Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Study and Ethics Statement
2.2. Patients
2.3. Substrates and Tests
2.4. Dilution of Sera and Fluorochrome-Labelled Reagents
2.5. Types of Reactivity
2.6. Survival Analysis
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics of Patients
3.2. Features and Quantification of Non-Organ Specific Autoantibody (NOSA) Expression Pattern
3.3. Correlation between HEp-2 Cell Substrates Positivity and Patient Clinical Data
3.4. Colon-Associated Autoantibodies (CAAs) Trend
3.5. Survival Outcome Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Vineis, P.; Wild, C.P. Global cancer patterns: Causes and prevention. Lancet 2014, 383, 549–557. [Google Scholar] [CrossRef]
- Reuschenbach, M.; von Knebel Doeberitz, M.; Wentzensen, N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother. 2009, 58, 1535–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, M.W.L.; Smyth, M.J. Can cancer trigger autoimmunity? Science 2014, 343, 147–148. [Google Scholar] [CrossRef] [PubMed]
- Zaenker, P.; Gray, E.S.; Ziman, M.R. Autoantibody Production in Cancer-The Humoral Immune Response toward Autologous Antigens in Cancer Patients. Autoimmun. Rev. 2016, 15, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.S.; LaBaer, J. The sentinel within: Exploiting the immune system for cancer biomarkers. J. Proteome Res. 2002, 4, 1123–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torchilin, V.P.; Lakoubov, L.Z.; Estov, Z. Antinuclear autoantibodies as potential antineoplastic agents. Trends Immunol. 2001, 22, 424–427. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Zhou, D.; Huang, J. Autoantibodies as biomarkers for colorectal cancer: A systematic review, meta-analysis, and bioinformatics analysis. Int. J. Biol. Markers 2019, 34, 334–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushigome, M.; Nabeya, Y.; Soda, H.; Takiguchi, N.; Kuwajima, A.; Tagawa, M.; Matsushita, K.; Koike, J.; Funahashi, K.; Shimada, H. Multi-panel assay of serum autoantibodies in colorectal cancer. Int. J. Clin. Oncol. 2018, 23, 917–923. [Google Scholar] [CrossRef]
- Fernández Madrid, F.; Karvonen, R.L.; Ensley, J.; Kraut, M.; Granda, J.L.; Alansari, H.; Tang, N.; Tomkiel, J.E. Spectra of antinuclear antibodies in patients with squamous cell carcinoma of the lung and of the head and neck. Cancer Detect. Prev. 2005, 29, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Verbinnen, B.; Tang, X.; Lu, L.; Cantor, H. Inhibition of follicular T helper cells by CD8+Treg is essential for self-tolerance. Nature 2010, 467, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.T.; Low, J.; Lim, S.G.; Chung, M.C.M. Serum autoantibodies as biomarkers for early cancer detection. FEBS J. 2009, 276, 6880–6904. [Google Scholar] [CrossRef] [PubMed]
- Desmetz, C.; Mange, A.; Maudelonde, T.; Solassol, J. Autoantibody signatures: Progress and perspectives for early cancer detection. J. Cell Mol. Med. 2011, 15, 2013–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaras, K.; Anderson, K. Autoantibodies in cancer: Prognostic biomarkers and immune activation. Expert Rev. Proteom. 2011, 5, 577–589. [Google Scholar] [CrossRef]
- Kobold, S.; Lütkens, T.; Cao, Y.; Bokemeyer, C.; Atanackovic, D. Autoantibodies against tumor-related antigens: Incidence and biologic significance. Hum. Immunol. 2010, 71, 643–651. [Google Scholar] [CrossRef]
- Zayakin, P.; Ancāns, G.; Siliņa, K.; Meistere, I.; Kalņina, Z.; Andrejeva, D.; Endzeliņš, E.; Ivanova, L.; Pismennaja, A.; Ruskule, A.; et al. Tumor-associated autoantibody signature for the early detection of gastric cancer. Int. J. Cancer 2013, 132, 137–147. [Google Scholar] [CrossRef]
- Chapman, C.J.; Thorpe, A.J.; Murray, A. Immunobiomarkers in small cell lung cancer: Potential early cancer signals. Clin. Cancer Res. 2010, 17, 1474–1480. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.S.; Sibani, S.; Wallstrom, G. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J. Proteome Res. 2011, 10, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.S.; Cramer, D.W.; Sibani, S.; Wallstrom, G.; Wong, J.; Park, J.; Qiu, J.; Vitonis, A.; LaBaer, J. Autoantibody signature for the serologic detection of ovarian cancer. J. Proteome Res. 2015, 14, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, J.; Sreekumar, A.; Varambally, S.; Shen, R.; Giacherio, D. Autoantibody signatures in prostate cancer. N. Engl. J. Med. 2005, 353, 1224–1235. [Google Scholar] [CrossRef] [Green Version]
- Caron, M.; Choquet-Kastylevsky, G.; Joubert-Caron, R. Cancer immunomics: Using autoantibody signatures for biomarker discovery. Mol. Cell Proteom. 2007, 7, 1115–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carl, P.L.; Temple, B.R.; Cohen, P.L. Most nuclear systemic autoantigens are extremely disordered proteins: Implications for the etiology of systemic autoimmunity. Arthritis Res. Ther. 2005, 7, 1360–1374. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Hu, H.; Zhou, Z.; Yu, L.; Sun, L.; Pan, J.; Liu, J.; Yang, Z. Profiling tumor-associated autoantibodies for the detection of colon cancer. Clin. Cancer Res. 2008, 14, 2696–2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, S.D.; Bertagnolli, M.M. Molecular Basis of Colorectal Cancer. N. Engl. J. Med. 2009, 361, 2449–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, S.; Mariani, F.; Sena, P.; Benincasa, M.; Roncucci, L. Myeloperoxidase expression in human colonic mucosa is related to systemic oxidative balance in healthy subjects. Redox. Rep. 2017, 6, 300–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Chiara, L.; Páez de la Cadena, M.; Rodríguez-Berrocal, J.; Alvarez-Pardiña, M.C.; Pardiñas-Añón, M.C.; Varela-Calviño, R.; Cordero, O.J. CD26-Related Serum Biomarkers: sCD26 Protein, DPP4 Activity, and Anti-CD26 Isotype Levels in a Colorectal Cancer-Screening Context. Dis. Markers 2020, 21, 4347936. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Marques, O.; Marques, A.; Giil, L.M.; De Vito, R.; Rademacher, J.; Günther, J.; Lange, T.; Humrich, J.Y.; Klapa, S.; Schinke, S.; et al. GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat. Commun. 2018, 6, 5224. [Google Scholar] [CrossRef]
- Hudon, C.; Fortin, M.; Vanasse, A. Cumulative Illness Rating Scale was a reliable and valid index in a family practice context. J. Clin. Epidemiol. 2005, 58, 603–608. [Google Scholar] [CrossRef]
- Vergani, D.; Alvarez, F.; Bianchi, F.B.; Eduardo, L.; Cançado, L.R.; Mackay, I.R.; Manns, M.P.; Nishioka, M.; Penner, E. Liver autoimmune serology: A consensus statement from the committee for autoimmune serology of the International Autoimmune Hepatitis Group. J. Hepatol. 2004, 41, 677–683. [Google Scholar] [CrossRef]
- Carnevale, G.; Pisciotta, A.; Riccio, M.; Bertoni, L.; De Biasi, S.; Gibellini, L.; Zordani, A.; Cavallini, G.M.; La Sala, G.B.; Bruzzesi, G.; et al. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration. J. Tissue Eng. Regen. Med. 2018, 12, e774–e785. [Google Scholar] [CrossRef]
- Hughes, R.G.; Surmacz, M.J.; Karim, A.R.; Bradwell, A.R. Atlas of Tissue Autoantibodies; The Binding Site Ltd.: Birmingham, UK, 2008. [Google Scholar]
- Wiik, A.S.; Høier-Madsen, M.; Forslid, J.; Charles, P.; Meyrowitsch, J. Antinuclear antibodies: A contemporary nomenclature using HEp-2 cells. J. Autoimmun. 2010, 35, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Bradwell, A.R.; Hughes, R.G. Atlas of HEp-2 Patterns; The Binding Site Ltd.: Birmingham, UK, 2007. [Google Scholar]
- Xu, Y.W.; Peng, Y.H.; Xu, L.H.; Xie, J.J.; Li, E.M. Autoantibodies: Potential clinical applications in early detection of esophageal squamous cell carcinoma and esophagogastric junction adenocarcinoma. World J. Gastroenterol. 2019, 25, 5049–5068. [Google Scholar] [CrossRef] [PubMed]
- Finn, O.J. Immune response as a biomarker for cancer detection and a lot more. N. Engl. J. Med. 2005, 353, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Toubi, E.; Shoenfeld, Y. Protective autoimmunity in cancer (review). Oncol. Rep. 2007, 17, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Theofilopoulos, A.N.; Kono, D.H.; Baccala, R. The Multiple Pathways to Autoimmunity. Nat. Immunol. 2017, 18, 716–724. [Google Scholar] [CrossRef]
- Tan, E.M.; Zhang, J. Autoantibodies to tumor-associated antigens: Reporters from the immune system. Immunol. Rev. 2008, 222, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Kavvadas, E. Autoantibodies specific for C1q, C3b, beta2-glycoprotein 1 and annexins may amplify complement activity and reduce apoptosis-mediated immune suppression. Med. Hypotheses 2020, 144, 110286. [Google Scholar] [CrossRef]
- Stamell, E.F.; Wolchok, J.D.; Gnjatic, S.; Lee, N.Y.; Brownell, I. The abscopal effect associated with a systemic anti-melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Barrow, C.; Browning, J.; MacGregor, D. Tumor antigen expression in melanoma varies according to antigen and stage. Clin. Cancer Res. 2006, 12, 764–771. [Google Scholar] [CrossRef] [Green Version]
- Heo, C.K.; Bahk, Y.Y.; Cho, E.W. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep. 2012, 45, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabapathy K, Lane DP Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 2019, 11, 317–329. [CrossRef] [Green Version]
- Morris, V.B.; Brammall, J.; Noble, J.; Reddel, R. p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: An immunofluorescence study. Exp. Cell Res. 2000, 256, 122–130. [Google Scholar] [CrossRef]
- Wu, S.; Rhee, K.J.; Albesiano, E.; Rabizadeh, S.; Wu, X.; Yen, H.R.; Huso, D.L.; Brancati, F.L.; Wick, E.; McAllister, F.; et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 2009, 15, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Larsson, J.M.H.; Hansson, G.C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4659–4665. [Google Scholar] [CrossRef] [Green Version]
- Di Sabatino, A.; Lenti, M.V.; Giuffrida, P.; Vanoli, V.; Corazza, G.R. New insights into immune mechanisms underlying autoimmune diseases of the gastrointestinal tract. Autoimmun. Rev. 2015, 14, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Okayasu, I. Development of ulcerative colitis and its associated colorectal neoplasia as a model of the organ-specific chronic inflammation-carcinoma sequence. Pathol. Int. 2012, 62, 368–380. [Google Scholar] [CrossRef]
- Yuzhalin, A.E. Citrullination in Cancer. Cancer Res. 2019, 79, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Thompson, P.R. Protein Arginine Deiminases (PADs): Biochemistry and Chemical Biology of Protein Citrullination. ACS Chem. Res. 2019, 52, 818–832. [Google Scholar] [CrossRef]
- Cantarino, N.; Musulen, E.; Valero, V.; Peinado, M.A.; Perucho, M.; Moreno, V.; Forcales, S.V.; Douet, J.; Buschbeck, M. Downregulation of the deiminase PADI2 is an early event in colorectal carcinogenesis and indicates poor prognosis. Mol. Cancer Res. 2016, 14, 841–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbot, L.J.; Bhattacharya, S.D.; Kuo, P.C. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. Int. J. Biochem. Mol. Biol. 2012, 3, 117–136. [Google Scholar] [PubMed]
Variables | All Patients (N = 128) | CRCG (N = 63) | OCG (N = 65) | p |
---|---|---|---|---|
Age, M (±SD) | 73.5(±13.5) | 73.5(±13.9) | 73.5(13.1) | 0.99 |
Male, n (%) | 81(63.3) | 37(58.7) | 44(67.7) | 0.38 |
Age in years, n (%) | ||||
30–45 | 4(3.1) | 2(3.2) | 2(3.1) | 1.00 * |
46–65 | 29(22.6) | 14(22.2) | 15(23.1) | |
66–85 | 74(57.8) | 37(58.7) | 37(56.9) | |
>85 | 21(16.4) | 10(15.9) | 11(16.9) | |
Stage, n (%) | ||||
1 | 21(16.4) | 14(22.2) | 7(10.8) | <0.001 * |
2 | 24(18.7) | 11(17.5) | 13(20.0) | |
3 | 26(20.3) | 21(33.3) | 5(7.69) | |
4 | 53(41.4) | 17(27.0) | 36(55.4) | |
Not available | 4(3.1) | 0(0.0) | 4(6.1) | 0.13 |
Non-metastatic [I + II + III], (%) | 71(55.5) | 46(73.0) | 25(38.5) | <0.001 |
Onset time, M in years (±SD) | 1.7(±2.8) | 1.7(±3.1) | 1.7(±2.5) | 0.97 |
Active disease, n (%) | 96(75.0) | 48(76.2) | 48(73.8) | 0.75 |
Deceased, n (%) | 85(66.4) | 34(54.0) | 51(78.5) | 0.006 |
Mean survival, months (±SD) | 27.2(±27.1) | 37.1(±26.8) | 17.9(±24.1) | <0.001 |
Previous CT/RT, n (%) | 36(28.2) | 16(25.4) | 20(30.8) | 0.49 |
CIRS Score, M (±SD) | 15.1 ± 4.9 | 13.0 ± 4.3 | 17.2 ± 4.5 | <0.001 |
CIRS Index, M (±SD) | 1.08 ± 0.3 | 0.93 ± 0.3 | 1.23 ± 0.3 | <0.001 |
Variables | All Patients (N = 128) | CRCG (N = 63) | OCG (N = 65) | p |
---|---|---|---|---|
NOSA-Pos, n (%) | 90(70.3) | 37(58.7) | 53(81.5) | 0.009 |
ANA | 32(25.0) | 13(20.6) | 19(29.2) | 0.26 |
SMAV | 30(23.4) | 15(23.8) | 15(23.1) | 0.92 |
SMAT | 2(1.6) | 0(0.0) | 2(3.1) | 0.15 |
AMA | 5(3.9) | 1(1.6) | 4(6.1) | 0.17 |
RBB | 14(10.9) | 8(12.7) | 6(9.2) | 0.53 |
R2/RS | 14(10.9) | 8(12.7) | 6(9.2) | 0.53 |
APCA | 6(4.7) | 2(3.2) | 4(6.1) | 0.42 |
LCS | 19(14.8) | 8(12.7) | 11(16.9) | 0.50 |
Granular | 16(12.5) | 7(11.1) | 9(13.8) | 0.64 |
Fine | 3(2.3) | 1(1.6) | 2(3.1) | 0.57 |
GMPA | 2(1.6) | 0(0.0) | 2(3.1) | 0.15 |
Variables in | All Patients | CRCG | OCG | p |
---|---|---|---|---|
Positive NOSAs | (90/128) | (37/63) | (53/65) | |
CIRS Score, M (±SD) | 15.4(±4.7) | 12.8(±3.8) | 17.3(±4.4) | <0.001 |
CIRS Index, M (±SD) | 1.1(±0.3) | 0.9(±0.3) | 1.2(±0.3) | <0.001 |
Previous CT/RT, n (%) | 28(31.1) | 10(27.0) | 18(40.0) | <0.64 |
Male, n (%) | 58(64.4) | 22(59.4) | 36(67.9) | 0.55 |
Stage I, n (%) | 11(12.2) | 7(18.9) | 4(7.5) | 0.20 |
Stage II, n (%) | 14(15.6) | 4(10.8) | 10(18.9) | 0.46 |
Stage III, n (%) | 21(23.3) | 16(43.3) | 5(9.5) | <0.001 |
Stage IV, n (%) | 40(44.4) | 10(27.0) | 30(56.6) | 0.01 |
Missing Stage | 4(4.4) | 4(100.0) | ||
Deceased | 66(73.3) | 21(56.7) | 45(84.9) | 0.006 |
Early stage, n (%) [I + II] | 25(27.8) | 11(29.7) | 14(26.4) | 0.91 |
Advanced stage, n (%) [III + IV] | 61(67.8) | 26(70.3) | 35(66.0) | 0.85 |
Active disease, n (%) | 67(74.4) | 27(73.0) | 40(75.5) | 0.98 |
Covariate | Coefficient | StdErr | Wald χ2 | HR | 95% CI | p |
---|---|---|---|---|---|---|
CIRS score | 0.113 | 0.0251 | 20.279 | 1.120 | 1.066–1.176 | <0.001 |
STAGE I-II-III | −1.631 | 0.364 | 18.876 | 0.217 | 0.110–0.436 | <0.001 |
Negative HEp-2 | −0.927 | 0.290 | 10.194 | 0.396 | 0.224–0.699 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sena, P.; Mancini, S.; Bertacchini, J.; Carnevale, G.; Pedroni, M.; Roncucci, L. Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers 2021, 13, 3239. https://doi.org/10.3390/cancers13133239
Sena P, Mancini S, Bertacchini J, Carnevale G, Pedroni M, Roncucci L. Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers. 2021; 13(13):3239. https://doi.org/10.3390/cancers13133239
Chicago/Turabian StyleSena, Paola, Stefano Mancini, Jessika Bertacchini, Gianluca Carnevale, Monica Pedroni, and Luca Roncucci. 2021. "Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study" Cancers 13, no. 13: 3239. https://doi.org/10.3390/cancers13133239
APA StyleSena, P., Mancini, S., Bertacchini, J., Carnevale, G., Pedroni, M., & Roncucci, L. (2021). Autoimmunity Profiles as Prognostic Indicators in Patients with Colorectal Cancer versus Those with Cancer at Other Sites: A Prospective Study. Cancers, 13(13), 3239. https://doi.org/10.3390/cancers13133239