Does the TT Variant of the rs966423 Polymorphism in DIRC3 Affect the Stage and Clinical Course of Papillary Thyroid Cancer?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. DNA Isolation from Blood Samples
2.3. DNA Isolation from FFPE Samples
2.4. Quantitative Polymerase Chain Reaction (qPCR) and Sanger Sequencing
2.5. Statistical Analysis
3. Results
3.1. Characteristics at Presentation and Primary Treatment
3.2. Response to Therapy and Follow-up
3.3. Relationship between rs966423 Genotype and Histopathologic Factors and Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries-Bray-2018-CA: A Cancer Journal for Clinicians-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.3322/caac.21492 (accessed on 11 October 2019).
- Leenhardt, L.; Grosclaude, P.; Chérié-Challine, L. Thyroid Cancer Committee Increased incidence of thyroid carcinoma in france: A true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 2004, 14, 1056–1060. [Google Scholar] [CrossRef]
- Prevalence of Differentiated Thyroid Cancer in Autopsy Studies over Six Decades: A Meta-Analysis-PubMed-NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27601555 (accessed on 19 December 2019).
- Rosai, J.; LiVolsi, V.A.; Sobrinho-Simoes, M.; Williams, E.D. Renaming papillary microcarcinoma of the thyroid gland: The Porto proposal. Int. J. Surg. Pathol. 2003, 11, 249–251. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Jegerlehner, S.; Bulliard, J.-L.; Aujesky, D.; Rodondi, N.; Germann, S.; Konzelmann, I.; Chiolero, A. Overdiagnosis and overtreatment of thyroid cancer: A population-based temporal trend study. PLoS ONE 2017, 12, e0179387. [Google Scholar] [CrossRef] [PubMed]
- Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974–2013-PubMed-NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/28362912 (accessed on 11 October 2019).
- Geographic Influences in the Global Rise of Thyroid Cancer Nature Reviews Endocrinology. Available online: https://www.nature.com/articles/s41574-019-0263-x (accessed on 19 December 2019).
- Response to Therapy of Papillary Thyroid Cancer of Known BRAF Status-Kowalska-2017-Clinical Endocrinology-Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/cen.13423 (accessed on 11 October 2019).
- Impact of BRAF V600E and TERT Promoter Mutations on Response to Therapy in Papillary Thyroid Cancer. PubMed-NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/31305897 (accessed on 11 October 2019).
- Rutter, M.M.; Jha, P.; Schultz, K.A.P.; Sheil, A.; Harris, A.K.; Bauer, A.J.; Field, A.L.; Geller, J.; Hill, D.A. DICER1 Mutations and Differentiated Thyroid Carcinoma: Evidence of a Direct Association. J. Clin. Endocrinol. Metab. 2016, 101, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.S.; da Silva, J.G.; Tomaz, R.A.; Pinto, A.E.; Bugalho, M.J.; Leite, V.; Cavaco, B.M. Identification of a novel germline FOXE1 variant in patients with familial non-medullary thyroid carcinoma (FNMTC). Endocrine 2015, 49, 204–214. [Google Scholar] [CrossRef]
- He, H.; Bronisz, A.; Liyanarachchi, S.; Nagy, R.; Li, W.; Huang, Y.; Akagi, K.; Saji, M.; Kula, D.; Wojcicka, A.; et al. SRGAP1 is a candidate gene for papillary thyroid carcinoma susceptibility. J. Clin. Endocrinol. Metab. 2013, 98, E973–E980. [Google Scholar] [CrossRef] [Green Version]
- Gara, S.K.; Jia, L.; Merino, M.J.; Agarwal, S.K.; Zhang, L.; Cam, M.; Patel, D.; Kebebew, E. Germline HABP2 Mutation Causing Familial Nonmedullary Thyroid Cancer. N. Engl. J. Med. 2015, 373, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Wójcicka, A.; Czetwertyńska, M.; Świerniak, M.; Długosińska, J.; Maciąg, M.; Czajka, A.; Dymecka, K.; Kubiak, A.; Kot, A.; Płoski, R.; et al. Variants in the ATM-CHEK2-BRCA1 axis determine genetic predisposition and clinical presentation of papillary thyroid carcinoma. Genes Chromosomes Cancer 2014, 53, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Siołek, M.; Cybulski, C.; Gąsior-Perczak, D.; Kowalik, A.; Kozak-Klonowska, B.; Kowalska, A.; Chłopek, M.; Kluźniak, W.; Wokołorczyk, D.; Pałyga, I.; et al. CHEK2 mutations and the risk of papillary thyroid cancer. Int. J. Cancer 2015, 137, 548–552. [Google Scholar] [CrossRef]
- Dombernowsky, S.L.; Weischer, M.; Allin, K.H.; Bojesen, S.E.; Tybjjrg-Hansen, A.; Nordestgaard, B.G. Risk of Cancer by ATM Missense Mutations in the General Population. JCO 2008, 26, 3057–3062. [Google Scholar] [CrossRef] [PubMed]
- Peiling Yang, S.; Ngeow, J. Familial non-medullary thyroid cancer: Unraveling the genetic maze. Endocr. Relat. Cancer 2016, 23, R577–R595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A germline Mutation in SRRM2, A Splicing Factor Gene is Implicated in Papillary Thyroid Carcinoma Predisposition-Semantic Scholar. Available online: https://www.semanticscholar.org/paper/A-germline-mutation-in-SRRM2%2C-a-splicing-factor-is-Tomsic-He/497dc1da6155e4d729e5a8c77f9d5863a676fb2a (accessed on 2 June 2019).
- XRCC1 Polymorphisms and Risk of Papillary Thyroid Carcinoma in a Korean Sample. PubMed-NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21860547 (accessed on 2 June 2019).
- Ngan, E.S.W.; Lang, B.H.H.; Liu, T.; Shum, C.K.Y.; So, M.-T.; Lau, D.K.C.; Leon, T.Y.Y.; Cherny, S.S.; Tsai, S.Y.; Lo, C.-Y.; et al. A germline mutation (A339V) in thyroid transcription factor-1 (TITF-1/NKX2.1) in patients with multinodular goiter and papillary thyroid carcinoma. J. Natl. Cancer Inst. 2009, 101, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendrzejewski, J.; He, H.; Radomska, H.S.; Li, W.; Tomsic, J.; Liyanarachchi, S.; Davuluri, R.V.; Nagy, R.; de la Chapelle, A. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl. Acad. Sci. USA 2012, 109, 8646–8651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenko, V.A.; Rogounovitch, T.I. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the Genome-Wide Association Studies. Endocrinol. Metab. 2018, 33, 164–174. [Google Scholar] [CrossRef]
- Bodmer, D.; Schepens, M.; Eleveld, M.J.; Schoenmakers, E.F.P.M.; Geurts van Kessel, A. Disruption of a novel gene, DIRC3, and expression of DIRC3-HSPBAP1 fusion transcripts in a case of familial renal cell cancer and t (2; 3) (q35; q21). Genes Chromosomes Cancer 2003, 38, 107–116. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Durante, C.; Montesano, T.; Torlontano, M.; Attard, M.; Monzani, F.; Tumino, S.; Costante, G.; Meringolo, D.; Bruno, R.; Trulli, F.; et al. Papillary thyroid cancer: Time course of recurrences during postsurgery surveillance. J. Clin. Endocrinol. Metab. 2013, 98, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Landa, I.; Robledo, M. Association studies in thyroid cancer susceptibility: Are we on the right track? J. Mol. Endocrinol. 2011, 47, R43–R58. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Jonasson, J.G.; Masson, G.; He, H.; Jonasdottir, A.; Sigurdsson, A.; Stacey, S.N.; Johannsdottir, H.; et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat. Genet. 2012, 44, 319–322. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Jonasson, J.G.; Sigurdsson, A.; Bergthorsson, J.T.; He, H.; Blondal, T.; Geller, F.; Jakobsdottir, M.; et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 2009, 41, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Świerniak, M.; Wójcicka, A.; Czetwertyńska, M.; Długosińska, J.; Stachlewska, E.; Gierlikowski, W.; Kot, A.; Górnicka, B.; Koperski, Ł.; Bogdańska, M.; et al. Association between GWAS-Derived rs966423 Genetic Variant and Overall Mortality in Patients with Differentiated Thyroid Cancer. Clin Cancer Res 2016, 22, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-L.; Feng, S.-H.; Guo, S.-C.; Wei, W.-J.; Li, D.-S.; Wang, Y.; Wang, X.; Wang, Z.-Y.; Ma, Y.-Y.; Jin, L.; et al. Confirmation of papillary thyroid cancer susceptibility loci identified by genome-wide association studies of chromosomes 14q13, 9q22, 2q35 and 8p12 in a Chinese population. J. Med. Genet. 2013, 50, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Rs966423 (SNP)-Population Genetics-Homo Sapiens Ensembl Genome Browser 98. Available online: https://www.ensembl.org/Homo_sapiens/Variation/Population?r=2:217445117-217446117;v=rs966423;vdb=variation;vf=202626298 (accessed on 14 December 2019).
Feature | Total (n = 1466) |
---|---|
Gender, n (%) | |
Female | 1269 (86.6%) |
Male | 197 (13.4%) |
Median age, years (Q1–Q3; range) | 51.0 (39.0–59.8; 15–85) |
Age at diagnosis, ≥ 55 years, n (%) | 560 (38.2%) |
Median tumor size, mm (Q1–Q3; range) | 9.0 (5.0–16.0; 0.0–130) |
TC main type, n (%) | |
FTC | 34 (2.3%) |
Oxyphilic | 4 (0.3%) |
PDTC | 42 (2.9%) |
PTC | 1386 (94.5%) |
Multifocality, n (%) | |
No | 1088 (74.2%) |
Yes | 378 (25.8%) |
Extrathyroidal extension, n (%) | |
No | 1176 (80.2%) |
Minor | 267 (18.2%) |
Gross | 23 (1.6%) |
Angioinvasion, n (%) | |
No | 1367 (93.2%) |
Yes | 99 (6.8%) |
Tumor stage, n (%) | |
pT0 | 2 (0.1%) |
pT1a | 859 (58.6%) |
pT1b | 333 (22.7%) |
pT2 | 168 (11.5%) |
pT3a | 77 (5.3%) |
pT3b | 11 (0.8%) |
pT4a | 12 (0.8%) |
pT4b | 4 (0.3%) |
Node stage, n (%) | |
N0a | 770 (52.5%) |
N0b | 478 (32.6%) |
N1a | 150 (10.2%) |
N1b | 68 (4.6%) |
Distant metastasis, n (%) | |
M0 | 1432 (97.7%) |
M1 | 34 (2.3%) |
TNM stage, n (%) | |
I | 1342 (91.5%) |
II | 98 (6.7%) |
III | 4 (0.3%) |
IVa | 3 (0.2%) |
IVb | 19 (1.3%) |
ATA initial risk, n (%) | |
Low | 959 (65.4%) |
Intermediate | 416 (28.4%) |
High | 91 (6.2%) |
Initial Response to Therapy | n (%) |
---|---|
Excellent | 1116 (83.1%) |
Indeterminate | 160 (11.9%) |
Biochemical incomplete | 32 (2.4%) |
Structural incomplete | 35 (2.6%) |
Final Follow-Up | n(%) |
NED | 1226 (91.3%) |
Indeterminate | 69 (5.2%) |
Biochemical incomplete | 14 (1.1%) |
Structural incomplete | 33 (2.4%) |
Follow-Up: Recurrence after NED | n(%) |
No | 1106 (82.3%) |
Yes | 10 (0.7%) |
Death | n(%) |
No | 1445 (98.6%) |
TC-unrelated | 6 (0.4%) |
TC-related | 15 (1.0%) |
Median Follow-Up Time, Years (Range) | 5.0 (0.0–40.0) |
rs966423 Variants | Study Group n = 1466, n (%) | Controls n = 309, n (%) | p-Value |
---|---|---|---|
CC | 322 (22.0%) | 54 (17.5%) | |
CT | 730 (49.8%) | 155 (50.2%) | |
TT | 414 (28.2%) | 100 (32.4%) | p = 0.140 |
CC | 322 (22.0%) | 54 (17.5%) | |
CT/TT | 1144 (78.0%) | 255 (82.5%) | p = 0.079 |
TT | 414 (28.2%) | 100 (32.4%) | |
CC/CT | 1052 (71.8%) | 209 (67.6%) | p = 0.147 |
Feature | TT (n = 414) | CC/CT (n = 1052) | Total (n = 1466) | p-Value |
---|---|---|---|---|
Gender, n (%) | ||||
Female | 366 (88.4%) | 903 (85.8%) | 1269 (86.6%) | |
Male | 48 (11.6%) | 149 (14.2%) | 197 (13.4%) | 0.1941 |
Median age at diagnosis, years (Q1–Q3; range) | 51.0 (40.0–60.0; 15.0–85.0) | 51.0 (39.0–59.0; 15–85) | 51.0 (39.0–59.8; 15–85) | 0.836 |
Age at diagnosis, ≥ 55 years, n (%) | 162 (39.1%) | 398 (37.8%) | 560 (38.2%) | 0.6453 |
Median tumor size, mm (Q1–Q3; range) | 9.0 (6.0–17.8; 0.0–80.0 ) | 9.0 (5.0–15.0; 0.0–130) | 9.0 (5.0–16.0; 0.0–130 ) | 0.126 |
TC main type, n (%) | ||||
FTC | 14 (3.4%) | 20 (1.9%) | 34 (2.3%) | |
Oxyphilic | 2 (0.5%) | 2 (0.2%) | 4 (0.3%) | |
PDTC | 12 (2.9%) | 30 (2.9%) | 42 (2.9%) | |
PTC | 386 (93.2%) | 1000 (95.1%) | 1386 (94.5%) | 0.2411 |
Multifocality, n (%) | ||||
No | 315 (76.1%) | 773 (73.5%) | 1088 (74.2%) | |
Yes | 99 (23.9%) | 279 (26.5%) | 378 (25.8%) | 0.3042 |
Extrathyroidal extension, n (%) | ||||
No | 333 (80.4%) | 843 (80.1%) | 1176 (80.2%) | |
Minor | 73 (17.6%) | 194 (18.4%) | 267 (18.2%) | |
Gross | 8 (1.9%) | 15 (1.4%) | 23 (1.6%) | 0.7424 |
Angioinvasion, n (%) | ||||
No | 381 (92.0%) | 986 (93.7%) | 1367 (93.2%) | |
Yes | 33 (8.0%) | 66 (6.3%) | 99 (6.8%) | 0.2437 |
Tumor stage, n (%) | ||||
pT0 | 1 (0.2%) | 1 (0.1%) | 2 (0.1%) | |
pT1a | 227 (54.8%) | 632 (60.1%) | 859 (58.6%) | |
pT1b | 102 (24.6%) | 231 (22.0%) | 333 (22.7%) | |
pT2 | 50 (12.1%) | 118 (11.2%) | 168 (11.5%) | |
pT3a | 23 (5.6%) | 54 (5.1%) | 77 (5.3%) | |
pT3b | 5 (1.2%) | 6 (0.6%) | 11 (0.8%) | |
pT4a | 5 (1.2%) | 7 (0.7%) | 12 (0.8%) | |
pT4b | 1 (0.2%) | 3 (0.3%) | 4 (0.3%) | 0.4434 |
Node stage, n (%) | ||||
N0a | 208 (50.2%) | 562 (53.4%) | 770 (52.5%) | |
N0b | 134 (32.4%) | 344 (32.7%) | 478 (32.6%) | |
N1a | 48 (11.6%) | 102 (9.7%) | 150 (10.2%) | |
N1b | 24 (5.8%) | 44 (4.2%) | 68 (4.6%) | 0.3479 |
Distant metastasis, n (%) | ||||
M0 | 402 (97.1%) | 1030 (97.9%) | 1432 (97.7%) | |
M1 | 12 (2.9%) | 22 (2.1%) | 34 (2.3%) | 0.3552 |
8th edition of TNM staging, n (%) | ||||
I | 375 (90.6%) | 967 (91.9%) | 1342 (91.5%) | |
II | 31 (7.5%) | 67 (6.4%) | 98 (6.7%) | |
III | 2 (0.5%) | 2 (0.2%) | 4 (0.3%) | |
Iva | 1 (0.2%) | 2 (0.2%) | 3 (0.2%) | |
Ivb | 5 (1.2%) | 14 (1.3%) | 19 (1.3%) | 0.7103 |
ATA initial risk, n (%) | ||||
Low | 264 (63.8%) | 695 (66.1%) | 959 (65.4%) | |
Intermediate | 118 (28.5%) | 298 (28.3%) | 416 (28.4%) | |
High | 32 (7.7%) | 59 (5.6%) | 91 (6.2%) | 0.3018 |
Response to initial therapy, n (%) | ||||
Excellent | 319 (83.5%) | 797 (82.8%) | 1116 (83.1%) | |
Indeterminate | 45 (11.8%) | 115 (12%) | 160 (11.9%) | |
Biochemical incomplete | 9 (2.4%) | 23 (2.4%) | 32 (2.4%) | |
Structural incomplete | 8 (2.1%) | 27 (2.8%) | 35 (2.6%) | 0.9528 |
Final follow-up, n (%) | ||||
NED | 346 (91.1%) | 880 (91.5%) | 1226 (91.3%) | |
Indeterminate | 25 (6.6%) | 44 (4.6%) | 69 (5.1%) | |
Biochemical incomplete | 4 (1.1%) | 10 (1.0%) | 14 (1.1%) | |
Structural incomplete | 5 (1.2%) | 28 (2.9%) | 33 (2.5%) | 0.280 |
Follow-up: recurrence after NED, n (%) | ||||
No | 317 (99.4%) | 789 (99%) | 1106 (99.1%) | |
Yes | 2 (0.6%) | 8 (1.0%) | 10 (0.9%) | 0.7852 |
Death, n (%) | ||||
No | 408 (98.6%) | 1037 (98.6%) | 1445 (98.6%) | |
TC-unrelated | 3 (0.7%) | 3 (0.3%) | 6 (0.4%) | |
TC-related | 3 (0.7%) | 12 (1.1%) | 15 (1.0%) | 0.9729 |
Median follow-up time, years (range) | 5.0 (0.0–27.0) | 5.0 (0.0–40.0) | 5.0 (0.0–40.0) | 0.360 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hińcza, K.; Kowalik, A.; Pałyga, I.; Walczyk, A.; Gąsior-Perczak, D.; Mikina, E.; Trybek, T.; Szymonek, M.; Gadawska-Juszczyk, K.; Zajkowska, K.; et al. Does the TT Variant of the rs966423 Polymorphism in DIRC3 Affect the Stage and Clinical Course of Papillary Thyroid Cancer? Cancers 2020, 12, 423. https://doi.org/10.3390/cancers12020423
Hińcza K, Kowalik A, Pałyga I, Walczyk A, Gąsior-Perczak D, Mikina E, Trybek T, Szymonek M, Gadawska-Juszczyk K, Zajkowska K, et al. Does the TT Variant of the rs966423 Polymorphism in DIRC3 Affect the Stage and Clinical Course of Papillary Thyroid Cancer? Cancers. 2020; 12(2):423. https://doi.org/10.3390/cancers12020423
Chicago/Turabian StyleHińcza, Kinga, Artur Kowalik, Iwona Pałyga, Agnieszka Walczyk, Danuta Gąsior-Perczak, Estera Mikina, Tomasz Trybek, Monika Szymonek, Klaudia Gadawska-Juszczyk, Klaudia Zajkowska, and et al. 2020. "Does the TT Variant of the rs966423 Polymorphism in DIRC3 Affect the Stage and Clinical Course of Papillary Thyroid Cancer?" Cancers 12, no. 2: 423. https://doi.org/10.3390/cancers12020423
APA StyleHińcza, K., Kowalik, A., Pałyga, I., Walczyk, A., Gąsior-Perczak, D., Mikina, E., Trybek, T., Szymonek, M., Gadawska-Juszczyk, K., Zajkowska, K., Suligowska, A., Kuchareczko, A., Krawczyk, K., Kopczyński, J., Chrapek, M., Góźdź, S., & Kowalska, A. (2020). Does the TT Variant of the rs966423 Polymorphism in DIRC3 Affect the Stage and Clinical Course of Papillary Thyroid Cancer? Cancers, 12(2), 423. https://doi.org/10.3390/cancers12020423