. Med. Rehabil. 2013, 94, 2329–2335. [Google Scholar] [CrossRef] [Green Version]
- Cheville, A.L.; Moynihan, T.; Herrin, J.; Loprinzi, C.; Kroenke, K. Effect of collaborative telerehabilitation on functional impairment and pain among patients with advanced-stage cancer: A randomized clinical trial. JAMA Oncol. 2019, 5, 644–652. [Google Scholar] [CrossRef]
- Scott, J.M.; Iyengar, N.M.; Nilsen, T.S.; Michalski, M.; Thomas, S.M.; Herndon, J., 2nd; Sasso, J.; Yu, A.; Chandarlapaty, S.; Dang, C.T.; et al. Feasibility, safety, and efficacy of aerobic training in pretreated patients with metastatic breast cancer: A randomized controlled trial. Cancer 2018, 124, 2552–2560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solheim, T.S.; Laird, B.J.A.; Balstad, T.R.; Stene, G.B.; Bye, A.; Johns, N.; Pettersen, C.H.; Fallon, M.; Fayers, P.; Fearon, K.; et al. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J. Cachexia Sarcopenia Muscle 2017, 8, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Villumsen, B.R.; Jorgensen, M.G.; Frystyk, J.; Hordam, B.; Borre, M. Home-based ‘exergaming’ was safe and significantly improved 6-min walking distance in patients with prostate cancer: A single-blinded randomised controlled trial. BJU Int. 2019. [Google Scholar] [CrossRef] [PubMed]
Characteristics | INT (n = 27) | CON (n = 29) | p | |
---|---|---|---|---|
Anthropometric data | ||||
Males, n (%) | 13 (48) | 12 (41) | 0.611 | |
Females, n (%) | 14 (52) | 17 (59) | ||
Age (years), mean ± SD | 62 ± 9 | 61 ± 9 | 0.657 | |
Height (cm), mean ± SD | 172 ± 9 | 170 ± 9 | 0.497 | |
Weight (kg), mean ± SD | 72 ± 11 | 75 ± 15 | 0.301 | |
BMI (kg/m2), mean ± SD | 24.4 ± 4.1 | 25.8 ± 4.6 | 0.158 | |
Cancer type | ||||
Lung cancer, n (%) | 8 (30) | 14 (48) | 0.654 | |
Breast cancer, n (%) | 7 (26) | 6 (21) | ||
Prostate cancer, n (%) | 4 (15) | 2 (7) | ||
Other, n (%) | 6 (29) | 7 (24) | ||
Irradiated spinal metastasis | ||||
Thoracic spine, n (%) | 20 (74) | 24 (83) | 0.429 | |
Lumbar spine, n (%) | 7 (26) | 5 (17) | ||
Radiotherapy fractions, mean ± SD | 10 ± 2 | 9 ± 2 | 0.690 | |
Inpatient stay for radiotherapy, n (%) | 13 (48) | 11 (38) | 0.440 | |
Characteristics of the spinal metastasis | ||||
Osteolytic, n (%) | 10 (37) | 15 (52) | 0.227 | |
Mixed, n (%) | 15 (56) | 14 (48) | ||
Osteoblastic, n (%) | 2 (7) | 0 (0) | ||
SINS score, mean ± SD | 12.0 ± 2.5 | 10.3 ± 2.2 | 0.010 | |
Mizumoto score, mean ± SD | 5.0 ± 2.0 | 5.5 ± 1.7 | 0.298 | |
Pathologic fracture, n (%) | 17 (63) | 11 (38) | 0.061 | |
Orthopedic corset, n (%) | 10 (37) | 14 (48) | 0.396 | |
Other metastatic sites | ||||
Other bone metastases, n (%) | 27 (100) | 27 (93) | 0.156 | |
Brain metastases, n (%) | 7 (26) | 5 (17) | 0.429 | |
Lung metastases, n (%) | 5 (19) | 11 (38) | 0.108 | |
Visceral metastases, n (%) | 9 (33) | 13 (45) | 0.379 | |
Soft tissue metastases, n (%) | 2 (7) | 7 (24) | 0.088 | |
Medication | ||||
Opiate, n (%) | 15 (56) | 16 (55) | 0.977 | |
NSAID, n (%) | 20 (74) | 22 (76) | 0.877 | |
Dexamethasone, n (%) | 5 (19) | 2 (7) | 0.189 | |
Psychiatric medication, n (%) | 8 (30) | 8 (28) | 0.866 | |
Sleeping medication, n (%) | 4 (15) | 9 (31) | 0.151 | |
Life expectancy | ||||
Died within 3 months from baseline, n (%) | 11 (41) | 6 (25) a | 0.243 | |
Died between 3 and 6 from baseline, n (%) | 4 (15) | 4 (17) a | 0.894 |
Strength Test | INT | CON | p | ||
---|---|---|---|---|---|
Baseline | Follow-Up | Baseline | Follow-Up | ||
Handgrip strength (kg) | 28.0 ± 8.4 | 27.9 ± 8.7 | 26.0 ± 7.9 | 25.3 ± 8.1 | 0.397 |
“Plank” holding time (s) | 19 (10;51) | 31 (18;100) * | 20 (11;51) | 29 (14;46) | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenberger, F.; Sprave, T.; Clauss, D.; Hoffmann, P.; Welzel, T.; Debus, J.; Rief, H.; Wiskemann, J. Spinal Stabilization Exercises for Cancer Patients with Spinal Metastases of High Fracture Risk: Feasibility of the DISPO-II Training Program. Cancers 2021, 13, 201. https://doi.org/10.3390/cancers13020201
Rosenberger F, Sprave T, Clauss D, Hoffmann P, Welzel T, Debus J, Rief H, Wiskemann J. Spinal Stabilization Exercises for Cancer Patients with Spinal Metastases of High Fracture Risk: Feasibility of the DISPO-II Training Program. Cancers. 2021; 13(2):201. https://doi.org/10.3390/cancers13020201
Chicago/Turabian StyleRosenberger, Friederike, Tanja Sprave, Dorothea Clauss, Paula Hoffmann, Thomas Welzel, Jürgen Debus, Harald Rief, and Joachim Wiskemann. 2021. "Spinal Stabilization Exercises for Cancer Patients with Spinal Metastases of High Fracture Risk: Feasibility of the DISPO-II Training Program" Cancers 13, no. 2: 201. https://doi.org/10.3390/cancers13020201
APA StyleRosenberger, F., Sprave, T., Clauss, D., Hoffmann, P., Welzel, T., Debus, J., Rief, H., & Wiskemann, J. (2021). Spinal Stabilization Exercises for Cancer Patients with Spinal Metastases of High Fracture Risk: Feasibility of the DISPO-II Training Program. Cancers, 13(2), 201. https://doi.org/10.3390/cancers13020201