Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Interventional Treatment Options for OMD CRC
2.1. Image Guided Ablation Techniques
2.1.1. Radiofrequency Ablation
2.1.2. Cryoablation
2.1.3. Microwave Ablation
2.1.4. Electroporation
2.1.5. Laser Ablation
2.2. Transarterial Procedures
2.2.1. Transarterial Chemoembolization
2.2.2. Hepatic Arterial Infusion of Chemotherapy
2.2.3. Radioembolization
3. Biomarkers
3.1. Molecular Biomarkers
3.2. Imaging Biomarkers
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Miller, K.D.; Siegel, R.L.; Khan, R.; Jemal, A. Cancer Statistics. Cancer Rehabil. 2018, 70, 7–30. [Google Scholar] [CrossRef]
- Cunningham, D.; Atkin, W.; Lenz, H.-J.; Lynch, H.T.; Minsky, B.; Nordlinger, B.; Starling, N. Colorectal cancer. Lancet Lond. Engl. 2010, 375, 1030–1047. [Google Scholar] [CrossRef]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int. J. Cancer 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [Green Version]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Wild, A.T.; Yamada, Y. Treatment Options in Oligometastatic Disease: Stereotactic Body Radiation Therapy–Focus on Colorectal Cancer. Visc. Med. 2017, 33, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Van Custem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguliar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef]
- Charnsangavej, C.; Clary, B.; Fong, Y.; Grothey, A.; Pawlik, T.M.; Choti, M.A. Selection of Patients for Resection of Hepatic Colorectal Metastases: Expert Consensus Statement. Ann. Surg. Oncol. 2006, 13, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Choti, M.A.; Sitzmann, J.V.; Tiburi, M.F.; Sumetchotimetha, W.; Rangsin, R.; Schulick, R.D.; Lillemoe, K.D.; Yeo, C.J.; Cameron, J.L. Trends in Long-Term Survival Following Liver Resection for Hepatic Colorectal Metastases. Ann. Surg. 2002, 235, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Jarnagin, W.R.; Fong, Y.; Ky, A.; Schwarts, L.H.; Paty, P.B.; Cohen, A.M.; Blumgart, L.H. Liver resection for metastatic colorectal cancer: Assessing the risk of occult irresectable disease. J. Am. Coll. Surg. 1999, 188, 33–42. [Google Scholar] [CrossRef]
- Fernandez, F.G.; Drebin, J.A.; Linehan, D.C.; Dehdashti, F.; Siegel, B.A.; Strasberg, S.M. Five-Year Survival After Resection of Hepatic Metastases From Colorectal Cancer in Patients Screened by Positron Emission Tomography With F-18 Fluorodeoxyglucose (FDG-PET). Ann. Surg. 2004, 240, 438–450. [Google Scholar] [CrossRef]
- Lise, M.; Bacchetti, S.; Da Pian, P.; Nitti, N.; Pilati, P. Patterns of Recurrence after Resection of Colorectal Liver Metastases: Prediction by Models of Outcome Analysis. World J. Surg. 2001, 25, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.J.A.; Forman, D.; Thomas, J.D.; Quirke, P.; Taylor, E.F.; Fairley, L.; Cottier, B.; Poston, G. Surgical management and outcomes of colorectal cancer liver metastases. BJS 2010, 97, 1110–1118. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Pathak, P.; Maru, D.; Agarwal, A.; Overman, M.; Hoff, P.M.; Kopetz, S. Durable complete responses in metastatic col-orectal cancer treated with chemotherapy alone. Clin. Colorectal Cancer 2011, 10, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Zampino, M.; Magni, E.; Ravenda, P.; Cella, C.; Bonomo, G.; Della Vigna, P.; Galdy, S.; Spada, F.; Varano, G.; Mauri, G.; et al. Treatments for colorectal liver metastases: A new focus on a familiar concept. Crit. Rev. Oncol. 2016, 108, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Palussière, J.; Catena, V.; Buy, X. Percutaneous thermal ablation of lung tumors – Radiofrequency, microwave and cryotherapy: Where are we going? Diagn. Interv. Imaging 2017, 98, 619–625. [Google Scholar] [CrossRef]
- Ruers, T.; Van Coevorden, F.; Punt, C.J.A.; Pierie, J.-P.E.N.; Borel-Rinkes, I.; Ledermann, J.A.; Poston, G.; Bechstein, W.; Lentz, M.-A.; Mauer, M.; et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef]
- Pitroda, S.P.; Khodarev, N.N.; Huang, L.; Uppal, A.; Wightman, S.C.; Ganai, S.; Joseph, N.; Pitt, J.; Brown, M.; Forde, M.; et al. Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat. Commun. 2018, 9, 1793. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R. Loco-regional treatment of hepatocellular carcinoma. Hepatology 2010, 52, 762–773. [Google Scholar] [CrossRef]
- Klein, A.A.; Meek, T.; Allcock, E.; Cook, T.M.; Mincher, N.; Morris, C.; Nimmo, A.F.; Pandit, J.J.; Pawa, A.; Rodney, G.; et al. Recommendations for standards of monitoring during anaesthesia and recovery 2021: Guideline from the Association of Anaesthetists. Anaesthesia 2021. [Google Scholar] [CrossRef] [PubMed]
- Puijk, R.S.; Plantes, V.Z.D.; Nieuwenhuizen, S.; Ruarus, A.H.; Vroomen, L.G.P.H.; De Jong, M.C.; Geboers, B.; Hoedemaker-Boon, C.J.; Thöne-Passchier, D.H.; Gerçek, C.C.; et al. Propofol Compared to Midazolam Sedation and to General Anesthesia for Percutaneous Microwave Ablation in Patients with Hepatic Malignancies: A Single-Center Comparative Analysis of Three Historical Cohorts. Cardiovasc. Interv. Radiol. 2019, 42, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Gillams, A.; Goldberg, N.; Ahmed, M.; Bale, R.; Breen, D.; Callstrom, M.; Chen, M.H.; Choi, B.I.; De Baere, T.; Dupuy, D.; et al. Thermal ablation of colorectal liver metastases: A position paper by an international panel of ablation experts, the interventional oncology sans frontières meeting 2013. Eur. Radiol. 2015, 25, 3438–3454. [Google Scholar] [CrossRef]
- Calandri, M.; Gazzera, C.; Giurazza, F.; Yevich, S.; Strazzarino, G.A.; Brino, J.; Marra, P.; Contegiacomo, A.; Bargellini, I.; Cariati, M.; et al. Oligometastatic Colorectal Cancer Management: A Survey of the Italian College of Interventional Radiology. Cardiovasc. Interv. Radiol. 2020, 43, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.J.; Farshid, P.; Naguib, N.N.N.; Darvishi, A.; Bazrafshan, B.; Mbalisike, E.; Burkhard, T.; Zangos, S. Thermal ablation of liver metastases from colorectal cancer: Radiofrequency, microwave and laser ablation therapies. La Radiol. medica 2014, 119, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Garnon, J.; Cazzato, R.L.; Caudrelier, J.; Nouri-Neuville, M.; Rao, P.; Boatta, E.; Ramamurthy, N.; Koch, G.; Gangi, A. Adjunctive Thermoprotection During Percutaneous Thermal Ablation Procedures: Review of Current Techniques. Cardiovasc. Interv. Radiol. 2019, 42, 344–357. [Google Scholar] [CrossRef]
- Ridge, C.A.; Solomon, S.B. Percutaneous ablation of colorectal lung metastases. J. Gastrointest. Oncol. 2015, 6, 685–692. [Google Scholar]
- Vroomen, L.; Petre, E.; Cornelis, F.; Solomon, S.; Srimathveeravalli, G. Irreversible electroporation and thermal ablation of tumors in the liver, lung, kidney and bone: What are the differences? Diagn. Interv. Imaging 2017, 98, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, T.; Goldberg, S.N.; Lazzaroni, S.; Meloni, F.; Ierace, T.; Solbiati, L.; Gazelle, G.S. Hepatocellular Carcinoma: Radio-frequency Ablation of Medium and Large Lesions. Radiology 2000, 214, 761–768. [Google Scholar] [CrossRef]
- Healey, T.T.; Dupuy, D.E. Radiofrequency ablation: A safe and effective treatment in nonoperative patients with early-stage lung cancer. Cancer J. 2011, 17, 33–37. [Google Scholar] [CrossRef]
- Choi, T.W.; Lee, J.M.; Lee, D.H.; Yu, S.J.; Kim, Y.J.; Yoon, J.-H.; Han, J.K.; Lee, J.-H. Percutaneous Dual-Switching Monopolar Radiofrequency Ablation Using a Separable Clustered Electrode: A Preliminary Study. Korean J. Radiol. 2017, 18, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Garbagnati, F.; Lencioni, R.; Allgaier, H.-P.; Marchianò, A.; Fornari, F.; Quaretti, P.; Di Tolla, G.; Ambrosi, C.; Mazzaferro, V.M.; et al. Percutaneous Radio-frequency Thermal Ablation of Nonresectable Hepatocellular Carcinoma after Occlusion of Tumor Blood Supply. Radiology 2000, 217, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Mauri, G. Expanding role of virtual navigation and fusion imaging in percutaneous biopsies and ablation. Abdom. Imaging 2015, 40, 3238–3239. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, A.M.; Gervais, D.A.; Mueller, P.R. Percutaneous Radiofrequency Thermal Ablation of Primary and Metastatic Hepatic Tumors: Current Concepts and Review of the Literature. Semin. Interv. Radiol. 2006, 23, 073–084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veltri, A.; Sacchetto, P.; Tosetti, I.; Pagano, E.; Fava, C.; Gandini, G. Radiofrequency Ablation of Colorectal Liver Metastases: Small Size Favorably Predicts Technique Effectiveness and Survival. Cardiovasc. Interv. Radiol. 2008, 31, 948–956. [Google Scholar] [CrossRef]
- Rhim, H.; Goldberg, S.N.; Dodd, G.D.; Solbiati, L.; Lim, H.K.; Tonolini, M.; Cho, O.K. Essential Techniques for Successful Radio-frequency Thermal Ablation of Malignant Hepatic Tumors. Radiology 2001, 21, S17–S35. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, R.; Pompili, M.; Posa, A.; Coppola, G.; Gasbarrinim, A.; Bonomo, L. Combined locoregional treatment of patients with hepa-tocellular carcinoma: State of the art. World J. Gastroenterol. 2016, 22, 1935–1942. [Google Scholar] [CrossRef]
- McGhana, J.; Dodd, G. Radiofrequency ablation of the liver: Current status. Am. J. Roentgenol. 2001, 176, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Koda, M.; Murawaki, Y.; Hirooka, Y.; Kitamoto, M.; Ono, M.; Sakaeda, H.; Joko, K.; Sato, S.; Tamaki, K.; Yamasaki, T.; et al. Complications of radiofrequency ablation for hepatocellular carcinoma in a multicenter study: An analysis of 16 346 treated nodules in 13 283 patients. Hepatol. Res. 2012, 42, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- de Baere, T.; Tselikas, L.; Yevich, S.; Boige, V.; Deschamps, F.; Ducreux, M.; Goere, D.; Nguyen, F.; Malka, D. The role of image-guided therapy in the management of colorectal cancer metastatic disease. Eur. J. Cancer 2017, 75, 231–242. [Google Scholar] [CrossRef]
- Rempp, H.; Hoffmann, R.; Roland, J.; Buck, A.; Kickhefel, A.; Claussen, C.D.; Pereira, P.L.; Schick, F.; Clasen, S. Threshold-based prediction of the coagulation zone in sequential temperature mapping in MR-guided radiofrequency ablation of liver tumours. Eur. Radiol. 2011, 22, 1091–1100. [Google Scholar] [CrossRef]
- Elias, D.; Baton, O.; Sideris, L.; Matsuhisa, T.; Pocard, M.; Lasser, P. Local Recurrences After Intraoperative Radiofrequency Ablation of Liver Metastases: A Comparative Study with Anatomic and Wedge Resections. Ann. Surg. Oncol. 2004, 11, 500–505. [Google Scholar] [CrossRef]
- O’Rourke, A.P.; Haemmerich, D.; Prakash, P.; Converse, M.C.; Mahvi, D.M.; Webster, J.G. Current status of liver tumor ablation devices. Expert Rev. Med. Devices 2007, 4, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Lindeque, B. The Application of Cryoprobe Therapy in Orthopedic Oncology. Orthopedics 2014, 37, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baust, J.G.; Gage, A.A. The molecular basis of cryosurgery. BJU Int. 2005, 95, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.M.; Chua, T.C.; Saxena, A.; Zhao, J.; Chu, F.; Morris, D.L. Two Decades of Experience with Hepatic Cryotherapy for Advanced Colorectal Metastases. Ann. Surg. Oncol. 2011, 19, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Sheng, L.; Sun, Y.; An, Y.; Guo, Y.; Zhang, Y. The clinical utility and outcomes of microwave ablation for colorectal cancer liver metastases. Oncotarget 2017, 8, 51792–51799. [Google Scholar] [CrossRef] [Green Version]
- Gwak, J.H.; Oh, B.-Y.; Lee, R.A.; Chung, S.S.; Kim, K.H. Clinical Applications of Radio-Frequency Ablation in Liver Metastasis of Colorectal Cancer. J. Korean Soc. Coloproctology 2011, 27, 202–210. [Google Scholar] [CrossRef]
- Cirocchi, R.; Trastulli, S.; Boselli, C.; Montedori, A.; Cavaliere, D.; Parisi, A.; Noya, G.; Abraha, I. Radiofrequency ablation in the treatment of liver metastases from colorectal cancer. Cochrane Database Syst. Rev. 2012, 13, CD006317. [Google Scholar] [CrossRef]
- Wu, W.; Xue, Y.; Wang, D.; Xue, J.; Zhai, W.; Liang, P. A simulator for percutaneous hepatic microwave thermal ablation under ultrasound guidance. Int. J. Hyperth. 2014, 30, 429–437. [Google Scholar] [CrossRef]
- Hinshaw, J.L.; Lubner, M.G.; Ziemlewicz, T.J.; Lee Jr, F.T.; Brace, C.L. Percutaneous Tumor Ablation Tools: Microwave, Radiofre-quency, or Cryoablation—What Should You Use and Why? RadioGraphics 2014, 34, 1344–1362. [Google Scholar] [CrossRef]
- Meijerink, M.R.; Puijk, R.S.; Van Tilborg, A.A.J.M.; Henningsen, K.H.; Fernandez, L.G.; Neyt, M.; Heymans, J.; Frankema, J.S.; De Jong, K.P.; Richel, D.J.; et al. Radiofrequency and Microwave Ablation Compared to Systemic Chemotherapy and to Partial Hepatectomy in the Treatment of Colorectal Liver Metastases: A Systematic Review and Meta-Analysis. Cardiovasc. Interv. Radiol. 2018, 41, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Lahat, E.; Eshkenazy, R.; Zendel, A.; Bar Zakai, B.; Maor, M.; Dreznik, Y.; Ariche, A. Complications after percutaneous ablation of liver tumors: A systematic review. HepatoBiliary Surg. Nutr. 2014, 3, 317–323. [Google Scholar]
- Puijk, R.S.; Ruarus, A.H.; Vroomen, L.G.P.H.; van Tilborg, A.A.J.M.; Scheffer, H.J.; Nielsen, K.; de Jong, M.C.; de Vries, J.J.J.; Zonderhuis, B.M.; Eker, H.H.; et al. Colorectal liver metastases: Surgery versus thermal ablation (COLLISION) – a phase III single-blind prospective randomized controlled trial. BMC Cancer 2018, 18, 821. [Google Scholar] [CrossRef]
- Maor, E.; Ivorra, A.; Leor, J.; Rubinsky, B. The Effect of Irreversible Electroporation on Blood Vessels. Technol. Cancer Res. Treat. 2007, 6, 307–312. [Google Scholar] [CrossRef]
- Thomson, K.R.; Cheung, W.; Ellis, S.J.; Federman, D.; Kavnoudias, H.; Loader-Oliver, D.; Roberts, S.; Evans, P.; Ball, C.M.; Haydon, A. Investigation of the Safety of Irreversible Electroporation in Humans. J. Vasc. Interv. Radiol. 2011, 22, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Wang, X.; Su, Z.; Shangguan, J.; Sun, C.; Figini, M.; Wang, J.; Yaghmai, V.; Larson, A.C.; Zhang, Z. Irreversible electroporation in primary and metastatic hepatic malignancies. Medicine 2017, 96, e6386. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Davalos, R.V.; Bischof, J.C. A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy. IEEE Trans. Biomed. Eng. 2015, 62, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Meijerink, M.R.; Ruarus, A.H.; Vroomen, L.G.P.H.; Puijk, R.S.; Geboers, B.; Nieuwenhuizen, S.; Bemd, B.A.T.V.D.; Nielsen, K.; de Vries, J.J.J.; van Lienden, K.P.; et al. Irreversible Electroporation to Treat Unresectable Colorectal Liver Metastases (COLDFIRE-2): A Phase II, Two-Center, Single-Arm Clinical Trial. Radiology 2021, 299, 470–480. [Google Scholar] [CrossRef]
- van Tilborg, A.A.J.M.; Scheffer, H.J.; de Jong, M.C.; Vroomen, L.G.P.H.; Nielsen, K.; van Kuijk, C.; van den Tol, P.M.P.; Meijerink, M.R. MWA Versus RFA for Perivascular and Peribiliary CRLM: A Retrospective Patient- and Lesion-Based Analysis of Two Historical Cohorts. Cardiovasc. Intervent. Radiol. 2016, 39, 1438–1446. [Google Scholar] [CrossRef] [Green Version]
- Mensel, B.; Weigel, C.; Hosten, N. Laser-Induced Thermotherapy. Advanced Structural Safety Studies 2006, 167, 69–75. [Google Scholar] [CrossRef]
- Pacella, C.M.; Francica, G.; Di Costanzo, G.G. Laser ablation for small hepatocellular carcinoma. Radiol. Res. Pract. 2011, 595627. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, G.G.; Francica, G.; Pacella, C.M. Laser ablation for small hepatocellular carcinoma: State of the art and future per-spectives. World J. Hepatol. 2014, 6, 704–715. [Google Scholar] [CrossRef]
- Mauri, G.; Cova, L.; Monaco, C.G.; Sconfienza, L.M.; Corbetta, S.; Benedini, S.; Ambrogi, F.; Milani, V.; Baroli, A.; Ierace, T.; et al. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int. J. Hyperth. 2016, 33, 295–299. [Google Scholar] [CrossRef]
- Mauri, G.; Nicosia, L.; Varano, G.M.; Shyn, P.; Sartori, S.; Tombesi, P.; Di Vece, F.; Orsi, F.; Solbiati, L. Unusual tumour ablations: Report of difficult and interesting cases. ecancermedicalscience 2017, 11, 733. [Google Scholar] [CrossRef] [Green Version]
- Mauri, G.; Cova, L.; Ierace, T.; Baroli, A.; Di Mauro, E.; Pacella, C.M.; Goldberg, S.N.; Solbiati, L. Treatment of Metastatic Lymph Nodes in the Neck from Papillary Thyroid Carcinoma with Percutaneous Laser Ablation. Cardiovasc. Interv. Radiol. 2016, 39, 1023–1030. [Google Scholar] [CrossRef]
- Ion, J.C. Laser processing of engineering materials: Principles, procedure and industrial application. Boston, MA, USA, 2005. [Google Scholar]
- Rohde, E.; Rheinbaben, I.M.-V.; Roggan, A.; Podbielska, H.; Hopf, M.; Müller, G. Interstitial Laser-Induced Thermotherapy (LITT): Comparison of In-Vitro Irradiation Effects of Nd:YAG (1064 nm) and Diode (940 nm) Laser. Med. Laser Appl. 2001, 16, 81–90. [Google Scholar] [CrossRef]
- Pacella, C.M.; Bizzarri, G.; Magnolfi, F.; Cecconi, P.; Caspani, B.; Anelli, V.; Bianchini, A.; Valle, D.; Pacella, S.; Manenti, G.; et al. Laser Thermal Ablation in the Treatment of Small Hepatocellular Carcinoma: Results in 74 Patients. Radiology 2001, 221, 712–720. [Google Scholar] [CrossRef] [Green Version]
- Di Costanzo, G.G.; D’Adamo, G.; Tortora, R. A novel needle guide system to perform percutaneous laser ablation of liver tumors using the multifiber technique. Acta. Radiol. Stockh. Swed. 1987, 54, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Tombesi, P.; Di Vece, F.; Sartori, S. Laser Ablation for Hepatic Metastases From Neuroendocrine Tumors. Am. J. Roentgenol. 2015, 204, W732. [Google Scholar] [CrossRef]
- Sartori, S.; Di Vece, F.; Ermili, F.; Tombesi, P. Laser ablation of liver tumors: An ancillary technique, or an alternative to radiof-requency and microwave? World J. Radiol. 2017, 9, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Pacella, C.M.; Bizzarri, G.; Francica, G.; Bianchini, A.; De Nuntis, S.; Pacella, S.; Crescenzi, A.; Taccogna, S.; Forlini, G.; Rossi, Z.; et al. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with small tumors: Analysis of factors af-fecting the achievement of tumor necrosis. J. Vasc. Interv. Radiol. 2005, 16, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Haemmerich, D.; Lee, F.T. Multiple applicator approaches for radiofrequency and microwave ablation. Int. J. Hyperth. 2005, 21, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Vogl, T.J.; Eckert, R.; Naguib, N.N.N.; Beeres, M.; Gruber-Rouh, T.; Nour-Eldin, N.-E.A. Thermal Ablation of Colorectal Lung Metastases: Retrospective Comparison Among Laser-Induced Thermotherapy, Radiofrequency Ablation, and Microwave Ablation. Am. J. Roentgenol. 2016, 207, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Thanos, L.; Mylona, S.; Ptohis, N.; Tsiouris, S.; Sotiropoulou, E.; Pomoni, A.; Pomoni, M. Percutaneous radiofrequency thermal ab-lation in the management of lung tumors: Presentation of clinical experience on a series of 35 patients. Diagn. Interv. Radiol. Ank. Turk. 2009, 15, 290–296. [Google Scholar]
- Fairchild, A.H.; White, S.B. Decision Making in Interventional Oncology: Intra-arterial Therapies for Metastatic Colorectal Cancer—Y90 and Chemoembolization. Semin. Interv. Radiol. 2017, 34, 087–091. [Google Scholar] [CrossRef] [Green Version]
- de Baere, T.; Tselikas, L.; Boige, V.; Ducreux, M.; Malka, D.; Goere, D.; Benahim, E.; Deschamps, F. Intra-arterial therapies for colorectal cancer liver metastases (radioembolization excluded). Bull Cancer 2017, 104, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.J.; Kemeny, N. Metastatic Colorectal Cancer: From Improved Survival to Potential Cure. Oncology 2010, 78, 237–248. [Google Scholar] [CrossRef]
- Ammori, J.B.; Kemeny, N.E.; Fong, Y.; Cercek, A.; Dematteo, R.P.; Allen, P.J.; Kingham, T.P.; Gonen, M.; Paty, P.B.; Jarnagin, W.R.; et al. Conversion to complete resection and/or ablation using hepatic artery infusional chemotherapy in patients with unre-sectable liver metastases from colorectal cancer: A decade of experience at a single institution. Ann. Surg. Oncol. 2013, 20, 2901–2907. [Google Scholar] [CrossRef]
- Fiorentini, G. A new tool to enhance the efficacy of chemoembolization to treat primary and metastatic hepatic tumors. Expert Opin. Drug Deliv. 2011, 8, 409–413. [Google Scholar] [CrossRef]
- Kemeny, N.E.; Melendez, F.D.H.; Capanu, M.; Paty, P.B.; Fong, Y.; Schwartz, L.H.; Jarnagin, W.R.; Patel, D.; D’Angelica, M. Conversion to Resectability Using Hepatic Artery Infusion Plus Systemic Chemotherapy for the Treatment of Unresectable Liver Metastases From Colorectal Carcinoma. J. Clin. Oncol. 2009, 27, 3465–3471. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Guo, R.-P.; Lai, E.C.H.; Zhang, Y.-J.; Lau, W.Y.; Chen, M.-S.; Shi, M. Transarterial chemoembolization for unresectable hepato-cellular carcinoma with portal vein tumor thrombosis: A prospective comparative study. Ann. Surg. Oncol. 2011, 18, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.C.G.; Scoggins, C.R.; Schreeder, M.T.; Rilling, W.S.; Laing, C.J.; Tatum, C.M.; Kelly, L.R.; Garcia-Monaco, R.D.; Sharma, V.R.; Crocenzi, T.S.; et al. Randomized controlled trial of irinotecan drug-eluting beads with simultaneous FOLFOX and bevacizumab for patients with unresectable colorectal liver-limited metastasis. Cancer 2015, 121, 3649–3658. [Google Scholar] [CrossRef]
- Mauri, G.; Varano, G.M.; Della Vigna, P.; Bonomo, G.; Monfardini, L.; Zampino, M.G.; Ravenda, P.S.; Orsi, F. Transarterial Embolization with Small-Size Particles Loaded with Irinotecan for the Treatment of Colorectal Liver Metastases: Results of the MIRACLE III Study. Cardiovasc. Interv. Radiol. 2018, 41, 1708–1715. [Google Scholar] [CrossRef]
- Mauri, G.; Varano, G.M.; Orsi, F. TAE for HCC: When the Old Way is Better than the New Ones!!! Cardiovasc. Interv. Radiol. 2016, 39, 799–800. [Google Scholar] [CrossRef]
- Brown, D.B.; Gould, J.E.; Gervais, D.A.; Goldberg, S.N.; Murthy, R.; Millward, S.F.; Rilling, W.S.; Geschwind, J.-F.S.; Salem, R.; Vedantham, S.; et al. Transcatheter Therapy for Hepatic Malignancy: Standardization of Terminology and Reporting Criteria. J. Vasc. Interv. Radiol. 2007, 18, 1469–1478. [Google Scholar] [CrossRef]
- Marelli, L.; Stigliano, R.; Triantos, C.; Senzolo, M.; Cholongitas, E.; Davies, N.; Tibballs, J.; Meyer, T.; Patch, D.W.; Burroughs, A.K. Transarterial Therapy for Hepatocellular Carcinoma: Which Technique Is More Effective? A Systematic Review of Cohort and Randomized Studies. Cardiovasc. Interv. Radiol. 2007, 30, 6–25. [Google Scholar] [CrossRef] [PubMed]
- Ridge, J.A.; Bading, J.R.; Gelbard, A.S. Perfusion of colorectal hepatic metastases. Relative distribution of flow from the hepatic artery and portal vein. Cancer 1987, 59, 1547–1553. [Google Scholar] [CrossRef]
- Arai, Y.; Ohtsu, A.; Sato, Y.; Aramaki, T.; Kato, K.; Hamada, M.; Muro, K.; Yamada, Y.; Inaba, Y.; Shimada, Y.; et al. Phase I/II Study of Radiologic Hepatic Arterial Infusion of Fluorouracil Plus Systemic Irinotecan for Unresectable Hepatic Metastases from Colorectal Cancer: Japan Clinical Oncology Group Trial 0208-DI. J. Vasc. Interv. Radiol. 2012, 23, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, B.; Pech, M.; Nicolaou, A.; Langrehr, J.M.; Kurcz, J.; Bartels, B.; Miersch, A.; Felix, R.; Neuhaus, P.; Riess, H.; et al. Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with colorectal liver metastases: A phase II-study and historical comparison with the surgical approach. BMC Cancer 2007, 7, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberfield, R.A.; Sampson, E.; Heatley, G.J. Hepatic artery infusion chemotherapy for metastatic colorectal cancer to the liver at the lahey clinic: Comparison between two methods of treatment, surgical versus percutaneous catheter placement. Am J Clin Oncol 2004, 27, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Barnett, K.T.; Malafa, M.P. Complications of Hepatic Artery Infusion: A Review of 4580 Reported Cases. Int. J. Pancreatol. 2001, 30, 147–160. [Google Scholar] [CrossRef]
- Dzodic, R.; Gomez-Abuin, G.; Rougier, P.; Bonnay, M.; Ardouin, P.; Gouyette, A.; Rixe, O.; Ducreux, M.; Munck, J.-N. Pharmacokinetic advantage of intra-arterial hepatic oxaliplatin administration: Comparative results with cisplatin using a rabbit VX2 tumor model. Anti-Cancer Drugs 2004, 15, 647–650. [Google Scholar] [CrossRef]
- Munck, J.N.; Riggi, M.; Rougier, P.; Chabot, G.G.; Ramirez, L.H.; Zhao, Z.; Bognel, C.; Ardouin, P.; Herait, P.; Gouyette, A. Pharmacokinetic and pharmacodynamic advantages of pirarubicin over adriamycin after intraarterial hepatic administration in the rabbit VX2 tumor model. Cancer Res. 1993, 53, 1550–1554. [Google Scholar]
- Baggiani, A.; Ierardi, A.M.; Caspani, B.; Motta, F.; Toniolo, D.; Belloni, P.; Setola, E.; Campagnoli, E.; Tempini, S.; Crocchiolo, R.; et al. Hypoxic liver perfusion with mitomycin-C for treating multifocal metastases and unresectable primary tumours: A single-centre series of 42 patients. La. Radiol. Medica 2011, 116, 1239–1249. [Google Scholar] [CrossRef]
- Aldrighetti, L.; Arru, M.; Ronzoni, M.; Salvioni, M.; Villa, E.; Ferla, G. Extrahepatic biliary stenoses after hepatic arterial infusion (HAI) of floxuridine (FUdR) for liver metastases from colorectal cancer. Hepatogastroenterology 2001, 48, 1302–1307. [Google Scholar] [PubMed]
- Ducreux, M.; Ychou, M.; Laplanche, A.; Gamelin, E.; Lasser, P.; Husseini, F.; Quenet, F.; Viret, F.; Jacob, J.-H.; Boige, V.; et al. Hepatic Arterial Oxaliplatin Infusion Plus Intravenous Chemotherapy in Colorectal Cancer With Inoperable Hepatic Metastases: A Trial of the Gastrointestinal Group of the Fédération Nationale des Centres de Lutte Contre le Cancer. J. Clin. Oncol. 2005, 23, 4881–4887. [Google Scholar] [CrossRef] [PubMed]
- Kemeny, N.; Jarnagin, W.; Paty, P.; Gonen, M.; Schwartz, L.; Morse, M.; Leonard, G.; D’Angelica, M.; DeMatteo, R.; Blumgart, L.; et al. Phase I Trial of Systemic Oxaliplatin Combination Chemotherapy With Hepatic Arterial Infusion in Patients With Unresectable Liver Metastases From Colorectal Cancer. J. Clin. Oncol. 2005, 23, 4888–4896. [Google Scholar] [CrossRef]
- Kemeny, N.; Huang, Y.; Cohen, A.M.; Shi, W.; Conti, J.A.; Brennan, M.F.; Bertino, J.R.; Turnbull, A.D.; Sullivan, D.; Stockman, J.; et al. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N. Engl. J. Med. 1999, 341, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Mitry, E.; Fields, A.L.; Bleiberg, H.; Labianca, R.; Portier, G.; Tu, D.; Nitti, D.; Torri, V.; Elias, D.; O’Callaghan, C.; et al. Adjuvant Chemotherapy After Potentially Curative Resection of Metastases From Colorectal Cancer: A Pooled Analysis of Two Randomized Trials. J. Clin. Oncol. 2008, 26, 4906–4911. [Google Scholar] [CrossRef]
- Goere, D.; Benhaim, L.; Bonnet, S.; Malka, D.; Faron, M.; Elias, D.; Lefevre, J.H.; Deschamps, F.; Dromain, C.; Boige, V.; et al. Adjuvant chemotherapy after resection of colorectal liver metastases in patients at high risk of hepatic recur-rence: A comparative study between hepatic arterial infusion of oxaliplatin and modern systemic chemotherapy. Ann. Surg. 2013, 257, 114–120. [Google Scholar] [CrossRef]
- Goéré, D.; Deshaies, I.; de Baere, T.; Boige, V.; Malka, D.; Dumont, F.; Dromain, C.; Ducreux, M.; Elias, D. Prolonged Survival of Initially Unresectable Hepatic Colorectal Cancer Patients Treated With Hepatic Arterial Infusion of Oxaliplatin Followed by Radical Surgery of Metastases. Ann. Surg. 2010, 251, 686–691. [Google Scholar] [CrossRef]
- Willowson, K.P.; Hayes, A.R.; Chan, D.L.H.; Tapner, M.; Bernard, E.J.; Maher, R.; Pavlakis, N.; Clarke, S.J.; Bailey, D.L. Clinical and imag-ing-based prognostic factors in radioembolisation of liver metastases from colorectal cancer: A retrospective exploratory analysis. EJNMMI Res. 2017, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.; Cohn, M.; Coldwell, D.M.; Drooz, A.; Ehrenwald, E.; Kaiser, A.; Nutting, C.W.; Rose, S.C.; Wang, E.A.; Savin, M.A. Updated survival outcomes and analysis of long-term survivors from the MORE study on safety and efficacy of radioembolization in patients with unresectable colorectal cancer liver metastases. J. Gastrointest. Oncol. 2017, 8, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.S.; Nutting, C.; Coldwell, D.; Gaiser, J.; Drachenberg, C. Pathologic response and microdosimetry of 90Y microspheres in man: Review of four explanted whole livers. Int. J. Radiat. Oncol. 2004, 60, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.M.; Bailey, I.H.; A Burton, M. Tumour dosimetry in human liver following hepatic yttrium-90 microsphere therapy. Phys. Med. Biol. 2001, 46, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; McGinn, C.J.; Normolle, D.; Haken, R.K.T.; Walker, S.; Ensminger, W.; Lawrence, T.S. Escalated Focal Liver Radiation and Concurrent Hepatic Artery Fluorodeoxyuridine for Unresectable Intrahepatic Malignancies. J. Clin. Oncol. 2000, 18, 2210–2218. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; Mees, E.; Powerski, M.J.; Bruijnen, R.C.G.; Bosch, M.A.A.J.V.D.; Lam, M.G.E.H.; Smits, M.L.J. Radioembolisation in Europe: A Survey Amongst CIRSE Members. Cardiovasc. Interv. Radiol. 2018, 41, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Nicolay, N.H.; Berry, D.P.; Sharma, R.A. Liver metastases from colorectal cancer: Radioembolization with systemic therapy. Nat. Rev. Clin. Oncol. 2009, 6, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Van Hazel, G.; Blackwell, A.; Anderson, J.; Price, D.; Moroz, P.; Bower, G.; Cardaci, G.; Gray, B. Randomised phase 2 trial of SIR-spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J. Surg. Oncol. 2004, 88, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.A.; Van Hazel, G.A.; Morgan, B. Radioembolization of liver metastases from colorectal cancer using Yttrium-90 mi-crospheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J. Clin. Oncol. 2007, 25, 1099–1106. [Google Scholar] [CrossRef]
- Van Hazel, G.A.; Heinemann, V.; Sharma, N.K. SIRFLOX: Randomized phase III trial comparing first-line mFOLFOX6 (Plus or Minus Bevacizumab) versus mFOLFOX6 (Plus or Minus Bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J. Clin. Oncol. 2016, 34, 1723–1731. [Google Scholar] [CrossRef]
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Edeline, J.; de Baere, T.; Assenat, E.; Tacher, V.; Robert, C.; Terroir-Cassou-Mounat, M.; et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): A randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 17–29. [Google Scholar] [CrossRef]
- Wasan, H.S.; Gibbs, P.; Sharma, N.K.; Taieb, J.; Heinemann, V.; Ricke, J.; Peeters, M.; Findlay, M.; Weaver, A.; Mills, J.; et al. First-line se-lective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): A combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017, 18, 1159–1171. [Google Scholar] [CrossRef] [Green Version]
- Robb, M.A.; McInnes, P.M.; Califf, R.M. Biomarkers and surrogate endpoints: Developing common terminology and definitions. JAMA 2016, 315, 1107–1108. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource; Food and Drug Administration: Silver Spring, MD, USA; National Institutes of Health: Bethesda, MD, USA, 2016. [Google Scholar]
- Siena, S.; Sartore-Bianchi, A.; Di Nicolantonio, F.; Balfour, J.; Bardelli, A. Biomarkers Predicting Clinical Outcome of Epidermal Growth Factor Receptor–Targeted Therapy in Metastatic Colorectal Cancer. J. Natl. Cancer Inst. 2009, 101, 1308–1324. [Google Scholar] [CrossRef]
- Knijn, N.; Mekenkamp, L.J.M.; Klomp, M.; Vink-Börger, M.E.; Van Tol, J.; Teerenstra, S.; Meijer, J.W.R.; Tebar, M.; A Riemersma, S.; Van Krieken, J.H.J.M.; et al. KRAS mutation analysis: A comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br. J. Cancer 2011, 104, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Brudvik, K.W.; Kopetz, S.E.; Li, L.; Conrad, C.; Aloia, T.A.; Vauthey, J. Meta-analysis of KRAS mutations and survival after resection of colorectal liver metastases. Br. J. Surg. 2015, 102, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Brudvik, K.W.; Mise, Y.; Chung, M.H.; Chun, Y.S.; Kopetz, S.E.; Passot, G.; Conrad, C.; Maru, D.M.; Aloia, T.A.; Vauthey, J.-N.; et al. RAS Mutation Predicts Positive Resection Margins and Narrower Resection Margins in Patients Undergoing Resection of Colorectal Liver Metastases. Ann. Surg. Oncol. 2016, 23, 2635–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauthey, J.-N.; Zimmitti, G.; Kopetz, S.E.; Shindoh, J.; Chen, S.S.; Andreou, A.; Curley, S.A.; Aloia, T.A.; Maru, D.M. RAS Mutation Status Predicts Survival and Patterns of Recurrence in Patients Undergoing Hepatectomy for Colorectal Liver Metastases. Ann. Surg. 2013, 258, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuno, M.; Goumard, C.; Kopetz, S.; Vega, E.A.; Joechle, K.; Mizuno, T.; Omichi, K.; Tzeng, C.-W.D.; Chun, Y.S.; Vauthey, J.-N.; et al. RAS Mutation is Associated with Unsalvageable Recurrence Following Hepatectomy for Colorectal Cancer Liver Metastases. Ann. Surg. Oncol. 2018, 25, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Odisio, B.C.; Yamashita, S.; Huang, S.Y. Local tumour progression after percutaneous ablation of colorectal liver metastases ac-cording to RAS mutation status. Br. J. Surg. 2017, 104, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Calandri, M.; Yamashita, S.; Gazzera, C.; Fonio, P.; Veltri, A.; Bustreo, S.; Sheth, R.A.; Yevich, S.M.; Vauthey, J.N.; Odisio, B.C. Ablation of colorectal liver metastasis: Interaction of ablation margins and RAS mutation profiling on local tumor progression-free survival. Eur. Radiol. 2018, 28, 2727–2734. [Google Scholar] [CrossRef]
- Calandri, M.; Odisio, B.C. Tailoring ablation strategies for colorectal liver metastases based upon rat sarcoma viral oncogene mutation status. Chin. Clin. Oncol. 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Chun, Y.S.; Kopetz, S.E.; Vauthey, J. Biomarkers in colorectal liver metastases. Br. J. Surg. 2018, 105, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Kopetz, S.; Desai, J.; Chan, E.; Hecht, J.R.; O’Dwyer, P.J.; Maru, D.M.; Morris, V.; Janku, F.; Dasari, A.; Chung, W.; et al. Phase II Pilot Study of Vemurafenib in Patients With Metastatic BRAF-Mutated Colorectal Cancer. J. Clin. Oncol. 2015, 33, 4032–4038. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Cercek, A.; Chou, J.F.; Sylvester, B.E.; Kemeny, N.E.; Hechtman, J.F.; Ladanyi, M.; Rosen, N.; Weiser, M.R.; Capanu, M.; et al. BRAF mutation predicts for poor outcomes after metastasectomy in patients with metastatic colorectal cancer. Cancer 2014, 120, 2316–2324. [Google Scholar] [CrossRef] [PubMed]
- Passiglia, F.; Bronte, G.; Bazan, V.; Galvano, A.; Vincenzi, B.; Russo, A. Can KRAS and BRAF mutations limit the benefit of liver resection in metastatic colorectal cancer patients? A systematic review and meta-analysis. Crit. Rev. Oncol. 2016, 99, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.C.; Renfro, L.A.; Al-Shamsi, H.O.; Schrock, A.B.; Rankin, A.; Zhang, B.Y.; Kasi, P.M.; Voss, J.S.; Leal, A.; Sun, J.; et al. Non-V600BRAF Mutations Define a Clinically Distinct Molecular Subtype of Metastatic Colorectal Cancer. J. Clin. Oncol. 2017, 35, 2624–2630. [Google Scholar] [CrossRef]
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006, 38, 787–793. [Google Scholar] [CrossRef]
- Venderbosch, S.; Nagtegaal, I.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch Repair Status and BRAF Mutation Status in Metastatic Colorectal Cancer Patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS Studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [Green Version]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nat. Cell Biol. 2000, 408, 307–310. [Google Scholar] [CrossRef]
- Leslie, A.; Carey, F.A.; Pratt, N.R.; Steele, R.J. The colorectal adenoma–carcinoma sequence. Br. J. Surg. 2002, 89, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aguilar, J.; Chen, Z.; Smith, D.D.; Li, W.; Madoff, R.D.; Cataldo, P. Identification of a biomarker profile associated with re-sistance to neoadjuvant chemoradiation therapy in rectal cancer. Ann. Surg. 2011, 254, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.S.; Passot, G.; Yamashita, S.; Nusrat, M.; Katsonis, P.; Loree, J.; Conrad, C.; Tzeng, C.-W.D.; Xiao, L.; Aloia, T.A.; et al. Deleterious Effect of RAS and Evolutionary High-risk TP53 Double Mutation in Colorectal Liver Metastases. Ann. Surg. 2019, 269, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Chun, Y.-S.; Kopetz, S.E.; Maru, D.; Conrad, C.; Aloia, T.A.; Vauthey, J.-N. APC and PIK3CA Mutational Cooperativity Predicts Pathologic Response and Survival in Patients Undergoing Resection for Colorectal Liver Metastases. Ann. Surg. 2020, 272, 1080–1085. [Google Scholar] [CrossRef] [PubMed]
- Ziv, E.; Bergen, M.; Yarmohammadi, M.; Edward Boas, F.; Petre, N.; Sofocleous, C.T.; Yaeger, R.; Solit, D.B.; Solomon, S.B.; Erinjeri, J.P. PI3K pathway mutations are associated with longer time to local progression after radioembolization of colorectal liver metastases. Oncotarget 2017, 8, 23529–23538. [Google Scholar] [CrossRef] [PubMed]
- Zarour, L.R.; Anand, S.; Billingsley, K.G.; Bisson, W.H.; Cercek, A.; Clarke, M.F.; Coussens, L.M.; Gast, C.E.; Geltzeiler, C.B.; Hansen, L.; et al. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Calandri, M.; Siravegna, G.; Yevich, S.M.; Stranieri, G.; Gazzera, C.; Kopetz, S.; Fonio, P.; Gupta, S.; Bardelli, A.; Veltri, A.; et al. Liquid biopsy, a paradigm shift in oncology: What interventional radiologists should know. Eur. Radiol. 2020, 30, 4496–4503. [Google Scholar] [CrossRef]
- Cohen, S.J.; Punt, C.J.A.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [Google Scholar] [CrossRef]
- Diaz, L.A.; Bardelli, A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef]
- Siravegna, G.; Bardelli, A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 2014, 15, 449. [Google Scholar] [CrossRef] [Green Version]
- Parikh, A.R.; Leschhiner, I. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastroin-testinal cancers. Nat. Med. 2019, 25, 1415–1421. [Google Scholar] [CrossRef]
- d’Othee, J.B.; Sofocleous, C.T.; Hanna, N.; Lewandowski, R.J.; Soulen, M.C.; Vauthey, J.N.; Cohen, S.J.; Venook, A.L.; Johnson, M.S.; Kennedy, A.S.; et al. Development of a research agenda for the management of metastatic colorectal cancer: Proceedings from a multidisciplinary research consensus panel. J. Vasc. Interv. Radiol. 2012, 23, 153–163. [Google Scholar]
- Shady, W.; Petre, E.N.; Gonen, M.; Erinjeri, J.P.; Brown, K.T.; Covey, A.M.; Alago, W.; Durack, J.C.; Maybody, M.; Brody, L.A.; et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: Factors affecting outcomes – a 10-year experience at a singe center. Radiology 2016, 278, 601–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoeren, N.; Huiskens, J.; Rijken, A.M.; Van Hillegersberg, R.; Van Erkel, A.R.; Slooter, G.D.; Klaase, J.M.; Tol, P.M.V.D.; Kate, F.J.W.T.; Jansen, M.C.; et al. Viable Tumor Tissue Adherent to Needle Applicators after Local Ablation: A Risk Factor for Local Tumor Progression. Ann. Surg. Oncol. 2011, 18, 3702–3710. [Google Scholar] [CrossRef] [Green Version]
- Sotirchos, V.S.; Fujisawa, S.; Vakiani, E.; Solomon, S.B.; Manova-Todorova, K.O.; Sofocleous, C.T. Fluorescent Tissue Assessment of Colorectal Cancer Liver Metastases Ablation Zone: A Potential Real-Time Biomarker of Complete Tumor Ablation. Ann. Surg. Oncol. 2019, 26, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, F.H.; Petre, E.N.; Vakiani, E. Immediate postablation 18F-FDG injection and corresponding SUV are surrogate biomarkers of local tumor progression after thermal ablation of colorectal carcinoma liver metastases. J. Nucl. Med. 2018, 59, 1360–1365. [Google Scholar] [CrossRef] [Green Version]
- Shady, W.; Sotirchos, V.S. Surrogate imaging biomarkers of response of colorectal liver metastases after salvage radioembo-lization using 90Y-loaded resin microspheres. Am. J. Roentgenol. 2016, 207, 661–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabasch, A.; Heinzel, A.; Bruners, P.; Kraemer, N.A.; Kuhl, C.K. Diffusion-weighted MRI Is Superior to PET/CT in Predicting Survival of Patients Undergoing 90Y Radioembolization of Hepatic Metastases. Radiology 2018, 288, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shady, W.; Kishore, S.; Gavane, S.; Do, R.K.; Osborne, J.R.; Ulaner, G.; Gonen, M.; Ziv, E.; Boas, F.E.; Sofocleous, C.T. Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after 90Y radioembolization of colorectal liver metastases: A comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur. J. Radiol. 2016, 85, 1224–1231. [Google Scholar] [CrossRef] [Green Version]
- Lahrsow, M.; Albrecht, M.H.; Bickford, M.W.; Vogl, T.J. Predicting Treatment Response of Colorectal Cancer Liver Metastases to Conventional Lipiodol-Based Transarterial Chemoembolization Using Diffusion-Weighted MR Imaging: Value of Pre-treatment Apparent Diffusion Coefficients (ADC) and ADC Changes Under Therapy. Cardiovasc. Intervent. Radiol. 2017, 40, 852–859. [Google Scholar] [PubMed]
Ablation Technique | Action | Pros | Cons |
---|---|---|---|
RFA | High frequency alternating current determining ion friction, heat generation and coagulative necrosis | Low-price * Effective ablation of lesions < 3 cm Equivalent to wedge resection in small metastases | Difficult ablation of lesions > 5 cm Heat-sink effect ** Injury to nearby organs |
MWA | Microwaves determining heat generation and coagulative necrosis | No heat-sink effect ** Larger zones of ablation Preferable for lesions > 3 cm Reduced ablation and anesthesia time | Expensive * Injury to nearby organs |
Cryoablation | Ice crystal formation leading cell death and tumor ischemia | Visualization of ice-ball during procedure | Expensive * Cryoshock secondary to cytokine release |
IRE | Electrical pulses determining cell membranepores and apoptosis | No heat-sink effect ** Effective for lesions < 5 cm Indication for central, perihilar lesions Limited injury to nearby vessels and organs | Expensive * Difficult ablation of lesions > 5 cm Placement of at least two applicators needed ECG-gating necessary General anesthesia necessary and operating room required |
Laser Ablation | Conversion of absorbed light into heat | Smaller needle (21G) Precise ablation area Preferable for multiple small and variably sized lesions | Expensive * Limited size per single insertion of ablation areas |
Biomarkers | % in Metastatic CRC | Action | Clinical and Prognostic Implications | Interventional Therapeutic Implications |
---|---|---|---|---|
K-RAS | 15–50% | Constitutive activation of the MAPK signalling pathway | Higher recurrence rate after liver or lung CRC metastases ablation Reduced OS | • Larger ablation margins are strictly required for RAS mutant metastases |
BRAF | 1–8% | Constitutive activation of the MAPK signalling pathway | V600E mutation Recurrence after resection in multiple site (peritoneum and lung) | |
Non-V600 mutation Significantly improved OS compared with wild-type BRAF | • Excellent candidates for CRLM local therapies | |||
MSI | 2–3% | Deficient DNA mismatch repair | ||
TP53 | 50–70% | Cell proliferation and cell death dysregulation | Concomitant TP53 and KRAS mutation associated with decreased OS after CRLM resection | |
APC | 42–70% | Constitutive activation of Wnt signalling pathway | Concomitant APC and PIK3CA mutation associated with poor prognosis after CRLM resection | • PI3K pathway mutation predicts longer time to local progression after radioembolization of CRLM |
PIK3CA | 6–28% | Constitutive activation of PI3K/Akt/mTOR signalling pathway |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauri, G.; Monfardini, L.; Garnero, A.; Zampino, M.G.; Orsi, F.; Della Vigna, P.; Bonomo, G.; Varano, G.M.; Busso, M.; Gazzera, C.; et al. Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin. Cancers 2021, 13, 2617. https://doi.org/10.3390/cancers13112617
Mauri G, Monfardini L, Garnero A, Zampino MG, Orsi F, Della Vigna P, Bonomo G, Varano GM, Busso M, Gazzera C, et al. Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin. Cancers. 2021; 13(11):2617. https://doi.org/10.3390/cancers13112617
Chicago/Turabian StyleMauri, Giovanni, Lorenzo Monfardini, Andrea Garnero, Maria Giulia Zampino, Franco Orsi, Paolo Della Vigna, Guido Bonomo, Gianluca Maria Varano, Marco Busso, Carlo Gazzera, and et al. 2021. "Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin" Cancers 13, no. 11: 2617. https://doi.org/10.3390/cancers13112617
APA StyleMauri, G., Monfardini, L., Garnero, A., Zampino, M. G., Orsi, F., Della Vigna, P., Bonomo, G., Varano, G. M., Busso, M., Gazzera, C., Fonio, P., Veltri, A., & Calandri, M. (2021). Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin. Cancers, 13(11), 2617. https://doi.org/10.3390/cancers13112617