The Network of Cytokines in Brain Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cytokines in Lung Cancer Brain Metastases
3. Cytokines in Breast Cancer Brain Metastases
4. Cytokines in Melanoma Brain Metastases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat. Inflamm. 2013, 2013, 480739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal. Transduct. Target Ther. 2020, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F. Cancer and the chemokine network. Nat. Rev. Cancer 2004, 4, 540–550. [Google Scholar] [CrossRef]
- Fares, J.; Kanojia, D.; Rashidi, A.; Ulasov, I.; Lesniak, M.S. Genes that Mediate Metastasis across the Blood-Brain Barrier. Trends Cancer 2020, 6, 660–676. [Google Scholar] [CrossRef]
- Chow, M.T.; Luster, A.D. Chemokines in cancer. Cancer Immunol. Res. 2014, 2, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 2017, 17, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Goffin, J.R.; Arnold, A.; Ellis, P.M. Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr. Oncol. 2013, 20, e300–e306. [Google Scholar] [CrossRef] [Green Version]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Schouten, L.J.; Rutten, J.; Huveneers, H.A.M.; Twijnstra, A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002, 94, 2698–2705. [Google Scholar] [CrossRef]
- Khan, G.J.; Sun, L.; Abbas, M.; Naveed, M.; Jamshaid, T.; Baig, M.M.F.A.; Yuan, S. In-vitro Pre-Treatment of Cancer Cells with TGF-beta1: A Novel Approach of Tail Vein Lung Cancer Metastasis Mouse Model for Anti-Metastatic Studies. Curr. Mol. Pharmacol. 2019, 12, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Nejadhamzeeigilani, Z.; Gutowski, N.J.; Whatmore, J.L. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium. J. Exp. Clin. Cancer Res. 2015, 34, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wu, H.; Chen, B.; Hu, G.; Huang, L.; Qin, K.; Chen, Y.; Yuan, X.; Liao, Z. SNPs in the TGF-beta signaling pathway are associated with increased risk of brain metastasis in patients with non-small-cell lung cancer. PLoS ONE 2012, 7, e51713. [Google Scholar] [CrossRef] [PubMed]
- Risolino, M.; Mandia, N.; Iavarone, F.; Dardaei, L.; Longobardi, E.; Fernandez, S.; Talotta, F.; Bianchi, F.; Pisati, F.; Spaggiari, L.; et al. Transcription factor PREP1 induces EMT and metastasis by controlling the TGF-beta-SMAD3 pathway in non-small cell lung adenocarcinoma. Proc. Natl. Acad. Sci. USA 2014, 111, E3775–E3784. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Miao, Z.; Jiang, J.; Yuan, S.; Fang, W.; Li, B.; Chen, Y. Visfatin Mediates SCLC Cells Migration across Brain Endothelial Cells through Upregulation of CCL2. Int. J. Mol. Sci. 2015, 16, 11439–11451. [Google Scholar] [CrossRef] [Green Version]
- Jassam, S.A.; Maherally, Z.; Smith, J.R.; Ashkan, K.; Roncaroli, F.; Fillmore, H.L.; Pilkington, G.J. TNF-alpha enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis. Neuro Oncol. 2016, 18, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol. 2019, 21, 1403–1412. [Google Scholar] [CrossRef]
- Seike, T.; Fujita, K.; Yamakawa, Y.; Kido, M.A.; Takiguchi, S.; Teramoto, N.; Iguchi, H.; Noda, M. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 2011, 28, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.D.; Lamano, J.B.; Lamano, J.B.; Quaggin-Smith, J.; Veliceasa, D.; Kaur, G.; Biyashev, D.; Unruh, D.; Bloch, O. Tumor-induced peripheral immunosuppression promotes brain metastasis in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2019, 68, 1501–1513. [Google Scholar] [CrossRef]
- Rietkotter, E.; Bleckmann, A.; Bayerlova, M.; Menck, K.; Chuang, H.-N.; Wenske, B.; Schwartz, H.; Erez, N.; Binder, C.; Hanisch, U.-K.; et al. Anti-CSF-1 treatment is effective to prevent carcinoma invasion induced by monocyte-derived cells but scarcely by microglia. Oncotarget 2015, 6, 15482–15493. [Google Scholar] [CrossRef] [Green Version]
- Zhenjiang, L.; Rao, M.; Luo, X.; Sandberg, E.; Bartek, J., Jr.; Schoutrop, E.; von Landenberg, A.; Meng, Q.; Valentini, D.; Poiret, T.; et al. Mesothelin-specific Immune Responses Predict Survival of Patients With Brain Metastasis. EBioMedicine 2017, 23, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, J.; Wang, X.; Li, Z.; Zhang, X.; Cao, P.; She, X.; Dai, Q.; Tang, J.; Liu, Z. Upregulation of cytoskeleton protein and extracellular matrix protein induced by stromal-derived nitric oxide promotes lung cancer invasion and metastasis. Curr. Mol. Med. 2014, 14, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, K.; Hamasaki, M.; Makimoto, Y.; Yoneda, S.; Fujii, A.; Takamatsu, Y.; Nakashima, M.; Watanabe, T.; Kawahara, K.; Kikuchi, M.; et al. Differential chemokine, chemokine receptor, cytokine and cytokine receptor expression in pulmonary adenocarcinoma: Diffuse down-regulation is associated with immune evasion and brain metastasis. Int. J. Oncol. 2003, 23, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Navab, R.; Liu, J.; Seiden-Long, I.; Shih, W.; Li, M.; Bandarchi, B.; Chen, Y.; Lau, D.; Zu, Y.-F.; Cescon, D.; et al. Co-overexpression of Met and hepatocyte growth factor promotes systemic metastasis in NCI-H460 non-small cell lung carcinoma cells. Neoplasia 2009, 11, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Wei, Q.; Komaki, R.; Liu, Z.; Yang, J.; Tucker, S.L.; Xu, T.; Heymach, J.V.; Lu, C.; Cox, J.D.; et al. TGFbeta1 Polymorphisms Predict Distant Metastasis-Free Survival in Patients with Inoperable Non-Small-Cell Lung Cancer after Definitive Radiotherapy. PLoS ONE 2013, 8, e65659. [Google Scholar]
- Benveniste, H.; Zhang, S.; Reinsel, R.A.; Li, H.; Lee, H.; Rebecchi, M.; Moore, W.; Johansen, C.; Rothman, D.L.; Bilfinger, T.V. Brain metabolomic profiles of lung cancer patients prior to treatment characterized by proton magnetic resonance spectroscopy. Int. J. Clin. Exp. Med. 2012, 5, 154–164. [Google Scholar] [PubMed]
- Kim, S.H.; Lee, J.E.; Yang, S.-H.; Lee, S.W. Induction of cytokines and growth factors by rapamycin in the microenvironment of brain metastases of lung cancer. Oncol. Lett. 2013, 5, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Dohm, A.; Su, J.; McTyre, E.R.; Taylor, J.M.; Miller, L.D.; Petty, W.J.; Xing, F.; Lo, H.-W.; Metheny-Barlow, L.J.; O’Neill, S.; et al. Identification of CD37, cystatin A, and IL-23A gene expression in association with brain metastasis: Analysis of a prospective trial. Int. J. Biol. Markers 2019, 34, 90–97. [Google Scholar] [CrossRef]
- He, G.; Zhang, B.; Zhang, B.; Qiao, L.; Tian, Z.; Zhai, G.; Xin, X.; Yang, C.; Liu, P.; Zhang, Y.; et al. Th17 cells and IL-17 are increased in patients with brain metastases from the primary lung cancer. Zhongguo Fei Ai Za Zhi 2013, 16, 476–481. [Google Scholar]
- Noda, M.; Yamakawa, Y.; Matsunaga, N.; Naoe, S.; Jodoi, T.; Yamafuji, M.; Akimoto, N.; Teramoto, N.; Fujita, K.; Ohdo, S.; et al. IL-6 receptor is a possible target against growth of metastasized lung tumor cells in the brain. Int. J. Mol. Sci. 2012, 14, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Mauri, F.A.; Pinato, D.J.; Trivedi, P.; Sharma, R.; Shiner, R.J. Isogeneic comparison of primary and metastatic lung cancer identifies CX3CR1 as a molecular determinant of site-specific metastatic diffusion. Oncol. Rep. 2012, 28, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Paratore, S.; Banna, G.L.; D’Arrigo, M.; Saita, S.; Iemmolo, R.; Lucenti, L.; Bellia, D.; Lipari, H.; Buscarino, C.; Cunsolo, R.; et al. CXCR4 and CXCL12 immunoreactivities differentiate primary non-small-cell lung cancer with or without brain metastases. Cancer Biomark. 2011, 10, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Kanojia, D.; Cordero, A.; Rashidi, A.; Miska, J.; Schwartz, C.W.; Savchuk, S.; Ahmed, A.U.; Balyasnikova, I.V.; Cristofanilli, M.; et al. Current state of clinical trials in breast cancer brain metastases. Neurooncol. Pract. 2019, 6, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Kanojia, D.; Rashidi, A.; Ahmed, A.U.; Balyasnikova, I.V.; Lesniak, M.S. Diagnostic Clinical Trials in Breast Cancer Brain Metastases: Barriers and Innovations. Clin. Breast Cancer 2019, 19, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Curtaz, C.J.; Schmitt, C.; Herbert, S.-L.; Feldheim, J.; Schlegel, N.; Gosselet, F.; Hagemann, C.; Roewer, N.; Meybohm, P.; Wockel, A.; et al. Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood-brain barrier model. Fluids Barriers CNS 2020, 17, 31. [Google Scholar] [CrossRef]
- Quandt, J.; Dorovini-Zis, K. The beta chemokines CCL4 and CCL5 enhance adhesion of specific CD4+ T cell subsets to human brain endothelial cells. J. Neuropathol. Exp. Neurol. 2004, 63, 350–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terao, S.; Yilmaz, G.; Stokes, K.Y.; Russell, J.; Ishikawa, M.; Kawase, T.; Granger, D.N. Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion. Stroke 2008, 39, 2560–2570. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.S.; Serres, S.; Anthony, D.C.; Sibson, N.R. Functional role of endothelial adhesion molecules in the early stages of brain metastasis. Neuro Oncol. 2014, 16, 540–551. [Google Scholar] [CrossRef] [Green Version]
- Gril, B.; Paranjape, A.N.; Woditschka, S.; Hua, E.; Dolan, E.L.; Hanson, J.; Wu, X.; Kloc, W.; Izycka-Swieszewska, E.; Duchnowska, R.; et al. Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat. Commun. 2018, 9, 2705. [Google Scholar] [CrossRef]
- Sayyad, M.R.; Puchalapalli, M.; Vergara, N.G.; Wangensteen, S.M.; Moore, M.; Mu, L.; Edwards, C.; Anderson, A.; Kall, S.; Sullivan, M.; et al. Syndecan-1 facilitates breast cancer metastasis to the brain. Breast Cancer Res. Treat. 2019, 178, 35–49. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, J.; Wei, Y.; Zhou, Z.; Li, P.; Qu, J.; Badu-Nkansah, A.; Yuan, X.; Huang, Y.-W.; Fukumura, K.; et al. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci. Transl. Med. 2020, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Yano, S.; Shinohara, H.; Herbst, R.S.; Kuniyasu, H.; Bucana, C.D.; Ellis, L.M.; Davis, D.W.; McConkey, D.J.; Fidler, I.J. Expression of Vascular Endothelial Growth Factor Is Necessary but not Sufficient for Production and Growth of Brain Metastasis. Cancer Res. 2000, 60, 4959. [Google Scholar] [PubMed]
- Pukrop, T.; Dehghani, F.; Chuang, H.-N.; Lohaus, R.; Bayanga, K.; Heermann, S.; Regen, T.; Van Rossum, D.; Klemm, F.; Schulz, M.; et al. Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 2010, 58, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Kaverina, N.; Borovjagin, A.V.; Kadagidze, Z.; Baryshnikov, A.; Baryshnikova, M.; Malin, D.; Ghosh, D.; Shah, N.; Welch, D.R.; Gabikian, P.; et al. Astrocytes promote progression of breast cancer metastases to the brain via a KISS1-mediated autophagy. Autophagy 2017, 13, 1905–1923. [Google Scholar] [CrossRef] [PubMed]
- Ulasov, I.; Borovjagin, A.; Fares, J.; Yakushov, S.; Malin, D.; Timashev, P.; Lesniak, M.S. MicroRNA 345 (miR345) regulates KISS1-E-cadherin functional interaction in breast cancer brain metastases. Cancer Lett. 2020, 481, 24–31. [Google Scholar] [CrossRef]
- Platonov, M.E.; Borovjagin, A.V.; Kaverina, N.; Xiao, T.; Kadagidze, Z.; Lesniak, M.; Baryshnikova, M.; Ulasov, I.V. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy invitro. Cancer Lett. 2018, 417, 75–88. [Google Scholar] [CrossRef]
- Yan, C.; Wang, H.; Toh, Y.; Boyd, D.D. Repression of 92-kDa type IV collagenase expression by MTA1 is mediated through direct interactions with the promoter via a mechanism, which is both dependent on and independent of histone deacetylation. J. Biol. Chem. 2003, 278, 2309–2316. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Cho, S.G.; Luo, W.; Yi, T.; Wu, X.; Siwko, S.; Liu, M.; Yuan, W. KiSS1-induced GPR54 signaling inhibits breast cancer cell migration and epithelial-mesenchymal transition via protein kinase D1. Curr. Mol. Med. 2014, 14, 652–662. [Google Scholar] [CrossRef]
- Ueno, T.; Toi, M.; Saji, H.; Muta, M.; Bando, H.; Kuroi, K.; Koike, M.; Inadera, H.; Matsushima, K. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Int. J. Cancer 2000, 6, 3282–3289. [Google Scholar]
- Fujimoto, H.; Sangai, T.; Ishii, G.; Ikehara, A.; Nagashima, T.; Miyazaki, M.; Ochiai, A. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int. J. Cancer 2009, 125, 1276–1284. [Google Scholar] [CrossRef]
- Vogel, D.Y.S.; Kooij, G.; Heijnen, P.D.A.M.; Breur, M.; Peferoen, L.A.N.; van der Valk, P.; de Vries, H.E.; Amor, S.; Dijkstra, C.D. GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur. J. Immunol. 2015, 45, 1808–1819. [Google Scholar] [CrossRef] [PubMed]
- Giulian, D.; Ingeman, J.E. Colony-stimulating factors as promoters of ameboid microglia. J. Neurosci. 1988, 8, 4707–4717. [Google Scholar] [CrossRef]
- Medina-Contreras, O.; Geem, D.; Laur, O.; Williams, I.R.; Lira, S.A.; Nusrat, A.; Parkos, C.A.; Denning, T.L. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Investig. 2011, 121, 4787–4795. [Google Scholar] [CrossRef] [PubMed]
- Mark, K.S.; Miller, D.W. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sci. 1999, 64, 1941–1953. [Google Scholar] [CrossRef]
- de Vries, H.E.; Blom-Roosemalen, M.C.; van Oosten, M.; de Boer, A.G.; van Berkel, T.J.; Breimer, D.D.; Kuiper, J. The influence of cytokines on the integrity of the blood-brain barrier in vitro. J. Neuroimmunol. 1996, 64, 37–43. [Google Scholar] [CrossRef]
- Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa, R.; Shah, H.; Xu, K.; et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016, 533, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Nishizuka, I.; Ishikawa, T.; Hamaguchi, Y.; Kamiyama, M.; Ichikawa, Y.; Kadota, K.; Miki, R.; Tomaru, Y.; Mizuno, Y.; Tominaga, N.; et al. Analysis of gene expression involved in brain metastasis from breast cancer using cDNA microarray. Breast Cancer 2002, 9, 26–32. [Google Scholar] [CrossRef]
- Fernandez-Garcia, B.; Eiro, N.; Marin, L.; Gonzalez-Reyes, S.; Gonzalez, L.O.; Lamelas, M.L.; Vizoso, F.J. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology 2014, 64, 512–522. [Google Scholar] [CrossRef]
- Erin, N.; Ogan, N.; Yerlikaya, A. Secretomes reveal several novel proteins as well as TGF-beta1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res. Treat. 2018, 170, 235–250. [Google Scholar] [CrossRef]
- Guldner, I.H.; Wang, Q.; Yang, L.; Golomb, S.M.; Zhao, Z.; Lopez, J.A.; Brunory, A.; Howe, E.N.; Zhang, Y.; Palakurthi, B.; et al. CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10. Cell 2020, 183, 1234–1248. [Google Scholar] [CrossRef]
- Zlotnik, A.; Burkhardt, A.M.; Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 2011, 11, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.-N.; van Rossum, D.; Sieger, D.; Siam, L.; Klemm, F.; Bleckmann, A.; Bayerlova, M.; Farhat, K.; Scheffel, J.; Schulz, M.; et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 2013, 61, 1331–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.H.; Lee, J.S.; Yoon, J.H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol. 2012, 106, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Cabioglu, N.; Assi, H.; Sabourin, J.C.; Delaloge, S.; Sahin, A.; Broglio, K.; Spano, J.P.; Combadiere, C.; Bucana, C.; et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann. Oncol. 2006, 17, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F.; Ashkar, S. Molecular mechanisms of tumor dissemination in primary and metastatic brain cancers. Brain Res. Bull. 2000, 53, 421–424. [Google Scholar] [CrossRef]
- Sierra, A.; Price, J.E.; Garcia-Ramirez, M.; Mendez, O.; Lopez, L.; Fabra, A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab. Investig. 1997, 77, 357–368. [Google Scholar]
- Schor, S.L.; Schor, A.M. Phenotypic and genetic alterations in mammary stroma: Implications for tumour progression. Breast Cancer Res. 2001, 3, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.; Glick, R.P.; Lichtor, T.; Moser, R.; Cohen, E.P. Immunogene therapy with interleukin-2-secreting fibroblasts for intracerebrally metastasizing breast cancer in mice. J. Neurosurg. 2001, 94, 287–292. [Google Scholar] [CrossRef]
- Izraely, S.; Ben-Menachem, S.; Sagi-Assif, O.; Telerman, A.; Zubrilov, I.; Ashkenazi, O.; Meshel, T.; Maman, S.; Orozco, J.I.J.; Salomon, M.P.; et al. The metastatic microenvironment: Melanoma-microglia cross-talk promotes the malignant phenotype of melanoma cells. Int. J. Cancer 2019, 144, 802–817. [Google Scholar] [CrossRef] [Green Version]
- Doron, H.; Amer, M.; Ershaid, N.; Blazquez, R.; Shani, O.; Lahav, T.G.; Cohen, N.; Adler, O.; Hakim, Z.; Pozzi, S.; et al. Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Rep. 2019, 28, 1785–1798.e6. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Sagi-Assif, O.; Meshel, T.; Telerman, A.; Izraely, S.; Ben-Menachem, S.; Bayry, J.; Marzese, D.M.; Ohe, S.; Hoon, D.S.B.; et al. CCR4 is a determinant of melanoma brain metastasis. Oncotarget 2017, 8, 31079–31091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Somasundaram, R.; Berencsi, K.; Caputo, L.; Gimotty, P.; Rani, P.; Guerry, D.; Swoboda, R.; Herlyn, D. Migration of cytotoxic T lymphocytes toward melanoma cells in three-dimensional organotypic culture is dependent on CCL2 and CCR4. Eur. J. Immunol. 2006, 36, 457–467. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.-C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015, 527, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Izraely, S.; Klein, A.; Sagi-Assif, O.; Meshel, T.; Tsarfaty, G.; Hoon, D.S.B.; Witz, I.P. Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol. Lett. 2010, 130, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Obrador, E.; Benlloch, M.; Pellicer, J.A.; Asensi, M.; Estrela, J.M. Intertissue flow of glutathione (GSH) as a tumor growth-promoting mechanism: Interleukin 6 induces GSH release from hepatocytes in metastatic B16 melanoma-bearing mice. J. Biol. Chem. 2011, 286, 15716–15727. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Cordella, M.; Tabolacci, C.; Nassa, G.; D’Arcangelo, D.; Senatore, C.; Pagnotto, P.; Magliozzi, R.; Salvati, A.; Weisz, A.; et al. TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. J. Exp. Clin. Cancer Res. 2018, 37, 326. [Google Scholar] [CrossRef]
- Liu, X.; Fang, H.; Chen, H.; Jiang, X.; Fang, D.; Wang, Y.; Zhu, D. An artificial miRNA against HPSE suppresses melanoma invasion properties, correlating with a down-regulation of chemokines and MAPK phosphorylation. PLoS ONE 2012, 7, e38659. [Google Scholar] [CrossRef]
- Simonsen, T.G.; Gaustad, J.-V.; Rofstad, E.K. Intertumor heterogeneity in vascularity and invasiveness of artificial melanoma brain metastases. J. Exp. Clin. Cancer Res. 2015, 34, 150. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wen, M.; Pan, D.; Lin, X.; Mo, J.; Dong, X.; Liao, S.; Ma, Y. IL-33/ST2 Axis Regulates Vasculogenic Mimicry via ERK1/2-MMP-2/9 Pathway in Melanoma. Dermatology 2019, 235, 225–233. [Google Scholar] [CrossRef]
- Carmi, Y.; Dotan, S.; Rider, P.; Kaplanov, I.; White, M.R.; Baron, R.; Abutbul, S.; Huszar, M.; Dinarello, C.A.; Apte, R.N.; et al. The role of IL-1beta in the early tumor cell-induced angiogenic response. J. Immunol. 2013, 190, 3500–3509. [Google Scholar] [CrossRef] [Green Version]
- Roh, M.R.; Zheng, Z.; Kim, H.S.; Jeung, H.C.; Rha, S.Y.; Chung, K.Y. Difference of interferon-alpha and interferon-beta on melanoma growth and lymph node metastasis in mice. Melanoma Res. 2013, 23, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.-Y.; Gelbard, A.; Wei, J.; Reina-Ortiz, C.; Wang, Y.; Yang, E.C.; Hailemichael, Y.; Fokt, I.; Jayakumar, A.; Qiao, W.; et al. Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin. Cancer Res. 2010, 16, 2550–2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.J.; Steeg, P.S.; Price, J.E.; Chiu, W.T.; Chou, P.C.; Xie, K.; Sawaya, R.; Huang, S. Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res. 2008, 68, 9634–9642. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.; Schwartz, H.; Sagi-Assif, O.; Meshel, T.; Izraely, S.; Ben Menachem, S.; Bengaiev, R.; Ben-Shmuel, A.; Nahmias, C.; Couraud, P.-O.; et al. Astrocytes facilitate melanoma brain metastasis via secretion ofIL-23. J. Pathol. 2015, 236, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.M.; Kochel, C.M.; Nirschl, C.J.; Durham, N.M.; Ruzevick, J.; Alme, A.; Francica, B.J.; Elias, J.; Daniels, A.; Dubensky, T.W., Jr.; et al. Systemic Tolerance Mediated by Melanoma Brain Tumors Is Reversible by Radiotherapy and Vaccination. Clin. Cancer Res. 2016, 22, 1161–1172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, F.; Tsan, R.; Fidler, I.J. Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res. 2009, 69, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, H.; Blacher, E.; Amer, M.; Livneh, N.; Abramovitz, L.; Klein, A.; Ben-Shushan, D.; Soffer, S.; Blazquez, R.; Barrantes-Freer, A.; et al. Incipient Melanoma Brain Metastases Instigate Astrogliosis and Neuroinflammation. Cancer Res. 2016, 76, 4359–4371. [Google Scholar] [CrossRef] [Green Version]
- Metzemaekers, M.; Vanheule, V.; Janssens, R.; Struyf, S.; Proost, P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front. Immunol. 2017, 8, 1970. [Google Scholar] [CrossRef]
- Jiang, H.; Gebhardt, C.; Umansky, L.; Beckhove, P.; Schulze, T.J.; Utikal, J.; Umansky, V. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int. J. Cancer 2015, 136, 2352–2360. [Google Scholar] [CrossRef]
- Wightman, S.C.; Uppal, A.; Pitroda, S.P.; Ganai, S.; Burnette, B.; Stack, M.; Oshima, G.; Khan, S.; Huang, X.; Posner, M.C.; et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br. J. Cancer 2015, 113, 327–335. [Google Scholar] [CrossRef]
- Lok, E.; Chung, A.S.; Swanson, K.D.; Wong, E.T. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid. Melanoma Res. 2014, 24, 120–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torisu-Itakura, H.; Lee, J.H.; Scheri, R.P.; Huynh, Y.; Ye, X.; Essner, R.; Morton, D.L. Molecular characterization of inflammatory genes in sentinel and nonsentinel nodes in melanoma. Clin. Cancer Res. 2007, 13, 3125–3132. [Google Scholar] [CrossRef] [Green Version]
- Meier, F.; Schittek, B.; Busch, S.; Garbe, C.; Smalley, K.; Satyamoorthy, K.; Li, G.; Herlyn, M. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front. Biosci. 2005, 10, 2986–3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scala, S.; Ottaiano, A.; Ascierto, P.A.; Cavalli, M.; Simeone, E.; Giuliano, P.; Napolitano, M.; Franco, R.; Botti, G.; Castello, G. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin. Cancer Res. 2005, 11, 1835–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, J.A.; Kipps, T.J. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107, 1761–1767. [Google Scholar] [CrossRef]
- Salmaggi, A.; Maderna, E.; Calatozzolo, C.; Gaviani, P.; Canazza, A.; Milanesi, I.; Silvani, A.; DiMeco, F.; Carbone, A.; Pollo, B. CXCL12, CXCR4 and CXCR7 expression in brain metastases. Cancer Biol. Ther. 2009, 8, 1608–1614. [Google Scholar] [CrossRef] [Green Version]
- Estrela, J.M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006, 43, 143–181. [Google Scholar] [CrossRef]
- Murry, B.P.; Blust, B.E.; Singh, A.; Foster, T.P.; Marchetti, D. Heparanase mechanisms of melanoma metastasis to the brain: Development and use of a brain slice model. J. Cell Biochem. 2006, 97, 217–225. [Google Scholar] [CrossRef]
- Yang, E.V.; Kim, S.-j.; Donovan, E.L.; Chen, M.; Gross, A.C.; Webster Marketon, J.I.; Barsky, S.H.; Glaser, R. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: Implications for stress-related enhancement of tumor progression. Brain Behav. Immun. 2009, 23, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Helfrich, I.; Edler, L.; Sucker, A.; Thomas, M.; Christian, S.; Schadendorf, D.; Augustin, H.G. Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin. Cancer Res. 2009, 15, 1384–1392. [Google Scholar] [CrossRef] [Green Version]
- Bar-Eli, M. Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 1999, 67, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Weide, B.; Schafer, T.; Martens, A.; Kuzkina, A.; Uder, L.; Noor, S.; Garbe, C.; Harter, P.N.; Mittelbronn, M.; Wischhusen, J. High GDF-15 Serum Levels Independently Correlate with Poorer Overall Survival of Patients with Tumor-Free Stage III and Unresectable Stage IV Melanoma. J. Investig. Dermatol. 2016, 136, 2444–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, R.N.; Krelin, Y.; Song, X.; Dotan, S.; Recih, E.; Elkabets, M.; Carmi, Y.; Dvorkin, T.; White, R.M.; Gayvoronsky, L.; et al. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 2006, 42, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Krelin, Y.; Voronov, E.; Dotan, S.; Elkabets, M.; Reich, E.; Fogel, M.; Huszar, M.; Iwakura, Y.; Segal, S.; Dinarello, C.A.; et al. Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 2007, 67, 1062–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.-x.; Huang, F.-J.; Aldape, K.D.; Kang, S.-H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 2006, 66, 3188–3196. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Zhou, S.F. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-kappaB axis, and tumorigenesis. Drug Des. Devel. Ther. 2015, 9, 2941–2946. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.K.; Didolkar, M.S.; Pickren, J.W.; Moore, R.H. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am. J. Surg. 1978, 135, 807–810. [Google Scholar] [CrossRef]
- Kircher, D.A.; Silvis, M.R.; Cho, J.H.; Holmen, S.L. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine. Int. J. Mol. Sci. 2016, 17, 1468. [Google Scholar] [CrossRef] [Green Version]
- Powell, S.; Dudek, A.Z. Single-institution outcome of high-dose interleukin-2 (HD IL-2) therapy for metastatic melanoma and analysis of favorable response in brain metastases. Anticancer Res. 2009, 29, 4189–4193. [Google Scholar]
- Gonzalez Cao, M.; Malvehy, J.; Marti, R.; Conill, C.; Sanchez, M.; Martin, M.; Carrera, C.; Herrero, J.; Gascon, P.; Mellado, B.; et al. Biochemotherapy with temozolomide, cisplatin, vinblastine, subcutaneous interleukin-2 and interferon-alpha in patients with metastatic melanoma. Melanoma Res. 2006, 16, 59–64. [Google Scholar]
- Weber, R.W.; O’Day, S.; Rose, M.; Deck, R.; Ames, P.; Good, J.; Meyer, J.; Allen, R.; Trautvetter, S.; Timmerman, M.; et al. Low-dose outpatient chemobiotherapy with temozolomide, granulocyte-macrophage colony stimulating factor, interferon-alpha2b, and recombinant interleukin-2 for the treatment of metastatic melanoma. J. Clin. Oncol. 2005, 23, 8992–9000. [Google Scholar] [CrossRef] [PubMed]
- Ridolfi, L.; Fiorentini, G.; Guida, M.; Michiara, M.; Freschi, A.; Aitini, E.; Ballardini, M.; Bichisao, E.; Ridolfi, R.; Italian Melanoma, I.; et al. Multicentre, open, noncomparative Phase II trial to evaluate the efficacy and tolerability of fotemustine, cisplatin, alpha-interferon and interleukin-2 in advanced melanoma patients. Melanoma Res. 2009, 19, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Ron, I.G.; Sarid, D.; Ryvo, L.; Sapir, E.E.; Schneebaum, S.; Metser, U.; Asna, N.; Inbar, M.J.; Safra, T. A biochemotherapy regimen with concurrent administration of cisplatin, vinblastine, temozolomide (Temodal), interferon-alfa and interleukin-2 for metastatic melanoma: A phase II study. Melanoma Res. 2006, 16, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 2011, 364, 2119–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.J.; Rosenberg, S.A.; Dudley, M.E.; Yang, J.C.; White, D.E.; Butman, J.A.; Sherry, R.M. Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin. Cancer Res. 2010, 16, 4892–4898. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, A.; Dummer, R.; Ugurel, S.; Kaehler, K.C.; Egberts, F.; Fink, W.; Both-Skalsky, J.; Laetsch, B.; Schadendorf, D. Combined treatment with pegylated interferon-alpha-2a and dacarbazine in patients with advanced metastatic melanoma: A phase 2 study. Cancer 2008, 113, 1404–1411. [Google Scholar] [CrossRef] [Green Version]
- Hwu, W.-J.; Panageas, K.S.; Menell, J.H.; Lamb, L.A.; Aird, S.; Krown, S.E.; Williams, L.J.; Chapman, P.B.; Livingston, P.O.; Wolchok, J.D.; et al. Phase II study of temozolomide plus pegylated interferon-alpha-2b for metastatic melanoma. Cancer 2006, 106, 2445–2451. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Cherian, J.; Moschos, S.J.; Tawbi, H.A.; Shuai, Y.; Gooding, W.E.; Sander, C.; Kirkwood, J.M. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J. Clin. Oncol. 2012, 30, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Triozzi, P.L.; Strong, T.V.; Bucy, R.P.; Allen, K.O.; Carlisle, R.R.; Moore, S.E.; Lobuglio, A.F.; Conry, R.M. Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum. Gene Ther. 2005, 16, 91–100. [Google Scholar] [CrossRef]
- Martin, D.K.; Uckermann, O.; Bertram, A.; Liebner, C.; Hendruschk, S.; Sitoci-Ficici, K.H.; Schackert, G.; Lord, E.M.; Temme, A.; Kirsch, M. Differential growth inhibition of cerebral metastases by anti-angiogenic compounds. Anticancer Res. 2014, 34, 3293–3302. [Google Scholar]
- Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016, 8, 328rv4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, D.; Kryczek, I.; Nagarsheth, N.; Zhao, L.; Wei, S.; Wang, W.; Sun, Y.; Zhao, E.; Vatan, L.; Szeliga, W.; et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 2015, 527, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarsheth, N.; Peng, D.; Kryczek, I.; Wu, K.; Li, W.; Zhao, E.; Zhao, L.; Wei, S.; Frankel, T.; Vatan, L.; et al. PRC2 Epigenetically Silences Th1-Type Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer. Cancer Res. 2016, 76, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, J.; Ulasov, I.; Timachev, P.; Lesniak, M.S. Emerging Principles of Brain Immunology and Immune Checkpoint Blockade in Brain Metastasis. Brain 2020, in press. [Google Scholar]
Cytokine | Role | Model | Reference |
---|---|---|---|
TGF-β1 | Promote EMT | In vitro | [11] |
Damage the endothelial glycocalyx, which subsequently improves the transmigration of metastasizing cells across the blood-brain barrier (BBB) | In vitro | [12] | |
SMAD6 | GG genotype of SMAD6 rs12913975 and TT genotype of INHBC rs4760259 are associated with an increased risk of brain metastases | Patient samples | [13] |
INHBC | |||
PREP1 | EMT inducer and is a pro-metastatic transcription factor that acts by controlling the TGF-β-SMAD3 pathway | Patient samples | [14] |
CCL2 | Induces visfatin upregulation | In vitro | [15] |
Visfatin | Mediates the transmigration of small-cell lung cancer (SCLC) cells across the BBB | In vitro | [15] |
TNF-α | Enhances the adhesion of metastasizing lung cancer cells to the brain endothelial cells | Patient samples | [16] |
Cystatin C | Damages the endothelial membrane and improves the transmigration of metastasizing cells across the BBB | In vitro | [12] |
Cathepsin L | |||
IGFBP7 | Improves the transmigration of metastasizing cells across the BBB | In vitro | [12] |
VEGF | |||
CEMIP | Upregulates pro-inflammatory cytokines to promote brain vascular remodeling | Patient samples | [17] |
MIF | Activate astrocytes in the tumor microenvironment and increases the expression of IL-6 receptors | In vitro | [18] |
IL-8 | |||
PAI-1 | |||
IL-6 | Promote tumor cell proliferation through the STAT3 pathway | In vitro | [18] |
Induces PD-L1 expression in myeloid cells | Patient samples | [19] | |
CSF-1 | Reprograms myeloid cells, specifically, into tumor-promoting macrophages in the brain parenchyma | In vitro | [20] |
IL-2 | Regulate the IFN-γ responses to the tumor surface antigen mesothelin | Patient samples | [21] |
IL-7 | |||
Nitric oxide | Remodel the cytoskeleton and promote the mobility of lung cancer cells | Patient samples | [22] |
RCAS | Induce apoptosis of NK/T cells and promote immune evasion | Patient samples | [23] |
FasL | |||
HGF | Enhance tumorigenicity and direct metastases to the brain | In vitro | [24] |
Cytokine | Role | Model | Reference |
---|---|---|---|
CXCL13 | Increases the permeability of metastasizing breast cancer cells across the blood-brain barrier (BBB) | Patient samples | [35] |
CCL4 | Facilitate the transmigration of breast cancer cells across the BBB | In vitro | [36] |
CCL5 | In vitro | [36] | |
In vivo (mouse) | [37] | ||
ICAM-1 | In vivo (mouse) | [38] | |
IL-6 IL-8 CCL2 | Patient samples | [39] | |
GRO-α | In vivo (mouse) | [40] | |
G-CSF | Recruits Arg1+ and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth | Patient samples | [41] |
VEGF | Drives angiogenesis and growth of brain metastases | In vivo (mouse) | [42] |
SDF1 | Acts on microglia to support the invasion of breast cancer cells into the brain | Patient samples | [43] |
Upregulates VEGF, MMP9, SLUG, E-cadherin, ATG5, LC3-II and p62/SQSTM1 to promote tumor cell adaptation and progression in the brain | Patient samples | [44] | |
In vitro | [45,46,47,48] | ||
MCP-1 | Promotes migration and infiltration of macrophage into the brain through its receptor CCR2 | Patient samples | [49,50] |
GM-CSF | Facilitate the transmigration of breast cancer cells across the BBB | Patient samples | [51] |
Enhances microglial proliferation in the tumor microenvironment | In vivo (rat) | [52] | |
CX3CL1 | Attracts macrophages and microglial cells into the tumor microenvironment | In vivo (mouse) | [53] |
Stimulate brain microvessel endothelial cells, leading to increased permeability of the BBB | In vitro | [54,55] | |
IFNα | Activate the STAT1 and NF-κB pathways in brain metastatic cells, thereby promoting tumor growth and resistance | Patient samples | [56] |
TNF | |||
TGF-β1 | Regulates breast cancer cell invasion and colonization in the brain | In vitro | [57] |
Fibronectin 1 | Involved in tumor progression and invasion | Patient samples | [58] |
IGFBP7 | Suppressed in breast cancer brain metastatic cells in the brain due to its tumor suppressor properties | In vitro | [59] |
CXCL10 | Mediates recruitment of immune-suppressive CNS-myeloids to brain metastases | Patient samples | [60] |
Cytokine | Role | Model | Reference |
---|---|---|---|
IL-17A | Promotes angiogenesis and induces IL-6 production | In vitro | [69] |
CXCL10 | Modulates the migration of monocytes, macrophages, T cells, and NK cells to the brain | In vivo (mouse) | [70] |
CCL17 | Increases tumorigenicity and micrometastasis formation in the brain | In vivo (mouse) | [71] |
CCL2 | Recruits cytotoxic T lymphocytes to the metastatic melanoma site and induces an immune-mediated protective role | In vitro | [72] |
Recruits myeloid cells that prime the growth of metastatic melanoma cells in the brain | Patient samples | [73] | |
CCL22 | Regulates the AKT phosphorylation pattern and subsequent tumor cell survival and proliferation | Patient samples | [74] |
IL-6 | Induces the production of GSH in melanoma cells, facilitating their growth in the brain | In vivo (mouse) | [75] |
Triggers MMP-2 enzymatic activity in the tumor microenvironment | In vitro | [76] | |
IL-8 | Increases melanoma cell migration, invasion, and adhesion capacities, and activates MAPK signaling pathway | In vivo (mouse) | [77] |
Induces VEGFA-mediated angiogenesis and vascular co-option controlled by MMP-2 and MMP-9 | In vivo (mouse) | [78] | |
TNF-α IFN-γ | Enhances the invasion of metastatic melanoma cells and increases tumor cell aggressiveness | In vitro | [76] |
VEGF Eotaxin RANTES IL-12 | Trigger MMP-2 enzymatic activity that enhances the invasion of metastatic melanoma cells and increases tumor cell colonization | In vitro | [76] |
IL-33 | Binds to ST2 receptor and induces melanoma proliferation, migration, and invasion through MMP-2, MMP-9, and ERK1/2 phosphorylation | Patient samples | [79] |
IL-1β | Induces VEGF production by endothelial cells, modulating the inflammatory brain microenvironment of the tumor and enhancing angiogenesis and tumor progression | In vivo (mouse) | [80] |
IFN-α2β | Inhibit lymphangiogenesis-mediated melanoma metastasis by decreasing VEGF-C and VEGF receptor-3 expression | In vivo (mouse) | [81] |
IFN-β1α | |||
IFN-α | Enhances both innate and adaptive cytotoxic T-cell activities | In vivo (mouse) | [82] |
SOCS-1 | Inhibits Stat3 signaling and downregulates MMP-2, bFGF, and VEGF, leading to decreased invasion and angiogenesis | Patient samples | [83] |
IL-23 | Upregulates MMP-2 to facilitate melanoma cell migration and invasion into the brain parenchyma | In vivo (mouse) | [84] |
TGF-β | Induces tolerance of melanoma cells against T cell cytotoxicity | In vitro (mouse) | [85] |
Plays a pivotal role in the spatial distribution of melanoma cells in the brain parenchyma | In vivo (mouse) | [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fares, J.; Cordero, A.; Kanojia, D.; Lesniak, M.S. The Network of Cytokines in Brain Metastases. Cancers 2021, 13, 142. https://doi.org/10.3390/cancers13010142
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers. 2021; 13(1):142. https://doi.org/10.3390/cancers13010142
Chicago/Turabian StyleFares, Jawad, Alex Cordero, Deepak Kanojia, and Maciej S. Lesniak. 2021. "The Network of Cytokines in Brain Metastases" Cancers 13, no. 1: 142. https://doi.org/10.3390/cancers13010142
APA StyleFares, J., Cordero, A., Kanojia, D., & Lesniak, M. S. (2021). The Network of Cytokines in Brain Metastases. Cancers, 13(1), 142. https://doi.org/10.3390/cancers13010142