Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Participants—Inclusion and Exclusion Criteria
2.2. Discovery Cohort
2.3. Replication Cohort
2.4. Outcome Definition
2.5. Genotyping
2.6. Alkylating Agents
2.7. Statistical Analyses
2.8. Replication and Meta-Analysis
3. Results
3.1. Discovery Cohort
3.2. Replication Cohort
3.3. Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics. CA A Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.M.; Link, M.P.; Simone, J.V. Milestones in the Curability of Pediatric Cancers. J. Clin. Oncol. 2014, 32, 2391–2397. [Google Scholar] [CrossRef] [PubMed]
- Geenen, M.M.; Cardous-Ubbink, M.C.; Kremer, L.C.M.; Bos, C.V.D.; van der Pal, H.J.H.; Heinen, R.C.; Jaspers, M.W.M.; Koning, C.C.E.; Oldenburger, F.; Langeveld, N.E.; et al. Medical Assessment of Adverse Health Outcomes in Long-term Survivors of Childhood Cancer. JAMA 2007, 297, 2705–2715. [Google Scholar] [CrossRef]
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A.; Kawashima, T.; Hudson, M.M.; Meadows, A.T.; Friedman, D.L.; Marina, N.; Hobbie, W.; Kadan-Lottick, N.; et al. Chronic Health Conditions in Adult Survivors of Childhood Cancer. N. Engl. J. Med. 2006, 355, 1572–1582. [Google Scholar] [CrossRef]
- Overbeek, A.; Berg, M.H.V.D.; Kremer, L.C.; Heuvel-Eibrink, M.M.V.D.; Tissing, W.J.; Loonen, J.J.; Versluys, B.; Bresters, D.; Kaspers, G.J.; Lambalk, C.B.; et al. A nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female survivors of childhood cancer: Design and methodological challenges. BMC Cancer 2012, 12, 363. [Google Scholar] [CrossRef]
- Bhakta, N.; Liu, Q.; Ness, K.K.; Baassiri, M.; Eissa, H.; Yeo, F.; Chemaitilly, W.; Ehrhardt, M.; Bass, J.; Bishop, M.W.; et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 2017, 390, 2569–2582. [Google Scholar] [CrossRef]
- Mostoufi-Moab, S.; Seidel, K.; Leisenring, W.; Armstrong, G.T.; Oeffinger, K.C.; Stovall, M.; Meacham, L.R.; Green, D.M.; Weathers, R.; Ginsberg, J.P.; et al. Endocrine Abnormalities in Aging Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. J. Clin. Oncol. 2016, 34, 3240–3247. [Google Scholar] [CrossRef]
- Berg, M.V.D.; Van Dijk, M.; Byrne, J.; Campbell, H.; Berger, C.; Borgmann-Staudt, A.; Calaminus, G.; Dirksen, U.; Winther, J.F.; Fossa, S.D.; et al. Fertility Among Female Survivors of Childhood, Adolescent, and Young Adult Cancer: Protocol for Two Pan-European Studies (PanCareLIFE). JMIR Res. Protoc. 2018, 7, e10824. [Google Scholar] [CrossRef]
- Van Dorp, W.; Heuvel-Eibrink, M.V.D.; Stolk, L.; Pieters, R.; Uitterlinden, A.; Visser, J.; Laven, J. Genetic variation may modify ovarian reserve in female childhood cancer survivors. Hum. Reprod. 2013, 28, 1069–1076. [Google Scholar] [CrossRef]
- Fong, S.L.; Laven, J.; Hakvoort-Cammel, F.; Schipper, I.; Visser, J.; Themmen, A.; de Jong, F.; Heuvel-Eibrink, M.V.D. Assessment of ovarian reserve in adult childhood cancer survivors using anti-Mullerian hormone. Hum. Reprod. 2008, 24, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, R.D.; Heuvel-Eibrink, M.M.V.D.; Laven, J.S.E.; De Jong, F.H.; Themmen, A.P.N.; Hakvoort-Cammel, F.G.; Bos, C.V.D.; Berg, H.V.D.; Pieters, R.; Keizer-Schrama, S.M.P.F.D.M. Anti-Mullerian Hormone Is a Sensitive Serum Marker for Gonadal Function in Women Treated for Hodgkin’s Lymphoma during Childhood. J. Clin. Endocrinol. Metab. 2007, 92, 3869–3874. [Google Scholar] [CrossRef] [PubMed]
- Van der Kooi, A.-L.L.F.; van Dijk, M.; Broer, L.; Berg, M.H.V.D.; Laven, J.S.E.; van Leeuwen, F.E.; Lambalk, C.B.; Overbeek, A.; Loonen, J.J.; van der Pal, H.J.; et al. Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function. Hum. Reprod. 2021, 36, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Van Santen, H.M.; van de Wetering, M.D.; Bos, A.M.; Heuvel-Eibrink, M.M.V.; van der Pal, H.J.; Wallace, W.H. Reproductive Complications in Childhood Cancer Survivors. Pediatric Clin. N. Am. 2020, 67, 1187–1202. [Google Scholar] [CrossRef]
- Aminkeng, F.; Ross, C.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Clemens, E.; Van Der Kooi, A.; Broer, L.; Broeder, E.V.D.-D.; Visscher, H.; Kremer, L.; Tissing, W.; Loonen, J.; Ronckers, C.M.; Pluijm, S.; et al. The influence of genetic variation on late toxicities in childhood cancer survivors: A review. Crit. Rev. Oncol. 2018, 126, 154–167. [Google Scholar] [CrossRef]
- Roy, P.; Yu, L.J.; Crespi, C.L.; Waxman, D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 1999, 27, 655–666. [Google Scholar] [PubMed]
- Lowenberg, D.; Thorn, C.F.; Desta, Z.; Flockhart, D.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Ifosfamide pathways, pharmacokinetics and pharmacodynamics. Pharm. Genom. 2014, 24, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Shu, W.; Guan, S.; Yang, X.; Liang, L.; Li, J.; Chen, Z.; Zhang, Y.; Chen, L.; Wang, X.; Huang, M. Genetic markers inCYP2C19andCYP2B6for prediction of cyclophosphamide’s 4-hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus. Br. J. Clin. Pharmacol. 2015, 81, 327–340. [Google Scholar] [CrossRef]
- Su, H.I.; Sammel, M.D.; Velders, L.; Horn, M.; Stankiewicz, C.; Matro, J.; Gracia, C.R.; Green, J.; DeMichele, A. Association of cyclophosphamide drug–metabolizing enzyme polymorphisms and chemotherapy-related ovarian failure in breast cancer survivors. Fertil. Steril. 2010, 94, 645–654. [Google Scholar] [CrossRef]
- Ngamjanyaporn, P.; Thakkinstian, A.; Verasertniyom, O.; Chatchaipun, P.; Vanichapuntu, M.; Nantiruj, K.; Totemchokchyakarn, K.; Attia, J.; Janwityanujit, S. Pharmacogenetics of cyclophosphamide and CYP2C19 polymorphism in Thai systemic lupus erythematosus. Rheumatol. Int. 2010, 31, 1215–1218. [Google Scholar] [CrossRef]
- Ambrosone, C.B.; Sweeney, C.; Coles, B.F.; Thompson, P.A.; McClure, G.Y.; Korourian, S.; Fares, M.Y.; Stone, A.; Kadlubar, F.F.; Hutchins, L.F. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res. 2001, 61, 7130–7135. [Google Scholar] [PubMed]
- DeMichele, A.; Gimotty, P.; Botbyl, J.; Aplenc, R.; Colligon, T.; Foulkes, A.S.; Rebbeck, T.R. In Response to “Drug Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2007, 25, 5675–5677. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; Ambrosone, C.B.; Joseph, L.; Stone, A.; Hutchins, L.F.; Kadlubar, F.F.; Coles, B.F. Association between a glutathioneS-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int. J. Cancer 2003, 103, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.; McClure, G.Y.; Fares, M.Y.; Stone, A.; Coles, B.F.; Thompson, P.A.; Korourian, S.; Hutchins, L.F.; Kadlubar, F.F.; Ambrosone, C.B. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res. 2000, 60, 5621–5624. [Google Scholar] [PubMed]
- Giraud, B.; Hebert, G.; Deroussent, A.; Veal, G.J.; Vassal, G.; Paci, A. Oxazaphosphorines: New therapeutic strategies for an old class of drugs. Expert Opin. Drug Metab. Toxicol. 2010, 6, 919–938. [Google Scholar] [CrossRef]
- Van der Kooi, A.L.L.F.; Clemens, E.; Broer, L.; Zolk, O.; Byrne, J.; Campbell, H.; van den Berg, M.; Berger, C.; Calaminus, G.; Dirksen, U.; et al. Genetic variation in gonadal impairment in female survivors of childhood cancer: A PanCareLIFE study protocol. BMC Cancer 2018, 18, 930. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.M.; Ehrhardt, M.; Bhakta, N.; Baassiri, M.; Eissa, H.; Chemaitilly, W.; Green, D.M.; Mulrooney, D.A.; Armstrong, G.T.; Brinkman, T.M.; et al. Approach for Classification and Severity Grading of Long-term and Late-Onset Health Events among Childhood Cancer Survivors in the St. Jude Lifetime Cohort. Cancer Epidemiol. Prev. Biomark. 2017, 26, 666–674. [Google Scholar] [CrossRef]
- Byrne, J.; Grabow, D.; Campbell, H.; O’Brien, K.; Bielack, S.; Zehnhoff-Dinnesen, A.A.; Calaminus, G.; Kremer, L.; Langer, T.; Heuvel-Eibrink, M.M.V.D.; et al. PanCareLIFE: The scientific basis for a European project to improve long-term care regarding fertility, ototoxicity and health-related quality of life after cancer occurring among children and adolescents. Eur. J. Cancer 2018, 103, 227–237. [Google Scholar] [CrossRef]
- Kaatsch, P.; Byrne, J.; Grabow, D.; On Behalf of the PanCareLIFE Consortium. Managing a Pan-European Consortium on Late Effects among Long-Term Survivors of Childhood and Adolescent Cancer—The PanCareLIFE Project. Int. J. Environ. Res. Public Health 2021, 18, 3918. [Google Scholar] [CrossRef]
- Howell, C.R.; Bjornard, K.L.; Ness, K.K.; Alberts, N.; Armstrong, G.T.; Bhakta, N.; Brinkman, T.; Caron, E.; Chemaitilly, W.; Green, D.M.; et al. Cohort Profile: The St. Jude Lifetime Cohort Study (SJLIFE) for paediatric cancer survivors. Int. J. Epidemiol. 2021, 50, 39–49. [Google Scholar] [CrossRef]
- Gassner, D.; Jung, R. First fully automated immunoassay for anti-Müllerian hormone. Clin. Chem. Lab. Med. 2014, 52, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Green, D.M.; Nolan, V.G.; Ms, P.J.G.; Ms, J.A.W.; Srivastava, D.; Leisenring, W.M.; Neglia, J.; Sklar, C.A.; Kaste, S.C.; Hudson, M.M.; et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: A report from the childhood cancer survivor study. Pediatric Blood Cancer 2014, 61, 53–67. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 13 January 2021).
- Van Schaik, R.H.; De Wildt, S.N.; Brosens, R.; Van Fessem, M.; Anker, J.N.V.D.; Lindemans, J. The CYP3A4*3 allele: Is it really rare? Clin. Chem. 2001, 47, 1104–1106. [Google Scholar] [CrossRef]
- Sata, F.; Sapone, A.; Elizondo, G.; Stocker, P.; Miller, V.P.; Zheng, W.; Raunio, H.; Crespi, C.L.; Gonzalez, F.J. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. 2000, 67, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.-F.; Zheng, X.; Hu, X.-X.; Yang, C.-C.; Chen, Z.; Qian, J.-C.; Cai, J.-P.; Hu, G.-X. Functional Measurement of CYP2C9 and CYP3A4 Allelic Polymorphism on Sildenafil Metabolism. Drug Des. Dev. Ther. 2020, 14, 5129–5141. [Google Scholar] [CrossRef] [PubMed]
- Amirimani, B.; Ning, B.; Deitz, A.; Weber, B.; Kadlubar, F.; Rebbeck, T. Increased transcriptional activity of theCYP3A4*1B promoter variant. Environ. Mol. Mutagen. 2003, 42, 299–305. [Google Scholar] [CrossRef]
- Amirimani, B.; Walker, A.H.; Weber, B.L.; Rebbeck, T.R. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1999, 91, 1588–1590. [Google Scholar] [CrossRef]
- DeMichele, A.; Aplenc, R.; Botbyl, J.; Colligan, T.; Wray, L.; Klein-Cabral, M.; Foulkes, A.; Gimotty, P.; Glick, J.; Weber, B.; et al. Drug-Metabolizing Enzyme Polymorphisms Predict Clinical Outcome in a Node-Positive Breast Cancer Cohort. J. Clin. Oncol. 2005, 23, 5552–5559. [Google Scholar] [CrossRef]
- Paris, P.L.; Kupelian, P.A.; Hall, J.M.; Williams, T.L.; Levin, H.; Klein, E.A.; Casey, G.; Witte, J.S. Association between a CYP3A4 genetic variant and clinical presentation in African-American prostate cancer patients. Cancer Epidemiol. Prev. Biomark. 1999, 8, 901–905. [Google Scholar]
- Rebbeck, T.R.; Jaffe, J.M.; Walker, A.H.; Wein, A.J.; Malkowicz, S.B. Modification of Clinical Presentation of Prostate Tumors by a Novel Genetic Variant in CYP3A. JNCI J. Natl. Cancer Inst. 1998, 90, 1225–1229. [Google Scholar] [CrossRef]
- Sinues, B.; Vicente, J.; Fanlo, A.; Vasquez, P.; Medina, J.C.; Mayayo, E.; Conde, B.; Arenaz, I.; Martinez-Jarreta, B. CYP3A5*3 and CYP3A4*1B Allele Distribution and Genotype Combinations: Differences Between Spaniards and Central Americans. Ther. Drug Monit. 2007, 29, 412–416. [Google Scholar] [CrossRef]
- Miao, J.; Jin, Y.; Marunde, R.L.; Kim, S.; Quinney, S.; Radovich, M.; Li, L.; Hall, S.D. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharm. J. 2009, 9, 319–326. [Google Scholar] [CrossRef]
- Kuehl, P.M.; Zhang, J.; Lin, Y.; Lamba, J.K.; Assem, M.; Schuetz, J.D.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef]
- Gervasini, G.; Garcia, M.; Macias, R.M.; Cubero, J.J.; Caravaca, F.; Benitez, J. Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl. Int. 2012, 25, 471–480. [Google Scholar] [CrossRef]
- Floyd, M.D.; Gervasini, G.; Masica, A.L.; Mayo, G.; George, A.L.; Bhat, K.; Kim, R.B.; Wilkinson, G.R. Genotype—phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharm. Genom. 2003, 13, 595–606. [Google Scholar] [CrossRef]
- Clinical Pharmacogenetics Implementation Consortium (St. Jude Children’s Research Hospital and Stanford University), C. ClinVar CYP2C19. 2018. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/39357/ (accessed on 27 May 2021).
- Rudberg, I.; Mohebi, B.; Hermann, M.; Refsum, H.; Molden, E. Impact of the Ultrarapid CYP2C19*17 Allele on Serum Concentration of Escitalopram in Psychiatric Patients. Clin. Pharmacol. Ther. 2008, 83, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Tęcza, K.; Pamuła-Piłat, J.; Lanuszewska, J.; Butkiewicz, D.; Grzybowska, E. Pharmacogenetics of toxicity of 5-fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer patients. Oncotarget 2018, 9, 9114–9136. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Brooke, R.J.; Im, C.; Wilson, C.L.; Krasin, M.J.; Liu, Q.; Li, Z.; Sapkota, Y.; Moon, W.; Morton, L.M.; Wu, G.; et al. A High-risk Haplotype for Premature Menopause in Childhood Cancer Survivors Exposed to Gonadotoxic Therapy. JNCI J. Natl. Cancer Inst. 2018, 110, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Nelson, S.; Wallace, W. Measuring anti-Müllerian hormone for the assessment of ovarian reserve: When and for whom is it indicated? Maturitas 2012, 71, 28–33. [Google Scholar] [CrossRef]
- Charpentier, A.-M.; Chong, A.L.; Gingras-Hill, G.; Ahmed, S.; Cigsar, C.; Gupta, A.A.; Greenblatt, E.; Hodgson, D.C. Anti-Müllerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J. Cancer Surviv. 2014, 8, 548–554. [Google Scholar] [CrossRef]
- Lunsford, A.J.; Whelan, K.; McCormick, K.; McLaren, J.F. Antimüllerian hormone as a measure of reproductive function in female childhood cancer survivors. Fertil. Steril. 2014, 101, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Dólleman, M.; Verschuren, W.M.; Eijkemans, M.J.; Broekmans, F.J.; Van Der Schouw, Y.T. Added value of anti-Müllerian hormone in prediction of menopause: Results from a large prospective cohort study. Hum. Reprod. 2015, 30, 1974–1981. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.W.; Sammel, M.D.; Lin, H.; Boorman, D.W.; Gracia, C.R. Contribution of the rate of change of antimüllerian hormone in estimating time to menopause for late reproductive-age women. Fertil. Steril. 2012, 98, 1254–1259.e2. [Google Scholar] [CrossRef]
- Freeman, E.W.; Sammel, M.D.; Lin, H.; Gracia, C.R. Anti-Mullerian Hormone as a Predictor of Time to Menopause in Late Reproductive Age Women. J. Clin. Endocrinol. Metab. 2012, 97, 1673–1680. [Google Scholar] [CrossRef]
- De Kat, A.C.; van der Schouw, Y.; Eijkemans, M.J.C.; Herber-Gast, G.C.; Visser, J.A.; Verschuren, W.M.M.; Broekmans, F.J.M. Back to the basics of ovarian aging: A population-based study on longitudinal anti-Müllerian hormone decline. BMC Med. 2016, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Andersen, C.Y.; Balen, A.; Broekmans, F.; Dilaver, N.; Fanchin, R.; Griesinger, G.; Kelsey, T.W.; La Marca, A.; Lambalk, C.; et al. The physiology and clinical utility of anti-Müllerian hormone in women. Hum. Reprod. Updat. 2014, 20, 804. [Google Scholar] [CrossRef]
- Day, F.; The PRACTICAL Consortium; Ruth, K.S.; Thompson, D.J.; Lunetta, K.L.; Pervjakova, N.; Chasman, D.I.; Stolk, L.; Finucane, H.K.; Sulem, P.; et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 2015, 47, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Day, F.; The LifeLines Cohort Study; Thompson, D.J.; Helgason, H.; Chasman, D.I.; Finucane, H.; Sulem, P.; Ruth, K.S.; Whalen, S.; Sarkar, A.K.; et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 2017, 49, 834–841. [Google Scholar] [CrossRef]
- He, C.; Kraft, P.; Chasman, D.I.; Buring, J.E.; Chen, C.; Hankinson, S.E.; Pare, G.; Chanock, S.; Ridker, P.M.; Hunter, D.J. A large-scale candidate gene association study of age at menarche and age at natural menopause. Hum. Genet. 2010, 128, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.B.; Stolk, L.; Franceschini, N.; Lunetta, K.; Zhai, G.; McArdle, P.F.; Smith, A.V.; Aspelund, T.; Bandinelli, S.; Boerwinkle, E.; et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 2009, 41, 648–650. [Google Scholar] [CrossRef]
- Stolk, L.; Zhai, G.; Van Meurs, J.B.J.; Verbiest, M.M.P.J.; Visser, J.A.; Estrada, K.; Rivadeneira, F.; Williams, F.M.; Cherkas, L.; Deloukas, P.; et al. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat. Genet. 2009, 41, 645–647. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.B.; Corre, T.; Esko, T.; Chasman, D.I.; Fischer, K.; Franceschini, N.; He, C.; Kutalik, Z.; Mangino, M.; Rose, L.M.; et al. A genome-wide association study of early menopause and the combined impact of identified variants. Hum. Mol. Genet. 2013, 22, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Li, H.W.R.; Ko, J.K.Y.; Lee, V.C.Y.; Yung, S.S.F.; Lau, E.Y.L.; Yeung, W.S.B.; Ho, P.C.; Ng, E.H.Y. Comparison of antral follicle count and serum anti-Müllerian hormone level for determination of gonadotropin dosing in in-vitro fertilization: Randomized trial. Ultrasound Obstet. Gynecol. 2020, 55, 303–309. [Google Scholar] [CrossRef]
- Fleming, R.; Seifer, D.B.; Frattarelli, J.L.; Ruman, J. Assessing ovarian response: Antral follicle count versus anti-Müllerian hormone. Reprod. Biomed. Online 2015, 31, 486–496. [Google Scholar] [CrossRef]
- Ersahin, A.A.; Arpaci, H.; Ersahin, S.S.; Celik, N.; Acet, M. AFC vs. AMH: Prediction of ovarian response in women with endometrioma undergoing controlled ovarian stimulation. Eur. Rev. Med Pharmacol. Sci. 2017, 21, 2499–2503. [Google Scholar] [PubMed]
- Barbakadze, L.; Kristesashvili, J.; Khonelidze, N.; Tsagareishvili, G. The Correlations of Anti-Mullerian Hormone, Follicle-Stimulating Hormone and Antral Follicle Count in Different Age Groups of Infertile Women. Int. J. Fertil. Steril. 2015, 8, 393–398. [Google Scholar]
- Zhang, Y.; Xu, Y.; Xue, Q.; Shang, J.; Yang, X.; Shan, X.; Kuai, Y.; Wang, S.; Zeng, C. Discordance between antral follicle counts and anti-Müllerian hormone levels in women undergoing in vitro fertilization. Reprod. Biol. Endocrinol. 2019, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Broer, S.L.; Broekmans, F.J.; Laven, J.S.; Fauser, B.C. Anti-Müllerian hormone: Ovarian reserve testing and its potential clinical implications. Hum. Reprod. Update 2014, 20, 688–701. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef]
- Moonesinghe, R.; Khoury, M.J.; Janssens, A.C. Most Published Research Findings Are False—But a Little Replication Goes a Long Way. PLoS Med. 2007, 4, e28. [Google Scholar] [CrossRef]
- Mulder, R.L.; Font-Gonzalez, A.; Green, D.M.; Loeffen, E.A.H.; Hudson, M.M.; Loonen, J.; Yu, R.; Ginsberg, J.P.; Mitchell, R.T.; Byrne, J.; et al. Fertility preservation for male patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e57–e67. [Google Scholar] [CrossRef]
- Mulder, R.L.; Font-Gonzalez, A.; Hudson, M.M.; van Santen, H.M.; Loeffen, E.A.H.; Burns, K.C.; Quinn, G.P.; Broeder, E.V.D.-D.; Byrne, J.; Haupt, R.; et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e45–e56. [Google Scholar] [CrossRef]
- Mulder, R.L.; Font-Gonzalez, A.; Broeder, E.V.D.-D.; Quinn, G.P.; Ginsberg, J.P.; Loeffen, E.A.H.; Hudson, M.M.; Burns, K.C.; van Santen, H.M.; Berger, C.; et al. Communication and ethical considerations for fertility preservation for patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e68–e80. [Google Scholar] [CrossRef]
- Deshpande, N.A.; Braun, I.M.; Meyer, F.L. Impact of fertility preservation counseling and treatment on psychological outcomes among women with cancer: A systematic review. Cancer 2015, 121, 3938–3947. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, J.M.; Ebbel, E.E.; Katz, P.P.; Katz, A.; Ai, W.Z.; Chien, A.J.; Melisko, M.E.; Cedars, M.I.; Rosen, M.P. Pretreatment fertility counseling and fertility preservation improve quality of life in reproductive age women with cancer. Cancer 2011, 118, 1710–1717. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, E.K.; Wilkosz, P.; Tanbo, T.G.; Eskild, A. Is unilateral oophorectomy associated with age at menopause? A population study (the HUNT2 Survey). Hum. Reprod. 2014, 29, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M.E.; Rizzello, F.; Mariani, G.; Bulletti, C.; Palagiano, A.; Scarselli, G. Ovarian surgery for bilateral endometriomas influences age at menopause. Hum. Reprod. 2011, 26, 3000–3007. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Hayashi, K.; Mizunuma, H.; Kubota, T.; Aso, T.; Matsumura, Y.; Lee, J.-S.; Suzuki, S. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas 2012, 72, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Van der Perk, M.E.M.; van der Kooi, A.-L.L.F.; van de Wetering, M.D.; Ijgosse, I.M.; Broeder, E.V.D.-D.; Broer, S.L.; Klijn, A.J.; Versluys, A.B.; Arends, B.; Ophuis, R.J.A.O.; et al. Oncofertility care for newly diagnosed girls with cancer in a national pediatric oncology setting, the first full year experience from the Princess Máxima Center, the PEARL study. PLoS ONE 2021, 16, e0246344. [Google Scholar] [CrossRef]
- Stevens, A.; De Leonibus, C.; Hanson, D.; Whatmore, A.; Murray, P.; Donn, R.; Meyer, S.; Chatelain, P.; Clayton, P. Pediatric perspective on pharmacogenomics. Pharmacogenomics 2013, 14, 1889–1905. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef]
- Sassen, S.D.; Zwaan, C.M.; Van Der Sluis, I.M.; Mathôt, R.A. Pharmacokinetics and population pharmacokinetics in pediatric oncology. Pediatric Blood Cancer 2019, 67, e28132. [Google Scholar] [CrossRef] [PubMed]
- Van den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharmacol. 2018, 58, S10–S25. [Google Scholar] [CrossRef] [PubMed]
- Conklin, L.S.; Hoffman, E.; van den Anker, J. Developmental Pharmacodynamics and Modeling in Pediatric Drug Development. J. Clin. Pharmacol. 2019, 59, S87–S94. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.W. Identifying Biomarkers for Risk of Premature Menopause Among Childhood Cancer Survivors May Lead to Targeted Interventions and Wellness Strategies. J. Natl. Cancer Inst. 2018, 110, 801–802. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Discovery PanCareLIFE Cohort (n = 743) | Replication SJLIFE (n = 391) |
---|---|---|
Age at time of study (years) Median (IQR) | 25.8 (22.1–30.6) | 31.3 (26.6–37.4) |
Age at diagnosis (years) Median (IQR) | 8.3 (3.3–14.0) | 6.9 (3.1–13.4) |
Time since diagnosis (years) Median (IQR) | 18.3 (13.2–22.9) | 23.7 (18.3–29.3) |
Diagnosis | ||
| 221 (29.7%) | 121 (30.9%) |
| 136 (18.3%) | 48 (12.3%) |
| 70 (9.4%) | 22 (5.6%) |
| 17 (2.3%) | 28 (7.2%) |
| 46 (6.2%) | 36 (9.2%) |
| 72 (9.7%) | 27 (6.9%) |
| 7 (0.9%) | 9 (2.3%) |
| 33 (4.4%) | 22 (5.6%) |
| 31 (4.2%) | 12 (3.1%) |
| 49 (6.6%) | 18 (4.6%) |
| 34 (4.6%) | 13 (3.3%) |
| 3 (0.4%) | 1 (0.3%) |
| 5 (0.7%) | 20 (5.1%) |
| 12 (1.6%) | 3 (0.8%) |
| 0 | 1 (0.3%) |
Radiotherapy | ||
| 479 (64.5%) | 268 (68.5%) |
| 264 (35.5%) | 123 (31.5%) |
| 110 (14.8%) | 71 (18.2%) |
| 5 (0.7%) | 6 (1.5%) |
| 15 (2.0%) | 30 (7.7%) |
| 9 (1.2%) | 3 (0.8%) |
| 78 (10.5%) | 51 (13.0%) |
CED score | ||
| 266 (35.8%) | 198 (50.6%) |
| 183 (24.6%) | 21 (5.4%) |
| 118 (15.9%) | 78 (19.9%) |
| 176 (23.7%) | 94 (24.0%) |
Unilateral surgery of ovary | ||
| 740 (99.6%) | 391 (100.0%) |
| 3 (0.4%) | 0 |
Anti-Müllerian hormone level | ||
Median (IQR) | 2.33 (1.02–4.03) | 1.84 (0.68–3.28) |
Age category 18–25 (IQR) | 2.70 (1.41–4.39) | 2.79 (1.68–4.14) |
Age category ≥25–32 (IQR) | 2.62 (1.37–4.24) | 2.55 (1.44–3.90) |
Age category ≥32–40 (IQR) | 1.22 (0.41–2.58) | 1.69 (0.70–2.55) |
Age category ≥40 (IQR) | 0.27 (0.13–0.52) | 0.09 (0.01–0.47) |
Gene | Variant | Star-allele | Model | Variant, Interaction | n (0/1/2) ‡ | Beta (SE) | p-Value |
---|---|---|---|---|---|---|---|
CYP2C19 | rs4244285 | *2 | 1 | rs4244285 | 536/189/18 | −0.019 (0.047) | 0.692 |
2 | rs4244285 | 0.025 (0.081) | 0.756 | ||||
SNP*CED: 0 | 200/60/6 | 0 (ref) † | 0.857 ^ | ||||
>0–4000 | 129/50/4 | −0.107 (0.124) | 0.386 | ||||
≥4000–8000 | 89/25/4 | −0.051 (0.141) | 0.718 | ||||
≥8000 | 118/54/4 | −0.034 (0.124) | 0.784 | ||||
CYP2C19 | rs12248560 | *17 | 1 | rs12248560 | 432/274/37 | −0.017 (0.041) | 0.674 |
2 | rs12248560 | 0.062 (0.068) | 0.366 | ||||
SNP*CED: 0 | 161/92/13 | 0 (ref) † | 0.150 ^ | ||||
>0–4000 | 99/77/7 | −0.056 (0.108) | 0.605 | ||||
≥4000–8000 | 67/44/7 | −0.047 (0.119) | 0.691 | ||||
≥8000 | 105/61/10 | −0.240 (0.107) | 0.025 | ||||
CYP3A4 | rs2740574 | *1B | 1 | rs2740574 | 690/53/0 | −0.004 (0.093) | 0.963 |
2 | rs2740574 | −0.049 (0.152) | 0.748 | ||||
SNP*CED: 0 | 246/20/0 | 0 (ref) † | 0.243 ^ | ||||
>0–4000 | 165/18/0 | 0.166 (0.222) | 0.455 | ||||
≥4000–8000 | 114/4/0 | 0.520 (0.364) | 0.154 | ||||
≥8000 | 165/11/0 | −0.202 (0.251) | 0.420 | ||||
CYP3A4 | rs4986910 | *3 | 1 | rs4986910 | 735/8/0 | −0.625 (0.252) | 0.013 |
2 | rs4986910 | 0.185 (0.515) | 0.719 | ||||
SNP*CED: 0 | 264/2/0 | 0 (ref) † | 0.015 ^ | ||||
>0–4000 | 180/3/0 | −0.317 (0.655) | 0.629 | ||||
≥4000–8000 | 116/2/0 | −1.558 (0.740) | 0.035 | ||||
≥8000 | 175/1/0 | −2.195 (0.821) | 0.008 | ||||
CYP3A4 | rs35599367 | *22 | 1 | rs35599367 | 678/62/3 | −0.001 (0.080) | 0.988 |
2 | rs35599367 | 0.006 (0.131) | 0.966 | ||||
SNP*CED: 0 | 241/24/1 | 0 (ref) † | 0.465 ^ | ||||
>0–4000 | 169/14/0 | −0.244 (0.223) | 0.274 | ||||
≥4000–8000 | 106/11/1 | 0.038 (0.219) | 0.861 | ||||
≥8000 | 162/13/1 | 0.137 (0.210) | 0.515 | ||||
CYP2B6 | rs8192709 | *2 | 1 | rs8192709 | 678/63/2 | 0.047 (0.081) | 0.560 |
2 | rs8192709 | −0.020 (0.116) | 0.860 | ||||
SNP*CED: 0 | 237/27/2 | 0 (ref) † | 0.093 ^ | ||||
>0–4000 | 167/16/0 | 0.038 (0.206) | 0.855 | ||||
≥4000–8000 | 110/8/0 | −0.209 (0.263) | 0.428 | ||||
≥8000 | 164/12/0 | 0.489 (0.227) | 0.031 | ||||
CYP2B6 | rs2279343 | *6 | 1 | rs2279343 | 410/279/54 | −0.038 (0.039) | 0.327 |
2 | rs2279343 | −0.077 (0.064) | 0.225 | ||||
SNP*CED: 0 | 147/98/21 | 0 (ref) † | 0.696 ^ | ||||
>0–4000 | 106/67/10 | 0.118 (0.104) | 0.256 | ||||
≥4000–8000 | 58/50/10 | 0.057 (0.115) | 0.621 | ||||
≥8000 | 99/64/13 | 0.014 (0.102) | 0.891 | ||||
CYP2B6 | rs3745274 | *9 | 1 | rs3745274 | 426/269/48 | −0.045 (0.039) | 0.250 |
2 | rs3745274 | −0.083 (0.064) | 0.197 | ||||
SNP*CED: 0 | 154/94/18 | 0 (ref) † | 0.562 ^ | ||||
>0–4000 | 111/64/8 | 0.138 (0.105) | 0.188 | ||||
≥4000–8000 | 58/51/9 | 0.047 (0.114) | 0.679 | ||||
≥8000 | 103/60/13 | 0.001 (0.101) | 0.991 | ||||
CYP2B6 | rs4802101 | *1G | 1 | rs4802101 | 118/336/289 | −0.006 (0.034) | 0.857 |
2 | rs4802101 | −0.083 (0.056) | 0.142 | ||||
SNP*CED: 0 | 43/118/105 | 0 (ref) † | 0.383 ^ | ||||
>0–4000 | 32/88/63 | 0.125 (0.089) | 0.160 | ||||
≥4000–8000 | 11/63/44 | 0.085 (0.112) | 0.445 | ||||
≥ 8000 | 32/67/77 | 0.133 (0.087) | 0.127 |
Gene | Variant | Star-allele | Model | Variant, Interaction | Discovery Cohort PanCareLIFE | Replication Cohort SJLIFE | Discovery + Replication Meta-Analysis | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Beta (SE) | p-Value | Beta (SE) | p-Value | Beta (95% CI) | p-Value | Heterogeneity and p-Value | |||||
CYP3A4 | rs4986910 | *3 | 1 | rs4986910 | −0.625 (0.252) | 0.013 | −0.88 (0.37) | 0.02 | −0.706 (−1.11–−0.298) | 0.0007 | 0; 0.569 |
CED: 0 | 0 (ref) † | 6.51 × 10−29 ^ | 0 (ref) † | 0.13 ^ | 0 (ref) † | 0 | |||||
>0–4000 | −0.027 (0.063) | 0.672 | 0.16 (0.29) | 0.59 | −0.019 (−0.139–0.102) | 0.763 | 0; 0.529 | ||||
≥4000–8000 | −0.234 (0.072) | 0.001 | −0.23 (0.17) | 0.17 | −0.233 (−0.363–−0.103) | 0.0004 | 0; 0.983 | ||||
≥8000 | −0.728 (0.065) | 2.69 × 10−27 | −0.31 (0.16) | 0.05 | −0.669 (−0.787–−0.551) | 1.18 × 10−28 | 0.83; 0.016 | ||||
2 | rs4986910 | 0.185 (0.515) | 0.719 | −0.81 (0.52) | 0.12 | −0.308 (−1.02–0.409) | 0.400 | 0.45; 0.174 | |||
CED: 0 | 0 (ref) † | 9.83 × 10−28 ^ | 0 (ref) † | 0.15 ^ | 0 (ref) † | 0 | |||||
>0–4000 | −0.027 (0.063) | 0.663 | 0.15 (0.30) | 0.62 | −0.020 (−0.14–0.101) | 0.751 | 0; 0.564 | ||||
≥4000–8000 | −0.215 (0.072) | 0.003 | −0.21 (0.17) | 0.22 | −0.214 (−0.344–−0.084) | 0.001 | 0; 0.978 | ||||
≥8000 | −0.712 (0.064) | 2.71 × 10−26 | −0.32 (0.16) | 0.05 | −0.658 (−0.774–−0.541) | 1.71 × 10−28 | 0.81; 0.023 | ||||
SNP*CED: 0 | 0 (ref) † | 0.015 ^ | 0 (ref) † | 0.82 ^ | 0 (ref) † | 0.066 ^ | |||||
>0–4000 | −0.317 (0.655) | 0.629 | 0.20 (1.38) | 0.88 | −0.222 (−1.38–0.938) | 0.708 | 0; 0.735 | ||||
≥4000–8000 | −1.558 (0.740) | 0.035 | −0.46 (0.84) | 0.58 | −1.08 (−2.17–0.0101) | 0.052 | 0; 0.327 | ||||
≥8000 | −2.195 (0.821) | 0.008 | 0.83 (1.36) | 0.54 | −1.39 (−2.76–−0.009) | 0.048 | 0.72; 0.057 | ||||
CYP2B6 | rs8192709 | *2 | 1 | rs8192709 | 0.047 (0.081) | 0.560 | 0.06 (0.18) | 0.74 | 0.049 (−0.096–0.194) | 0.505 | 0; 0.947 |
CED: 0 | 0 (ref) † | 1.69 × 10−28 ^ | 0 (ref) † | 0.15 ^ | 0 (ref) † | 0 | |||||
>0–4000 | −0.030 (0.063) | 0.637 | 0.15 (0.29) | 0.62 | −0.022 (−0.143–0.099) | 0.722 | 0; 0.544 | ||||
≥4000–8000 | −0.238 (0.072) | 0.001 | −0.25 (0.17) | 0.14 | −0.240 (−0.37–−0.11) | 0.0003 | 0; 0.948 | ||||
≥8000 | −0.727 (0.065) | 5.59 × 10−27 | −0.29 (0.16) | 0.07 | −0.665 (0.783–−0.547) | 2.33 × 10−28 | 0.84; 0.011 | ||||
2 | rs8192709 | −0.020 (0.116) | 0.860 | −0.11 (0.29) | 0.72 | −0.032 (−0.244–0.179) | 0.763 | 0; 0.773 | |||
CED: 0 | 0 (ref) † | 3.95 × 10−29 ^ | 0 (ref) † | 0.09 ^ | 0 (ref) † | 0 | |||||
>0–4000 | −0.037 (0.066) | 0.579 | 0.14 (0.31) | 0.64 | −0.029 (−0.156–0.097) | 0.650 | 0; 0.577 | ||||
≥4000–8000 | −0.229 (0.075) | 0.002 | −0.24 (0.18) | 0.18 | −0.231 (−0.366–−0.095) | 0.0009 | 0; 0.955 | ||||
≥8000 | −0.765 (0.067) | 1.50 × 10−27 | −0.39 (0.17) | 0.02 | −0.715 (−0.837–−0.592) | 2.00 × 10−30 | 0.76; 0.04 | ||||
SNP*CED: 0 | 0 (ref) † | 0.093 ^ | 0 (ref) † | 0.44 ^ | 0 (ref) † | 0.172 ^ | |||||
>0–4000 | 0.038 (0.206) | 0.855 | −0.09 (0.98) | 0.92 | 0.0326 (−0.363–0.428) | 0.872 | 0; 0.898 | ||||
≥4000–8000 | −0.209 (0.263) | 0.428 | 0.01 (0.40) | 0.98 | −0.143 (−0.574–0.288) | 0.516 | 0; 0.647 | ||||
≥8000 | 0.489 (0.227) | 0.031 | 0.69 (0.47) | 0.14 | 0.527 (0.126–0.928) | 0.010 | 0; 0.700 | ||||
CYP2C19 | rs12248560 | *17 | 1 | rs12248560 | −0.017 (0.041) | 0.674 | −0.01 (0.11) | 0.91 | −0.016 (−0.091–0.059) | 0.674 | 0; 0.952 |
CED: 0 | 0 (ref) † | 1.15 × 10−28 ^ | 0 (ref) † | 0.15 ^ | 0 (ref) † | 0 | |||||
>0–4000 | −0.030 (0.063) | 0.631 | 0.13 (0.29) | 0.65 | −0.023 (−0.143–0.098) | 0.711 | 0; 0.59 | ||||
≥4000–8000 | −0.240 (0.072) | 0.0009 | −0.25 (0.17) | 0.14 | −0.242 (−0.371–−0.112) | 0.0003 | 0; 0.957 | ||||
≥8000 | −0.729 (0.065) | 3.63 × 10−27 | −0.30 (0.16) | 0.06 | −0.668 (−0.786–−0.55) | 1.31 × 10−28 | 0.84; 0.013 | ||||
2 | rs12248560 | 0.062 (0.068) | 0.366 | −0.15 (0.16) | 0.38 | 0.030 (−0.093–0.152) | 0.637 | 0.33; 0.223 | |||
CED: 0 | 0 (ref) † | 3.06 × 10−14 ^ | 0 (ref) † | 0.15 ^ | 0 (ref) † | 1.56 × 10−13 ^ | |||||
>0–4000 | 0.007 (0.082) | 0.934 | −0.07 (0.34) | 0.84 | 0.003 (−0.153–0.159) | 0.972 | 0; 0.826 | ||||
≥4000–8000 | −0.222 (0.092) | 0.016 | −0.28 (0.21) | 0.17 | −0.231 (−0.397–−0.066) | 0.006 | 0; 0.80 | ||||
≥8000 | −0.620 (0.081) | 5.88 × 10−14 | −0.44 (0.20) | 0.03 | −0.595 (−0.742–−0.447) | 2.37 × 10−15 | 0; 0.404 | ||||
SNP*CED: 0 | 0 (ref) † | 0.150 ^ | 0 (ref) † | 0.53 ^ | 0 (ref) † | 0.281 ^ | |||||
>0–4000 | −0.056 (0.108) | 0.605 | 0.58 (0.52) | 0.26 | −0.030 (−0.237–0.178) | 0.779 | 0.30; 0.231 | ||||
≥4000–8000 | −0.047 (0.119) | 0.691 | 0.08 (0.29) | 0.78 | −0.029 (−0.244–0.187) | 0.794 | 0; 0.685 | ||||
≥8000 | −0.240 (0.107) | 0.025 | 0.30 (0.26) | 0.26 | −0.162 (−0.356–0.032) | 0.102 | 0.729; 0.055 |
CED in mg/m2 | Genotype TT | Genotype TC (CYP3A4*3) | ||
---|---|---|---|---|
n (1114) | Exp Beta (CI) AMH | n (20) | Exp Beta (CI) AMH | |
0 | 456 | 1 (ref) | 8 | 0.197 (0.078–0.504) |
>0–4000 | 200 | 0.958 (0.726–1.265) | 4 | 0.189 (0.056–0.637) |
≥4000–8000 | 190 | 0.585 (0.434–0.789) | 6 | 0.115 (0.034–0.397) |
≥8000 | 268 | 0.214 (0.163–0.281) | 2 | 0.042 (0.013–0.142) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Perk, M.E.M.; Broer, L.; Yasui, Y.; Robison, L.L.; Hudson, M.M.; Laven, J.S.E.; van der Pal, H.J.; Tissing, W.J.E.; Versluys, B.; Bresters, D.; et al. Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study. Cancers 2021, 13, 4598. https://doi.org/10.3390/cancers13184598
van der Perk MEM, Broer L, Yasui Y, Robison LL, Hudson MM, Laven JSE, van der Pal HJ, Tissing WJE, Versluys B, Bresters D, et al. Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study. Cancers. 2021; 13(18):4598. https://doi.org/10.3390/cancers13184598
Chicago/Turabian Stylevan der Perk, M. E. Madeleine, Linda Broer, Yutaka Yasui, Leslie L. Robison, Melissa M. Hudson, Joop S. E. Laven, Helena J. van der Pal, Wim J. E. Tissing, Birgitta Versluys, Dorine Bresters, and et al. 2021. "Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study" Cancers 13, no. 18: 4598. https://doi.org/10.3390/cancers13184598