Neuroendocrine and Aggressive-Variant Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pathologic Classification of Prostate Cancer with Neuroendocrine Differentiation
3. Aggressive Variants of Castration Resistant Prostate Cancer
- histologic evidence of SCPC (pure or mixed);
- presence of only visceral metastases;
- predominantly lytic bone lesions;
- bulky (≥5 cm) lymphadenopathy or large (≥5 cm) high-grade (Gleason ≥ 8) tumor mass in prostate/pelvis;
- low PSA at presentation with extensive bone metastatic disease;
- presence of NE markers at histology (CgA and synaptophysin) or serum (CgA and gastrin-releasing peptide) combined with either elevated lactate dehydrogenase (LDH), malignant hypercalcemia or elevated serum carcinoembryonic antigen (CEA);
- progression to CRPC in six months or less after initiation of hormonal therapy.
4. Management of AVPC
4.1. Tissue Sampling
4.2. Standard of Care
4.3. Platinum-Based Regimens with Etoposide
4.4. Platinum-Based Regimens with Taxanes
5. Targeted Therapies
5.1. Immunotherapy Options
5.2. DNA Damage Response (DDR) Pathway
6. Ongoing Research and Future Perspectives
6.1. Neuroendocrine Markers
6.2. Experimental Therapies
6.3. Treatment Response Monitoring
7. Conclusions
Funding
Conflicts of Interest
References
- National Cancer Institute-Surveillance, Epidemiology, and End Results Program (SEER). Cancer Stat Facts: Prostate Cancer. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 30 March 2020).
- World Health Organization. International Agency for Research on Cancer-GLOBOCAN 2018. Available online: https://gco.iarc.fr/ (accessed on 30 March 2020).
- Small, E.J.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H.; et al. Apalutamide and overall survival in non-metastatic castration-resistant prostate cancer. Ann. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hussain, M.; Fizazi, K.; Saad, F.; Rathenborg, P.; Shore, N.; Ferreira, U.; Ivashchenko, P.; Demirhan, E.; Modelska, K.; Phung, D.; et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2018, 378, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2019, 380, 1235–1246. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; Fizazi, K.; Saad, F.; A Mulders, P.F.; Sternberg, C.N.; Miller, K.; Logothetis, C.J.; Shore, N.; Small, E.J.; et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015, 16, 152–160. [Google Scholar] [CrossRef]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- I Scher, H.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef][Green Version]
- Aggarwal, R.; Zhang, T.; Small, E.J.; Armstrong, A.J. Neuroendocrine Prostate Cancer: Subtypes, Biology, and Clinical Outcomes. J. Natl. Compr. Cancer Netw. 2014, 12, 719–726. [Google Scholar] [CrossRef]
- Tětu, B.; Ro, J.Y.; Ayala, A.G.; Johnson, D.E.; Logothetis, C.J.; Ordonez, N.G. Small cell carcinoma of the prostate part I a clinicopathologic study of 20 cases. Cancer 1987, 59, 1803–1809. [Google Scholar] [CrossRef]
- Beltran, H.; Rickman, D.S.; Park, K.; Chae, S.S.; Sboner, A.; Macdonald, T.Y.; Wang, Y.; Sheikh, K.L.; Terry, S.; Tagawa, S.T.; et al. Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discov. 2011, 1, 487–495. [Google Scholar] [CrossRef][Green Version]
- Aggarwal, R.; Huang, J.; Alumkal, J.J.; Zhang, L.; Feng, F.Y.; Thomas, G.V.; Weinstein, A.S.; Friedl, V.; Zhang, C.; Witte, O.N.; et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J. Clin. Oncol. 2018, 36, 2492–2503. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Tomlins, S.; Aparicio, A.; Arora, V.; Rickman, D.; Ayala, G.; Huang, J.; True, L.; Gleave, M.E.; Soule, H.; et al. Aggressive Variants of Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2014, 20, 2846–2850. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Aparicio, A.M.; Shen, L.; Tapia, E.M.L.N.; Lu, J.-F.; Chen, H.-C.; Zhang, J.; Wu, G.; Wang, X.; Troncoso, P.; Corn, P.G.; et al. Combined Tumor Suppressor Defects Characterize Clinically Defined Aggressive Variant Prostate Cancers. Clin. Cancer Res. 2016, 22, 1520–1530. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Papandreou, C.N.; Daliani, D.D.; Thall, P.F.; Tu, S.-M.; Wang, X.; Reyes, A.; Troncoso, P.; Logothetis, C.J. Results of a Phase II Study With Doxorubicin, Etoposide, and Cisplatin in Patients With Fully Characterized Small-Cell Carcinoma of the Prostate. J. Clin. Oncol. 2002, 20, 3072–3080. [Google Scholar] [CrossRef]
- Loriot, Y.; Massard, C.; Gross-Goupil, M.; Di Palma, M.; Escudier, B.; Bossi, A.; Fizazi, K. Combining carboplatin and etoposide in docetaxel-pretreated patients with castration-resistant prostate cancer: A prospective study evaluating also neuroendocrine features. Ann. Oncol. 2009, 20, 703–708. [Google Scholar] [CrossRef]
- Fléchon, A.; Pouessel, D.; Ferlay, C.; Perol, D.; Beuzeboc, P.; Gravis, G.; Joly, F.; Oudard, S.; Deplanque, G.; Zanetta, S.; et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: Results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann. Oncol. 2011, 22, 2476–2481. [Google Scholar] [CrossRef]
- Aparicio, A.M.; Harzstark, A.L.; Corn, P.G.; Wen, S.; Araujo, J.C.; Tu, S.-M.; Pagliaro, L.C.; Kim, J.; Millikan, R.E.; Ryan, C.J.; et al. Platinum-Based Chemotherapy for Variant Castrate-Resistant Prostate Cancer. Clin. Cancer Res. 2013, 19, 3621–3630. [Google Scholar] [CrossRef][Green Version]
- Corn, P.G.; I Heath, E.; Zurita, A.; Ramesh, N.; Xiao, L.; Sei, E.; Li-Ning-Tapia, E.; Tu, S.-M.; Subudhi, S.K.; Wang, J.; et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: A randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019, 20, 1432–1443. [Google Scholar] [CrossRef]
- Deorah, S.; Rao, M.B.; Raman, R.; Gaitonde, K.; Donovan, J.F. Survival of patients with small cell carcinoma of the prostate during 1973–2003: A population-based study. BJU Int. 2012, 109, 824–830. [Google Scholar] [CrossRef]
- Alanee, S.; Moore, A.; Nutt, M.; Holland, B.; Dynda, D.; El-Zawahry, A.; McVary, K.T. Contemporary Incidence and Mortality Rates of Neuroendocrine Prostate Cancer. Anticancer Res. 2015, 35, 4145–4150. [Google Scholar]
- Abrahamsson, P.-A. Neuroendocrine cells in tumour growth of the prostate. Endocr.-Relat. Cancer 1999, 6, 503–519. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abrahamsson, P.-A.; Wadström, L.B.; Alumets, J.; Falkmer, S.; Grimelius, L. Peptide-Hormone- And Serotonin-Immunoreactive Tumour Cells in Carcinoma of the Prostate. Pathol.-Res. Pract. 1987, 182, 298–307. [Google Scholar] [CrossRef]
- Epstein, J.I.; Amin, M.B.; Beltran, H.; Lotan, T.L.; Mosquera, J.-M.; Reuter, V.E.; Robinson, B.D.; Troncoso, P.; Rubin, M.A. Proposed Morphologic Classification of Prostate Cancer With Neuroendocrine Differentiation. Am. J. Surg. Pathol. 2014, 38, 756–767. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Humphrey, P.A.; Moch, H.; Cubilla, A.L.; Ulbright, T.M.; Reuter, V.E. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part B: Prostate and Bladder Tumours. Eur. Urol. 2016, 70, 106–119. [Google Scholar] [CrossRef][Green Version]
- Bonkhoff, H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann. Oncol. 2001, 12, S141–S144. [Google Scholar] [CrossRef]
- Varma, M.; Lee, M.W.; Tamboli, P.; Zarbo, R.J.; Jimenez, R.E.; O Salles, P.G.; Amin, M.B. Morphologic criteria for the diagnosis of prostatic adenocarcinoma in needle biopsy specimens. A study of 250 consecutive cases in a routine surgical pathology practice. Arch. Pathol. Lab. Med. 2002, 126, 554–561. [Google Scholar] [CrossRef]
- Almagro, U.A. Argyrophilic prostatic carcinoma. Case report with literature review on prostatic carcinoid and “carcinoid-like” prostatic carcinoma. Cancer 1985, 55, 608–614. [Google Scholar] [CrossRef]
- Lim, K.-H.; Huang, M.-J.; Yang, S.; Hsieh, R.-K.; Lin, J. Primary carcinoid tumor of prostate presenting with bone marrow metastases. Urology 2005, 65, 174. [Google Scholar] [CrossRef]
- Azumi, N.; Shibuya, H.; Ishikura, M. Primary prostatic carcinoid tumor with intracytoplasmic prostatic acid phosphatase and prostate-specific antigen. Am. J. Surg. Pathol. 1984, 8, 545–550. [Google Scholar] [CrossRef]
- Murali, R.; Kneale, K.; Lalak, N.; Delprado, W. Carcinoid tumors of the urinary tract and prostate. Arch. Pathol. Lab. Med. 2006, 130, 1693–1706. [Google Scholar] [CrossRef]
- Wang, W.; Epstein, J.I. Small Cell Carcinoma of the Prostate. A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 2008, 32, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.L.; Madeb, R.; Bourne, P.; Lei, J.; Yang, X.; Tickoo, S.; Liu, Z.; Tan, D.; Cheng, L.; Hatem, F.; et al. Small Cell Carcinoma of the Prostate: An Immunohistochemical Study. Am. J. Surg. Pathol. 2006, 30, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Lotan, T.L.; Gupta, N.S.; Wang, W.; Toubaji, A.; Haffner, M.C.; Chaux, A.; Hicks, J.L.; Meeker, A.K.; Bieberich, C.J.; De Marzo, A.M.; et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod. Pathol. 2011, 24, 820–828. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schelling, L.A.; Williamson, S.R.; Zhang, S.; Yao, J.L.; Wang, M.; Huang, J.; Montironi, R.; Lopez-Beltran, A.; Emerson, R.E.; Idrees, M.T.; et al. Frequent TMPRSS2-ERG rearrangement in prostatic small cell carcinoma detected by fluorescence in situ hybridization: The superiority of fluorescence in situ hybridization over ERG immunohistochemistry. Hum. Pathol. 2013, 44, 2227–2233. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Chang, T.; Nie, L.; Qiu, S.; Xu, H.; Huang, Y.; Bao, Y.; Liu, Z.; Yang, L.; Wei, Q. Large Cell Neuroendocrine Carcinoma of the Prostate: A Systematic Review and Pooled Analysis. Urol. Int. 2019, 103, 383–390. [Google Scholar] [CrossRef]
- Evans, A.J.; Humphrey, P.A.; Belani, J.; Van Der Kwast, T.H.; Srigley, J.R. Large Cell Neuroendocrine Carcinoma of Prostate: A clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am. J. Surg. Pathol. 2006, 30, 684–693. [Google Scholar] [CrossRef]
- Fine, S.W. Neuroendocrine tumors of the prostate. Mod. Pathol. 2018, 31, 122–132. [Google Scholar] [CrossRef]
- Tamas, E.F.; Epstein, J.I. Prognostic Significance of Paneth Cell-like Neuroendocrine Differentiation in Adenocarcinoma of the Prostate. Am. J. Surg. Pathol. 2006, 30, 980–985. [Google Scholar] [CrossRef]
- Hirano, D.; Okada, Y.; Minei, S.; Takimoto, Y.; Nemoto, N. Neuroendocrine Differentiation in Hormone Refractory Prostate Cancer Following Androgen Deprivation Therapy. Eur. Urol. 2004, 45, 586–592, discussion 592. [Google Scholar] [CrossRef]
- Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; Giannopoulou, E.; Chakravarthi, B.V.; Varambally, S.; et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 2016, 22, 298–305. [Google Scholar] [CrossRef][Green Version]
- Ku, S.Y.; Rosario, S.; Wang, Y.; Mu, P.; Seshadri, M.; Goodrich, Z.W.; Goodrich, M.M.; Labbé, D.P.; Gomez, E.C.; Wang, J.; et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017, 355, 78–83. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mu, P.; Zhang, Z.; Benelli, M.; Karthaus, W.R.; Hoover, E.; Chen, C.-C.; Wongvipat, J.; Ku, S.-Y.; Gao, D.; Cao, Z.; et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017, 355, 84–88. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vlachostergios, P.J.; Peruzzo, N.; Nauseef, J.; Oromendia, C.; Manohar, J.; Molina, A.M.; Nanus, D.M.; Beltran, H.; Tagawa, S.T. Value of serum neuroendocrine markers in evaluation of neuroendocrine prostate cancer: A validation study using metastatic biopsies. J. Clin. Oncol. 2019, 37, 278. [Google Scholar] [CrossRef]
- Conteduca, V.; Oromendia, C.; Sigouros, M.; Sborner, A.; Nanus, D.; Tagawa, S.; Ballman, K.; Beltran, H. Clinico-genomic profiling and outcome prediction of neuroendocrine prostate cancer (NEPC). Ann. Oncol. 2018, 29, viii293–viii294. [Google Scholar] [CrossRef]
- Moore, S.R.; Reinberg, Y.; Zhang, G. Small cell carcinoma of prostate: Effectiveness of hormonal versus chemotherapy. Urology 1992, 39, 411–416. [Google Scholar] [CrossRef]
- Akamatsu, S.; Inoue, T.; Ogawa, O.; Gleave, M. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int. J. Urol. 2018, 25, 345–351. [Google Scholar] [CrossRef][Green Version]
- Wang, H.; Yao, Y.H.; Li, B.G.; Tang, Y.; Chang, J.W.; Zhang, J. Neuroendocrine Prostate Cancer (NEPC) Progressing From Conventional Prostatic Adenocarcinoma: Factors Associated With Time to Development of NEPC and Survival From NEPC Diagnosis—A Systematic Review and Pooled Analysis. J. Clin. Oncol. 2014, 32, 3383–3390. [Google Scholar] [CrossRef][Green Version]
- Manucha, V.; Henegan, J. Clinicopathologic Diagnostic Approach to Aggressive Variant Prostate Cancer. Arch. Pathol. Lab. Med. 2019, 144, 18–23. [Google Scholar] [CrossRef][Green Version]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef][Green Version]
- Roudier, M.P.; True, L.D.; Higano, C.S.; Vesselle, H.; Ellis, W.; Lange, P.; Vessella, R.L. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum. Pathol. 2003, 34, 646–653. [Google Scholar] [CrossRef]
- Shah, R.B.; Mehra, R.; Chinnaiyan, A.M.; Shen, R.; Ghosh, D.; Zhou, M.; MacVicar, G.R.; Varambally, S.; Harwood, J.; Bismar, T.A.; et al. Androgen-Independent Prostate Cancer Is a Heterogeneous Group of Diseases: Lessons from a rapid autopsy program. Cancer Res. 2004, 64, 9209–9216. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kumar, A.; Coleman, I.; Morrissey, C.; Zhang, X.; True, L.D.; Gulati, R.; Etzioni, R.; Bolouri, H.; Montgomery, B.; White, T.; et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 2016, 22, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Gillessen, S.; Heidenreich, A.; Horwich, A. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v69–v77. [Google Scholar] [CrossRef] [PubMed]
- Spiess, P.E.; Pettaway, C.A.; Vakar-Lopez, F.; Kassouf, W.; Wang, X.; Busby, J.E.; Do, K.-A.; Davuluri, R.; Tannir, N.M. Treatment outcomes of small cell carcinoma of the prostate: A single-center study. Cancer 2007, 110, 1729–1737. [Google Scholar] [CrossRef]
- Amato, R.J.; Logothetis, C.J.; Hallinan, R.; Ro, J.Y.; Sella, A.; Dexeus, F.H. Chemotherapy for Small Cell Carcinoma of Prostatic Origin. J. Urol. 1992, 147, 935–937. [Google Scholar] [CrossRef]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. Prostate Cancer, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef][Green Version]
- Gillessen, S.; Attard, G.; Beer, T.M.; Beltran, H.; Bossi, A.; Bristow, R.; Carver, B.; Castellano, D.; Chung, B.H.; Clarke, N.; et al. Management of Patients with Advanced Prostate Cancer: The Report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur. Urol. 2018, 73, 178–211. [Google Scholar] [CrossRef][Green Version]
- Angelsen, A.; Syversen, U.; Haugen, O.A.; Stridsberg, M.; Mjolnerod, O.K.; Waldum, H.L. Neuroendocrine differentiation in carcinomas of the prostate: Do neuroendocrine serum markers reflect immunohistochemical findings? Prostate 1997, 30, 1–6. [Google Scholar] [CrossRef]
- Berruti, A.; Dogliotti, L.; Mosca, A.; Bellina, M.; Mari, M.; Torta, M.; Tarabuzzi, R.; Bollito, E.; Fontana, D.; Angeli, A. Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer 2000, 88, 2590–2597. [Google Scholar] [CrossRef]
- Culine, S.; El Demery, M.; Lamy, P.-J.; Iborra, F.; Avancès, C.; Pinguet, F. Docetaxel and Cisplatin in Patients With Metastatic Androgen Independent Prostate Cancer and Circulating Neuroendocrine Markers. J. Urol. 2007, 178, 844–848, discussion 848. [Google Scholar] [CrossRef]
- Krook, J.E.; Jett, J.R.; Little, C. A Phase I-II Study of Sequential Infusion VP-16 and Cisplatin Therapy in Advanced Lung Cancer. Am. J. Clin. Oncol. 1989, 12, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.G.; Kvols, L.K.; O’Connell, M.J.; Rubin, J. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 1991, 68, 227–232. [Google Scholar] [CrossRef]
- Mitry, E.; Baudin, E.; Ducreux, M.; Sabourin, J.-C.; Rufié, P.; Aparicio, T.; Lasser, P.; Elias, D.; Duvillard, P.; Schlumberger, M.; et al. Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br. J. Cancer 1999, 81, 1351–1355. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fjällskog, M.L.; Granberg, D.P.; Welin, S.L.; Eriksson, C.; Oberg, K.E.; Janson, E.T.; Eriksson, B.K. Treatment with cisplatin and etoposide in patients with neuroendocrine tumors. Cancer 2001, 92, 1101–1107. [Google Scholar] [CrossRef]
- Canobbio, L.; Guarneri, D.; Miglietta, L.; DeCensi, A.; Oneto, F.; Boccardo, F. Carboplatin in advanced hormone refractory prostatic cancer patients. Eur. J. Cancer 1993, 29, 2094–2096. [Google Scholar] [CrossRef]
- Petrylak, D.P.; Tangen, C.M.; Hussain, M.H.; Lara, P.N.; Jones, J.A.; Taplin, M.E.; Burch, P.A.; Berry, D.; Moinpour, C.; Kohli, M.; et al. Docetaxel and Estramustine Compared with Mitoxantrone and Prednisone for Advanced Refractory Prostate Cancer. N. Engl. J. Med. 2004, 351, 1513–1520. [Google Scholar] [CrossRef][Green Version]
- Tannock, I.F.; De Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Theodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef][Green Version]
- Smyth, J.; Smith, I.; Sessa, C.; Schoffski, P.; Wanders, J.; Franklin, H.; Kaye, S. Activity of docetaxel (Taxotere) in small cell lung cancer. The Early Clinical Trials Group of the EORTC. Eur. J. Cancer 1994, 30, 1058–1060. [Google Scholar] [CrossRef]
- Hesketh, P.J.; Crowley, J.J.; Burris, H.A., 3rd; Williamson, S.K.; Balcerzak, S.P.; Peereboom, D.; Goodwin, J.W.; Gross, H.M.; Moore, D.F., Jr.; Livingston, R.B.; et al. Evaluation of docetaxel in previously untreated extensive-stage small cell lung cancer: A Southwest Oncology Group phase II trial. Cancer J. Sci. Am. 1999, 5, 237–241. [Google Scholar]
- Mohler, J.L.; Higano, C.S.; Schaeffer, E.M.; Cheng, H.H. Current recommendations for prostate cancer genetic testing: NCCN prostate guideline. Can. J. Urol. 2019, 26, 34–37. [Google Scholar]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Cheng, M.L.; Armenia, J.; Middha, S.; Autio, K.A.; Vargas, H.A.; Rathkopf, D.; Morris, M.J.; Danila, D.C.; Slovin, S.F.; et al. Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncol. 2019, 5, 471–478. [Google Scholar] [CrossRef]
- Pembrolizumab [Package Insert]. U.S. Food and Drug Administration Website. Revised June 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s084lbl.pdf (accessed on 19 October 2020).
- FoundationOne®CDx (F1CDx) [Physician Labeling]. U.S. Food and Drug Administration Website. Revised June 2020. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S017C.pdf (accessed on 19 October 2020).
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef][Green Version]
- Antonarakis, E.S.; Shaukat, F.; Velho, P.I.; Kaur, H.; Shenderov, E.; Pardoll, D.M.; Lotan, T.L. Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations. Eur. Urol. 2019, 75, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.N.; Alumkal, J.J.; Drake, C.G.; Thomas, G.V.; Redmond, W.L.; Farhad, M.; Cetnar, J.P.; Ey, F.S.; Bergan, R.C.; Slottke, R.; et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 2016, 7, 52810–52817. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef][Green Version]
- Antonarakis, E.S.; Piulats, J.M.; Gross-Goupil, M.; Goh, J.; Ojamaa, K.; Hoimes, C.J.; Vaishampayan, U.; Berger, R.; Sezer, A.; Alanko, T.; et al. Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. J. Clin. Oncol. 2020, 38, 395–405. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; A Lopez-Martin, J.; Miller, W.H.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Guedes, L.B.; Antonarakis, E.S.; Schweizer, M.T.; Mirkheshti, N.; Almutairi, F.; Park, J.C.; Glavaris, S.; Hicks, J.; Eisenberger, M.A.; De Marzo, A.M.; et al. MSH2 Loss in Primary Prostate Cancer. Clin. Cancer Res. 2017, 23, 6863–6874. [Google Scholar] [CrossRef][Green Version]
- Wagner, D.G.; Gatalica, Z.; Lynch, H.T.; Kohl, S.; Johansson, S.L.; Lele, S.M. Neuroendocrine-Type Prostatic Adenocarcinoma With Microsatellite Instability in a Patient With Lynch Syndrome. Int. J. Surg. Pathol. 2010, 18, 550–553. [Google Scholar] [CrossRef]
- Horn, L.; Mansfield, A.S.; Szczęsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.J.; Huemer, F.; Losonczy, G.; Johnson, M.L.; Nishio, M.; et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [Google Scholar] [CrossRef]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mateo, J.; Porta, N.; Bianchini, D.; McGovern, U.; Elliott, T.; Jones, R.; Syndikus, I.; Ralph, C.; Jain, S.; Varughese, M.; et al. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 162–174. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Beltran, H.; Oromendia, C.; Danila, D.C.; Montgomery, B.; Hoimes, C.; Szmulewitz, R.Z.; Vaishampayan, U.; Armstrong, A.J.; Stein, M.; Pinski, J.; et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin. Cancer Res. 2019, 25, 43–51. [Google Scholar] [CrossRef][Green Version]
- Hvamstad, T.; Jordal, A.; Hekmat, N.; Paus, E.; Fosså, S.D. Neuroendocrine Serum Tumour Markers in Hormone-Resistant Prostate Cancer. Eur. Urol. 2003, 44, 215–221. [Google Scholar] [CrossRef]
- Muoio, B.; Pascale, M.; Roggero, E. The role of serum neuron-specific enolase in patients with prostate cancer: A systematic review of the recent literature. Int. J. Biol. Markers 2017, 33, 10–21. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Z.; Wang, J.; Zhu, Z.; Luo, L.; Li, E.; Tang, F.; Zhao, Z. Serum Neuroendocrine Markers Predict Therapy Outcome of Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis. Urol. Int. 2019, 102, 373–384. [Google Scholar] [CrossRef]
- Conteduca, V.; Scarpi, E.; Salvi, S.; Casadio, V.; Lolli, C.; Gurioli, G.; Schepisi, G.; Wetterskog, D.; Farolfi, A.; Menna, C.; et al. Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Sci. Rep. 2018, 8, 15442. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Xiang, S.; Wang, S.; Chan, F.L. Chromogranin A is a predictor of prognosis in patients with prostate cancer: A systematic review and meta-analysis. Cancer Manag. Res. 2019, 11, 2747–2758. [Google Scholar] [CrossRef][Green Version]
- Li, X.-S.; Zhou, L.-Q.; Hong, P.; Guo, R.; Song, G.; Yang, K.-W.; Zhang, L.; Zhang, K. Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis. Asian J. Androl. 2018, 20, 561–566. [Google Scholar] [CrossRef]
- Von Hardenberg, J.; Worst, T.S.; Westhoff, N.; Erben, P.; Fuxius, S.; Müller, M.; Bolenz, C.; Weiss, C.; Heinrich, E. Cell-Free DNA and Neuromediators in Detecting Aggressive Variant Prostate Cancer. Oncol. Res. Treat. 2018, 41, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, Y.; Chi, C.; Pan, J.; Xun, S.; Xin, Z.; Hu, J.; Zhou, L.; Dong, B.; Xue, W. Chromogranin A and neurone-specific enolase variations during the first 3 months of abiraterone therapy predict outcomes in patients with metastatic castration-resistant prostate cancer. BJU Int. 2017, 120, 226–232. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sasaki, T.; Komiya, A.; Suzuki, H.; Shimbo, M.; Ueda, T.; Akakura, K.; Ichikawa, T. Changes in Chromogranin A Serum Levels During Endocrine Therapy in Metastatic Prostate Cancer Patients. Eur. Urol. 2005, 48, 224–229, discussion 229–230. [Google Scholar] [CrossRef] [PubMed]
- Von Hardenberg, J.; Schwartz, M.; Werner, T.; Fuxius, S.; Müller, M.; Frangenheim, T.; Bolenz, C.; Weiss, C.; Heinrich, E. Prospective Evaluation of Neuromediator Dynamics in Castration-Resistant Prostate Cancer Patients During Docetaxel. Anticancer Res. 2017, 37, 5117–5124. [Google Scholar] [CrossRef]
- Beltran, H.; Jendrisak, A.; Landers, M.; Mosquera, J.M.; Kossai, M.; Louw, J.; Krupa, R.; Graf, R.P.; Schreiber, N.A.; Nanus, D.M.; et al. The Initial Detection and Partial Characterization of Circulating Tumor Cells in Neuroendocrine Prostate Cancer. Clin. Cancer Res. 2016, 22, 1510–1519. [Google Scholar] [CrossRef][Green Version]
- Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Mol. Ther. 2018, 26, 1855–1866. [Google Scholar] [CrossRef][Green Version]
- Wang, D.; Shao, Y.; Zhang, X.; Lu, G.; Liu, B. IL-23 and PSMA-targeted duo-CAR T cells in Prostate Cancer Eradication in a preclinical model. J. Transl. Med. 2020, 18, 1–10. [Google Scholar] [CrossRef]
- Puca, L.; Gayvert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med. 2019, 11, eaav0891. [Google Scholar] [CrossRef]
- Mosquera, J.M.; Beltran, H.; Park, K.; Macdonald, T.Y.; Robinson, B.D.; Tagawa, S.T.; Perner, S.; Bismar, T.A.; Erbersdobler, A.; Dhir, R.; et al. Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal TreatmentRelated Neuroendocrine Prostate Cancer. Neoplasia 2013, 15, 1–10. [Google Scholar] [CrossRef][Green Version]
- Gan, L.; Yang, Y.; Li, Q.; Feng, Y.; Liu, T.; Guo, W. Epigenetic regulation of cancer progression by EZH2: From biological insights to therapeutic potential. Biomark. Res. 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, E.; Beltran, H.; Benelli, M.; Gayvert, K.; Berger, A.; Puca, L.; Cyrta, J.; Sboner, A.; Noorzad, Z.; Macdonald, T.; et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016, 30, 563–577. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Khalil, I.; Yang, S.; Blankenship, A.; Connelly, Z.; Yu, X. Abstract 5191: Functional role of EZH2 in neuroendocrine prostate cancer. Mol. Cell. Biol. 2019, 79, 5191. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Z.; Cheng, L.; Wang, R.; Chen, X.; Kong, Y.; Feng, F.; Ahmad, N.; Li, L.; Liu, X. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J. Biol. Chem. 2019, 294, 9911–9923. [Google Scholar] [CrossRef]
- Ekaur, G.; Singh, B.; Beltran, H.; Akhtar, N.H.; Nanus, D.M.; Tagawa, S.T. Circulating tumor cell (CTC) enumeration in patients with metastatic neuroendocrine prostate cancer (NEPC) and castration-resistant prostate cancer (CRPC). J. Clin. Oncol. 2014, 32, 204. [Google Scholar] [CrossRef]
Morphologic Subtype | 2016 WHO Classification | PCF Classification |
---|---|---|
Adenocarcinoma with neuroendocrine differentiation | ✔ | ✔ |
Well-differentiated neuroendocrine tumor/ carcinoid | ✔ | ✔ |
Small-cell neuroendocrine carcinoma | ✔ | ✔ |
Large cell neuroendocrine carcinoma | ✔ | ✔ |
Adenocarcinoma with Paneth cell neuroendocrine differentiation | _ | ✔ |
Mixed neuroendocrine carcinoma–acinar adenocarcinoma | _ | ✔ |
Histologic Phenotype |
○ Pure small-cell prostate cancer |
○ Mixed small-cell prostate cancer |
○ Subtypes classified per WHO 2016 and PCF classification |
Tumor Markers |
○ CgA |
○ synaptophysin |
○ CD56 |
○ NSE |
Presentation |
○ De novo |
○ Emerging in castration resistant patients following ADT |
Clinical course |
○ Aggressive, poor prognosis |
○ Treatment-emergent subtype: predominantly lytic/visceral metastases, bulky tumor masses, low PSA |
○ Unresponsive to androgen targeted therapies |
○ Short-lived response to platinum-based chemotherapy |
Study | Papandreou et al. [16] | Loriot et al. [17] | GETUG P01 [18] | Culine et al. [62] | Aparicio et al. [19] | Corn et al. [20] |
---|---|---|---|---|---|---|
Study design | Phase 2, single-arm | Phase 2, single-arm | Phase 2, single-arm | Phase 2, single-arm | Phase 2, single-arm | Phase 2, randomized |
Drug combination | Cisplatin/etoposide + doxorubicin | Carboplatin/etoposide | Carboplatin/etoposide | Cisplatin/docetaxel | Carboplatin/docetaxel (then second-line cisplatin/etoposide) | Carboplatin/cabacitaxel vs. cabacitaxel |
Patient population | Histologically-confirmed SCPC (pure or mixed) | CRPC after docetaxel with or without elevated NSE/CgA | mCRPC with visceral metastasis or elevated NSE/CgA | mCRPC with elevated NSE/CgA | AVPC (per clinical criteria) | mCRPC stratified by presence of AVPC (per clinical criteria) |
n | 38 | 40 | 60 | 41 | 121 | 160 |
Efficacy | 36% PSA response 61% OR of measurable disease 84% pain improvement Median PFS 5.8mo Median OS 10.5mo | 23% PSA response 2 out of 5 OR of measurable disease 54% pain improvement Median PFS 2.1 mo Median OS 19mo Note *: No association of outcome with NSE/CGA levels | 8% PSA response 9% OR of measurable disease No pain evaluation Median PFS 2.9 mo Median OS 9.6 mo | 48% PSA response 41% OR of measurable disease 45% pain improvement Median OS 12 mo | 47% PSA response (at course 2) 34% OR of measurable disease Median PFS 5.1 mo Median OS 16 mo | 62 vs. 41% PSA response 57 vs. 21% OR Median PFS 7.3 vs. 4.5 mo Median OS 18.5 vs. 17.3 mo Note *: PFS and OS improvement with combination greater in AVPC subgroup (clinical and/or molecular) |
Safety—Grade 3–4 AEs >15% | 100% neutropenia 68% infection 66% thrombocytopenia 34% nausea 26% anemia 21% vomiting | 38% neutropenia (2% neutropenic fever) 25% anemia | 66% neutropenia (7% neutropenic fever) 33% thrombocytopenia 27% anemia | 91% neutropenia (17% neutropenic fever) 34% anemia 17% thrombocytopenia 15% fatigue | None | 23% anemia 20% fatigue |
Safety—Toxicity-related deaths | 3 (sepsis) | None | 1 (febrile neutropenia) | 1 (sepsis) | 1 (sepsis during second-line etoposide/cisplatin) | 1 (thromboembolic event in cabazitaxel arm) |
NCT Number | Design | n | Patient Population | Interventions | Primary Endpoint(s) | Key Secondary Endpoint(s) | Status |
---|---|---|---|---|---|---|---|
Checkpoint inhibitors | |||||||
NCT03582475 | Phase 1b, single-arm | 30 | Locally advanced or metastatic small-cell/NE cancers of urothelium or prostate | Pembrolizumab + platinum-based chemotherapy | DRR, ORR, DOR, OS, PFS | Safety | Recruiting |
NCT03910660 | Phase 1b/2, single-arm | 40 | mCRPC with SCPC | Pembrolizumab + Talabostat Mesylate (dipeptidyl peptidase-inhibitor) | Composite response rate | PFS, OS, DOR, safety | Recruiting |
NCT02834013 | Phase 2, non-randomized | 818 | Rare tumors, including treatment-emergent SCPC | Ipilimumab +Nivolumab or Nivolumab alone | ORR | PFS, OS, safety | Recruiting |
NCT03866382 | Phase 2, single-arm | 186 | Metastatic rare genitourinary tumors, including SCPC | Ipilimumab + Nivolumab + Cabozantinib | ORR | PFS, OS, DOR, safety | Recruiting |
NCT03179410 | Phase 2, single-arm | 18 | Metastatic NE-like prostate cancer (per histologic or clinical criteria) | Avelumab | ORR | rPFS, OS, safety | Recruiting |
NCT03551782 | Phase 1, non-randomized | 98 | mCRPC, including treatment-emergent SCPC | Cetrelimab + Apalutamide | Safety, PSA response | CTC response | Recruiting |
PARP inhibitors | |||||||
NCT03263650 | Phase 2, randomized | 96 | AVPC | Cabazitaxel + Carboplatin, followed by olaparib maintenance vs. observation | PFS | ORR, OS, genomic DDR-alterations | Recruiting |
Other therapies | |||||||
NCT02709889 | Phase 1/2, single-arm | 200 | Patients with delta-like protein 3 (DLL3)- expressing advanced solid tumors, including NEPC | Rovalpituzumab tesirine (anti-DLL3 antibody) | MTD, safety | ORR, DOR, PFS, OS | Terminated |
NCT04179864 | Phase 1, non-randomize | 48 | mCRPC, including NEPC | Tazemetostat (EZH2 inhibitor) + abiraterone or enzalutamide | Safety, recommended phase 2 dose | PSA response, CTC conversion | Recruiting |
NCT03696186 | Phase 2, randomized | 300 | mCRPC, including a group with histologic NE phenotype | Docetaxel vs. Docetaxel+Carboplatin (in NE group) | OS | PFS, PSA response | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spetsieris, N.; Boukovala, M.; Patsakis, G.; Alafis, I.; Efstathiou, E. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers 2020, 12, 3792. https://doi.org/10.3390/cancers12123792
Spetsieris N, Boukovala M, Patsakis G, Alafis I, Efstathiou E. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers. 2020; 12(12):3792. https://doi.org/10.3390/cancers12123792
Chicago/Turabian StyleSpetsieris, Nicholas, Myrto Boukovala, Georgios Patsakis, Ioannis Alafis, and Eleni Efstathiou. 2020. "Neuroendocrine and Aggressive-Variant Prostate Cancer" Cancers 12, no. 12: 3792. https://doi.org/10.3390/cancers12123792