The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Anthropometrics and Body Composition Assessments
2.4. Blood Collection and Analysis
2.5. Physical Fitness Assessment
2.6. Diet
2.7. Exercise Intervention
2.8. Statistical Analysis
3. Results
3.1. Study Population
3.2. Dietary Intake, Side Effects, and Compliance with Intervention
3.3. Inflammatory Markers
3.4. Body Composition and Physical Fitness
3.5. Linear Regressions
4. Discussion
4.1. Effects of HIIT and MICT on Inflammatory Markers and FM
4.2. Effects of HIIT and MICT on Physical Fitness and LM
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sprod, L.K.; Janelsins, M.C.; Palesh, O.G.; Carroll, J.K.; Heckler, C.E.; Peppone, L.J.; Mohile, S.G.; Morrow, G.R.; Mustian, K.M. Health-related quality of life and biomarkers in breast cancer survivors participating in tai chi chuan. J. Cancer Surviv. 2011, 6, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Dieli-Conwright, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Sami, N.; Lee, K.; Buchanan, T.A.; Spicer, D.V.; Tripathy, D.; Bernstein, L.; Mortimer, J. Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 875–883. [Google Scholar] [CrossRef]
- Swisher, A.K.; Abraham, J.; Bonner, D.; Gilleland, D.; Hobbs, G.; Kurian, S.; Yanosik, M.A.; Vona-Davis, L. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: Effects on body fat, physical function, quality of life, and adipokine profile. Support. Care Cancer 2015, 23, 2995–3003. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; Singh, B.; Hayes, S.; Peake, J.M.; Galvao, D.A.; Taaffe, D.; Spry, N.; Nosaka, K.; Cornish, B.; Schmitz, K.; et al. Acute Inflammatory Response to Low-, Moderate-, and High-Load Resistance Exercise in Women With Breast Cancer–Related Lymphedema. Integr. Cancer Ther. 2016, 15, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Azar, J.T.; Hemmatinafar, M.; Nemati, J. Effect of six weeks of high intensity interval training on leptin levels, lipid profile and fat percentage in sedentary young men. Sport Sci. 2018, 11, 78–82. [Google Scholar]
- Tripsianis, G.; Papadopoulou, E.; Anagnostopoulos, K.; Botaitis, S.; Katotomichelakis, M.; Romanidis, K.; Kontomanolis, E.; Tentes, I.; Kortsaris, A. Coexpression of IL-6 and TNF-α: Prognostic significance on breast cancer outcome. Neoplasma 2014, 61, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Gómez, A.M.; Martínez, C.; Fiuza-Luces, C.; Herrero, F.; Pérez, M.; Madero, L.; Ruiz, J.R.; Lucia, A.; Ramírez, M. Exercise Training and Cytokines in Breast Cancer Survivors. Int. J. Sports Med. 2011, 32, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Wallen, M.P.; Hennessy, D.; Brown, S.; Evans, L.; Rawstorn, J.C.; Shee, A.W.; Hall, A. High-intensity interval training improves cardiorespiratory fitness in cancer patients and survivors: A meta-analysis. Eur. J. Cancer Care 2020, 29, e13267. [Google Scholar] [CrossRef]
- Schmitz, K.H.; Troxel, A.B.; Dean, L.T.; DeMichele, A.; Brown, J.C.; Sturgeon, K. Effect of home-based exercise and weight loss programs on breast cancer–related lymphedema outcomes among overweight breast cancer survivors: The WISER Survivor randomized clinical trial. JAMA Oncol. 2019, 5, 1605–1613. [Google Scholar] [CrossRef]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Courneya, K.S.; Zucker, D.S.; Matthews, C.E.; Ligibel, J.A.; Gerber, L.H.; et al. Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Toohey, K.; Pumpa, K.; McKune, A.; Cooke, J.; Welvaert, M.; Northey, J.; Quinlan, C.; Semple, S. The impact of high-intensity interval training exercise on breast cancer survivors: A pilot study to explore fitness, cardiac regulation and biomarkers of the stress systems. BMC Cancer 2020, 20, 787. [Google Scholar] [CrossRef]
- Jones, S.B.; Thomas, G.A.; Hesselsweet, S.D.; Alvarez-Reeves, M.; Yu, H.; Irwin, M.L. Effect of Exercise on Markers of Inflammation in Breast Cancer Survivors: The Yale Exercise and Survivorship Study. Cancer Prev. Res. 2013, 6, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription: Lippincott Williams & Wilkins; American College of Sports Medicine: Baltimore, MD, USA, 2013. [Google Scholar]
- Jung, M.; Jeon, J.Y.; Yun, G.J.; Yang, S.; Kwon, S.; Seo, Y.J. Reference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedema. Medicine 2018, 97, e12945. [Google Scholar] [CrossRef]
- Parma, D.L.; Hughes, D.C.; Ghosh, S.; Li, R.; Treviño-Whitaker, R.A.; Ogden, S.M.; Ramirez, A.G. Effects of six months of Yoga on inflammatory serum markers prognostic of recurrence risk in breast cancer survivors. SpringerPlus 2015, 4, 143. [Google Scholar] [CrossRef] [Green Version]
- Madzima, T.A.; Ormsbee, M.J.; Schleicher, E.A.; Moffatt, R.J.; Panton, L.B. Effects of Resistance Training and Protein Supplementation in Breast Cancer Survivors. Med. Sci. Sports Exerc. 2017, 49, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Pourabbas, M.; Bagheri, R.; Moghadam, B.H.; Willoughby, D.; Candow, D.; Elliott, B.; Forbes, S.; Ashtary-Larky, D.; Eskandari, M.; Wong, A.; et al. Strategic Ingestion of High-Protein Dairy Milk during a Resistance Training Program Increases Lean Mass, Strength, and Power in Trained Young Males. Nutrients 2021, 13, 948. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.L.; Medicine ACoS. ACSM’s Guide to Exercise and Cancer Survivorship: Human Kinetics; American College of Sports Medicine: Baltimore, MD, USA, 2012. [Google Scholar]
- Rock, C.L.; Doyle, C.; Demark-Wahnefried, W.; Meyerhardt, J.; Courneya, K.S.; Schwartz, A.L. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012, 62, 242–274. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, K.; Courneya, K.S.; Matthews, C.; Demark-Wahnefried, W.; Galvao, D.A.; Pinto, B.M.; Irwin, M.L.; Wolin, K.; Segal, R.J.; Lucia, A.; et al. American College of Sports Medicine Roundtable on Exercise Guidelines for Cancer Survivors. Med. Sci. Sports Exerc. 2010, 42, 1409–1426. [Google Scholar] [CrossRef]
- Northey, J.M.; Pumpa, K.L.; Quinlan, C.; Ikin, A.; Toohey, K.; Smee, D.J.; Rattray, B. Cognition in breast cancer survivors: A pilot study of interval and continuous exercise. J. Sci. Med. Sport 2019, 22, 580–585. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Isanejad, A.; Sadighi, S.; Mardani, M.; Kalaghchi, B.; Hassan, Z.M. High-intensity interval training can modulate the systemic inflammation and HSP70 in the breast cancer: A randomized control trial. J. Cancer Res. Clin. Oncol. 2019, 145, 2583–2593. [Google Scholar] [CrossRef]
- Hagstrom, A.D.; Marshall, P.W.M.; Lonsdale, C.; Papalia, S.; Cheema, B.S.; Toben, C.; Baune, B.T.; Singh, M.A.F.; Green, S. The effect of resistance training on markers of immune function and inflammation in previously sedentary women recovering from breast cancer: A randomized controlled trial. Breast Cancer Res. Treat. 2016, 155, 471–482. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Serra, M.C.; Ryan, A.S.; Ortmeyer, H.K.; Addison, O.; Goldberg, A.P. Resistance training reduces inflammation and fatigue and improves physical function in older breast cancer survivors. Menopause 2018, 25, 211–216. [Google Scholar] [CrossRef]
- Tsuji, K.; Matsuoka, Y.J.; Ochi, E. High-intensity interval training in breast cancer survivors: A systematic review. BMC Cancer 2021, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Mugele, H.; Freitag, N.; Wilhelmi, J.; Yang, Y.; Cheng, S.; Bloch, W.; Schumann, M. High-intensity interval training in the therapy and aftercare of cancer patients: A systematic review with meta-analysis. J. Cancer Surviv. 2019, 13, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–610. [Google Scholar] [CrossRef]
- Keller, C.; Keller, P.; Giralt, M.; Hidalgo, J.; Pedersen, B.K. Exercise normalises overexpression of TNF-α in knockout mice. Biochem. Biophys. Res. Commun. 2004, 321, 179–182. [Google Scholar] [CrossRef] [PubMed]
- De Feo, P. Is high-intensity exercise better than moderate-intensity exercise for weight loss? Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, R.S.; Panissa, V.L.G.; Inoue, D.; Campos, E.Z.; Monteiro, P.A.; Giglio, B.D.M.; Pimentel, G.D.; Hofmann, P.; Lira, F.S. Impact to short-term high intensity intermittent training on different storages of body fat, leptin and soluble leptin receptor levels in physically active non-obese men: A pilot investigation. Clin. Nutr. ESPEN 2018, 28, 186–192. [Google Scholar] [CrossRef]
- Wulaningsih, W.; Holmberg, L.; Ng, T.; Rohrmann, S.; Van Hemelrijck, M. Serum leptin, C-reactive protein, and cancer mortality in the NHANES III. Cancer Med. 2016, 5, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atoum, M.F.; Alzoughool, F.; Al-Hourani, H. Linkage Between Obesity Leptin and Breast Cancer. Breast Cancer Basic Clin. Res. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Racil, G.; Coquart, J.B.; Elmontassar, W.; Haddad, M.; Goebel, R.; Chaouachi, A.; Amri, M.; Chamari, K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol. Sport 2016, 33, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Mexitalia, M.; Dewi, Y.O.; Pramono, A.; Anam, M.S. Effect of tuberculosis treatment on leptin levels, weight gain, and percentage body fat in Indonesian children. Korean J. Pediatr. 2017, 60, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wouda, M.F.; Lundgaard, E.; Becker, F.; Strøm, V. Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injury—A randomized controlled trial. Spinal Cord 2018, 56, 955–963. [Google Scholar] [CrossRef]
- Türk, Y.; Theel, W.; Kasteleyn, M.J.; Franssen, F.M.E.; Hiemstra, P.S.; Rudolphus, A.; Taube, C.; Braunstahl, G. High intensity training in obesity: A Meta-analysis. Obes. Sci. Pract. 2017, 3, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.; Coombes, J.S. The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef]
- Soriano-Maldonado, A.; Carrera-Ruiz, Á.; Díez-Fernández, D.M.; Esteban-Simón, A.; Maldonado-Quesada, M.; Moreno-Poza, N.; Casimiro-Andújar, A.J. Effects of a 12-week resistance and aerobic exercise program on muscular strength and quality of life in breast cancer survivors: Study protocol for the EFICAN randomized controlled trial. Medicine 2019, 98, e17625. [Google Scholar] [CrossRef] [Green Version]
- Ratamess, N.A.; Alvar, B.A.; Evetoch, T.E.; Housh, T.J.; Ben Kibler, W.; Kraemer, W.J. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar]
- Izquierdo, M.; Häkkinen, K.; Ibáñez, J.; Kraemer, W.J.; Gorostiaga, E.M. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Graefe’s Arch. Clin. Exp. Ophthalmol. 2004, 94, 70–75. [Google Scholar] [CrossRef]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.S.; Pollock, M.L.; Graves, J.E.; Mahar, M.T. Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol. 1988, 64, 529–534. [Google Scholar] [CrossRef] [PubMed]
HIIT (n = 13) | MICT (n = 13) | CON (n = 14) | Total (n = 40) | ||
---|---|---|---|---|---|
Cancer Stage | I | 4 | 3 | 4 | 11 |
II | 4 | 3 | 5 | 12 | |
III | 5 | 7 | 5 | 17 | |
Treatment | Surgery | 2 | 3 | 3 | 8 |
Surgery + chemotherapy | 4 | 4 | 5 | 13 | |
Surgery + radiation | 4 | 2 | 4 | 10 | |
Surgery + chemotherapy + radiation | 3 | 4 | 2 | 9 | |
Hormonal therapy | Tamoxifen | 6 | 7 | 7 | 20 |
aromatase inhibitors | 5 | 4 | 5 | 14 | |
None | 2 | 2 | 2 | 6 |
Variables | Group | Baseline | 6 Weeks | 12 Weeks | p Value |
---|---|---|---|---|---|
Energy (kcal/day) | HIIT | 1676.23 ± 54.91 | 1672.38 ± 51.13 | 1681.76 ± 46.87 | 0.793 |
MICT | 1671.23 ± 42.04 | 1688.76 ± 53.83 | 1667.15 ± 54.35 | 0.837 | |
CON | 1679.50 ± 46.76 | 1687.07 ± 62.66 | 1704.35 ± 39.24 | 0.158 | |
Protein (g/day) | HIIT | 79.69 ± 6.01 | 77.69 ± 5.52 | 79.92 ± 6.06 | 0.935 |
MICT | 78.00 ± 5.91 | 80.76 ± 8.02 | 77.84 ± 4.65 | 0.916 | |
CON | 81.71 ± 6.00 | 81.85 ± 4.80 | 81.28 ± 4.89 | 0.833 | |
carbohydrate (g/day) | HIIT | 206.61 ± 9.91 | 208.00 ± 9.49 | 213.30 ± 7.20 | 0.169 |
MICT | 208.61 ± 5.33 | 206.76 ± 7.72 | 247.73 ± 6.00 | 0.796 | |
CON | 206.85 ± 7.22 | 20.8.28 ± 9.65 | 214.92 ± 9.36 | 0.117 | |
Fat (g/day) | HIIT | 59.00 ± 3.55 | 58.84 ± 3.43 | 56.53 ± 4.33 | 0.133 |
MICT | 58.30 ± 2.59 | 59.84 ± 4.14 | 57.61 ± 3.01 | 0.528 | |
CON | 58.35 ± 3.22 | 58.50 ± 3.77 | 58.71 ± 3.47 | 0.758 |
Body Composition and Physical Fitness | Inflammatory Markers | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Contrast | β (SE) | 95% CI | p Value * | Variable | Contrast | β (SE) | 95% CI | p Value * |
BM-Post (kg) | HIIT vs. MICT | −0.92 (0.25) | −1.54, −0.30 | 0.002 | IL-8-Post (pg/mL) | HIIT vs. MICT | 0.16 (0.44) | −0.96, 1.27 | 1.000 |
HIIT vs. CON | −1.86 (0.24) | −2.46, −1.25 | <0.001 | HIIT vs. CON | 0.05 (0.42) | −1.02, 1.12 | 1.000 | ||
MICT vs. CON | −0.94 (0.24) | −1.54, −0.33 | 0.001 | MICT vs. CON | −0.11 (0.42) | −1.15, 0.94 | 1.000 | ||
FM-Post (kg) | HIIT vs. MICT | −0.64 (0.11) | −0.92, −0.35 | <0.001 | IL-10-Post (pg/mL) | HIIT vs. MICT | 0.41 (0.39) | −0.58, 1.40 | 0.925 |
HIIT vs. CON | −0.77 (0.11) | −1.05, −0.48 | <0.001 | HIIT vs. CON | 1.02 (0.38) | 0.07, 1.98 | 0.033 | ||
MICT vs. CON | −0.13 (0.12) | −0.42, 0.17 | 0.859 | MICT vs. CON | 0.62 (0.38) | −0.35, 1.58 | 0.357 | ||
LM-Post (kg) | HIIT vs. MICT | −0.05 (0.20) | −0.56, 0.46 | 1.000 | IL-6-Post (pg/mL) | HIIT vs. MICT | −0.35 (0.20) | −0.86, 0.16 | 0.285 |
HIIT vs. CON | 0.33 (0.20) | −0.17, 0.82 | 0.310 | HIIT vs. CON | −0.61 (0.20) | −1.11, −0.10 | 0.014 | ||
MICT vs. CON | 0.37 (0.20) | −0.13, 0.88 | 0.210 | MICT vs. CON | −0.26 (0.20) | −0.76, 0.25 | 0.629 | ||
VO2peak-Post (mL·kg−1·min−1) | HIIT vs. MICT | 0.25 (0.13) | −0.07, 0.58 | 0.178 | TNF-α-Post (pg/mL) | HIIT vs. MICT | −0.94 (0.29) | −1.66, −0.22 | 0.007 |
HIIT vs. CON | 0.98 (0.12) | 0.67, 1.29 | <0.001 | HIIT vs. CON | −2.02 (0.28) | −2.72, −1.32 | <0.001 | ||
MICT vs. CON | 0.73 (0.12) | 0.42, 1.03 | <0.001 | MICT vs. CON | −1.08 (0.27) | −1.76, −0.39 | 0.001 | ||
UBS-Post (kg) | HIIT vs. MICT | −0.01 (0.37) | −0.95, 0.92 | 1.000 | Leptin-Post (ng/mL) | HIIT vs. MICT | −0.19 (0.06) | −0.33, −0.04 | 0.007 |
HIIT vs. CON | 0.69 (0.37) | −0.22, 1.61 | 0.198 | HIIT vs. CON | −0.39 (0.06) | −0.53, −0.25 | <0.001 | ||
MICT vs. CON | 0.71 (0.37) | −0.23, 1.64 | 0.195 | MICT vs. CON | −0.20 (0.06) | −0.34, −0.06 | 0.004 | ||
LBS-Post (kg) | HIIT vs. MICT | 1.28 (0.43) | 0.20, 2.37 | 0.015 | Adiponectin-Post (ng/mL) | HIIT vs. MICT | 0.15 (0.14) | −0.21, 0.51 | 0.915 |
HIIT vs. CON | 2.97 (0.42) | 1.91, 4.03 | <0.001 | HIIT vs. CON | 0.30 (0.14) | −0.06, 0.67 | 0.126 | ||
MICT vs. CON | 1.69 (0.42) | 0.64, 2.74 | <0.001 | MICT vs. CON | 0.15 (0.14) | −0.20, 0.51 | 0.862 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshmand Moghadam, B.; Golestani, F.; Bagheri, R.; Cheraghloo, N.; Eskandari, M.; Wong, A.; Nordvall, M.; Suzuki, K.; Pournemati, P. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial. Cancers 2021, 13, 4386. https://doi.org/10.3390/cancers13174386
Hooshmand Moghadam B, Golestani F, Bagheri R, Cheraghloo N, Eskandari M, Wong A, Nordvall M, Suzuki K, Pournemati P. The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial. Cancers. 2021; 13(17):4386. https://doi.org/10.3390/cancers13174386
Chicago/Turabian StyleHooshmand Moghadam, Babak, Fateme Golestani, Reza Bagheri, Neda Cheraghloo, Mozhgan Eskandari, Alexei Wong, Michael Nordvall, Katsuhiko Suzuki, and Parisa Pournemati. 2021. "The Effects of High-Intensity Interval Training vs. Moderate-Intensity Continuous Training on Inflammatory Markers, Body Composition, and Physical Fitness in Overweight/Obese Survivors of Breast Cancer: A Randomized Controlled Clinical Trial" Cancers 13, no. 17: 4386. https://doi.org/10.3390/cancers13174386