A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters
Abstract
1. Introduction
2. Design and Theoretical Analysis
3. Fabrication Processes and Morphology Properties
4. Experimental Results and Discussions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qin, X.Z.; Wang, W.L.; Xu, N.S.; Li, Z.B.; Forbes, R.G. Analytical treatment of cold field electron emission from a nanowall emitter, including quantum confinement effects. Proc. R. Soc. Math. Phys. Eng. Sci. 2011, 467, 1029–1051. [Google Scholar] [CrossRef]
- Collins, C.M.; Parmee, R.J.; Milne, W.I.; Cole, M.T. Field emission: High performance field emitters. Adv. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Whaley, D.R.; Duggal, R.; Armstrong, C.M.; Bellew, C.L.; Holland, C.E.; Spindt, C.A. 100 W operation of a cold cathode TWT. IEEE Trans. Electron. Devices 2009, 56, 896–905. [Google Scholar] [CrossRef]
- Pan, J.N.; Wang, K.; Hou, Q.L.; Niu, Q.H.; Wang, H.C.; Ji, Z.M. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel 2016, 164, 277–285. [Google Scholar] [CrossRef]
- Almaksour, K.; Kirkpatrick, M.; Dessante, P.; Odic, E.; Simonin, A.; de Esch, H.P.L.; Lepetit, B.; Alamarguy, D.; Bayle, F. Experimental study of the reduction of field emission by gas injection in vacuum for accelerator applications. Phys. Rev. Spec. Top. Accel. Beams 2014, 17, 191–193. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, F.; Wei, Y.; Jiang, K.; Liu, L.; Fan, S. Scanning focused laser activation of carbon nanotube cathodes for field emission flat panel displays. Nanotechnology 2008, 19, 135703. [Google Scholar] [CrossRef] [PubMed]
- Shpilman, Z.; Philosoph, B.; Kalish, R.; Michaelson, S.; Hoffman, A. Enhanced electron field emission from preferentially oriented graphitic films. Appl. Phys. Lett. 2006, 89, 252114. [Google Scholar] [CrossRef]
- Parmee, R.J.; Collins, C.M.; Milne, W.I.; Cole, M.T. X-ray generation using carbon nanotubes. Nano Converg. 2015, 2, 1. [Google Scholar] [CrossRef]
- Wong, Y.M.; Wei, S.; Kang, W.P.; Davidson, J.L.; Hofmeister, W.; Huang, J.H.; Cui, Y. Carbon nanotubes field emission devices grown by thermal CVD with palladium as catalysts. Diam. Relat. Mater. 2004, 13, 2105–2112. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Miraldo, P.; Zhu, M.; Outlaw, R.; Hou, K. High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 2006, 89, 183103. [Google Scholar] [CrossRef]
- Zhu, M.Y.; Outlaw, R.A.; Bagge-Hansen, M.; Chen, H.J.; Manos, D.M. Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD. Carbon 2011, 49, 2526–2531. [Google Scholar] [CrossRef]
- Bartolomeo, A.D.; Giubileo, F.; Iemmo, L.; Romeo, F.; Russo, S.; Unal, S.; Passacantando, M.; Grossi, V.; Cucolo, A.M. Leakage and field emission in side-gate graphene field effect transistors. Appl. Phys. Lett. 2016, 109, 023510. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Shen, B.; Yan, X.; Xue, Q. Temperature dependence of the field emission from the few-layer graphene film. Appl. Phys. Lett. 2011, 99, 103160. [Google Scholar]
- Ye, D.; Moussa, S.; Ferguson, J.D.; Baski, A.A.; El-Shall, M.S. Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays. Nano Lett. 2012, 12, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Murakami, K.; Eda, G.; Fujita, T.; Guan, P.; Wang, W.; Gong, C.; Boisse, J.; Miller, S.; Acik, M.; et al. Field emission from atomically thin edges of reduced graphene oxide. ACS Nano 2011, 5, 4945–4952. [Google Scholar] [CrossRef] [PubMed]
- Rezeq, M.; Joachim, C.; Chandrasekhar, N. Confinement of the field electron emission to atomic sites on ultra sharp tips. Surf. Sci. 2009, 603, 697–702. [Google Scholar] [CrossRef]
- Jansson, V.; Baibuz, E.; Djurabekova, F. Long-term stability of cu surface nanotips. Nanotechnology 2016, 27, 265708. [Google Scholar] [CrossRef] [PubMed]
- Koh, A.T.T.; Foong, Y.M.; Yusop, Z.; Tanemura, M.; Chua, D.H.C. Low temperature direct of graphene onto metal nanospindt tip with applications in electron emission. Adv. Mater. Interfaces 2014, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J.; Tang, S.; Liu, P.; Deng, S.; Chen, J.; Xu, N. Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology. Nanotechnology 2012, 23, 015202. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.D.; Forrest, R.D.; Silva, S.R.P. Origin of electric field enhancement in field emission from amorphous carbon thin films. Appl. Phys. Lett. 2001, 78, 2339–2341. [Google Scholar] [CrossRef]
- Lv, S.; Li, Z.; Liao, J.; Wang, G.; Li, M.; Miao, W. Optimizing field emission properties of the hybrid structures of graphene stretched on patterned and size-controllable SiNWs. Sci. Rep. 2015, 5, 15035. [Google Scholar] [CrossRef] [PubMed]
- Latham, R.V. High Voltage Vacuum Insulation: Basic Concepts and Technological Practice; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Zhao, C.X.; Zhang, Y.; Deng, S.Z.; Xu, N.S.; Chen, J. Surface nitrogen functionality for the enhanced field emission of free-standing few-layer graphene nanowalls. J. Alloy. Compd. 2016, 672, 433–439. [Google Scholar] [CrossRef]
- Li, B.; Li, S.; Liu, J.; Wang, B.; Yang, S. Vertically aligned sulfur–graphene nanowalls on substrates for ultrafast lithium–sulfur batteries. Nano Lett. 2015, 15, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Kai, W.; Tao, F.; Min, Q.; Hui, D.; Chen, Y.; Zhuo, S. The field emission of vacuum filtered graphene films reduced by microwave. Appl. Surf. Sci. 2011, 257, 5808–5812. [Google Scholar]
- Eda, G.; Unalan, H.E.; Rupesinghe, N.; Amaratunga, G.A.J.; Chhowalla, M. Field emission from graphene based composite thin films. Appl. Surf. Sci. 2008, 93, 233502. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L. Electron Emission in Intense Electric Fields. R. Soc. Lond. Proc. 1928, 119, 173–181. [Google Scholar] [CrossRef]
- Spindt, C.A. Microfabricated field-emission and field-ionization sources. Surf. Sci. 1992, 266, 145–154. [Google Scholar] [CrossRef]
- Goswami, S.; Maiti, U.N.; Maiti, S.; Nandy, S.; Mitra, M.K.; Chattopadhyay, K.K. Preparation of graphene polyaniline composites by simple chemical procedure and its improved field emission properties. Carbon 2011, 49, 2245–2252. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Zhai, F.; Li, Z.; Yao, F.; Qiao, R.; Chen, K.; Cole, M.T.; Yu, D.; Sun, Z.; et al. Carbon nanotubes as an ultrafast emitter with a narrow energy spread at optical frequency. Adv. Mater. 2017, 29, 884–890. [Google Scholar] [CrossRef]
- Zhu, N.L.; Xu, K.S.; Song, L.; Chen, J. Fabrication and characterization of bulk molybdenum field emission arrays. In Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1168–1171. [Google Scholar]
- Zhu, N.L.; Xu, K.S.; Zhai, Y.S.; Tao, Z.; Di, Y.S.; Zhang, Z.P.; Chen, J.; Cole, M.T.; Milne, W.I.; Chen, J. Bulk Molybdenum Spindt Field Emission Arrays. Funct. Nanostruct. 2016, 2, 22–25. [Google Scholar] [CrossRef]
- Viskadouros, G.; Konios, D.; Kymakis, E.; Stratakis, E. Electron field emission from graphene oxide wrinkles. RSC Adv. 2015, 6, 2768–2773. [Google Scholar] [CrossRef]
- Wu, Z.S.; Pei, S.F.; Ren, W.C.; Tang, D.M.; Gao, L.B.; Liu, B.L.; Li, F.; Liu, C.; Cheng, H.M. Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition. Adv. Mater. 2009, 21, 1756–1760. [Google Scholar] [CrossRef]
- Zhu, N.L.; Chen, J.; Cole, M.T.; Milne, W.I. Anomalous improved electron field emission from hybridised graphene on Mo tip arrays. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar] [CrossRef]
- Zhu, N.L.; Cole, M.T.; Miline, W.I.; Chen, J. Bulk molybdenum field emitters by inductively coupled plasma etching. Phys. Chem. Chem. Phys. 2016, 18, 33152–33157. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.W.; Bachmatiuk, A.; Wu, Y.A.; Schäffel, F.; Büchner, B.; Rümmeli, M.H.; Warner, J.H. Structural distortions in few-layer graphene creases. ACS Nano 2011, 5, 9984–9991. [Google Scholar] [CrossRef] [PubMed]
- Viskadouros, G.M.; Stylianakis, M.M.; Kymakis, E.; Stratakis, E. Enhanced Field Emission from Reduced Graphene Oxide Polymer Composites. ACS Appl. Mater. Interf. 2014, 6, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Alexandrou, I.; Kymakis, E.; Amaratunga, G.A.J. Polymer–nanotube composites: Burying nanotubes improves their field emission properties. Appl. Phys. Lett. 2002, 80, 1435–1437. [Google Scholar] [CrossRef]








© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, N.; Chen, J.; Deng, H.; Di, Y. A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters. Micromachines 2018, 9, 12. https://doi.org/10.3390/mi9010012
Zhu N, Chen J, Deng H, Di Y. A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters. Micromachines. 2018; 9(1):12. https://doi.org/10.3390/mi9010012
Chicago/Turabian StyleZhu, Ningli, Jing Chen, Hai Deng, and Yunsong Di. 2018. "A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters" Micromachines 9, no. 1: 12. https://doi.org/10.3390/mi9010012
APA StyleZhu, N., Chen, J., Deng, H., & Di, Y. (2018). A Graphene-Coated Mo Tip Array for Highly-Efficient Nanostructured Electron Field Emitters. Micromachines, 9(1), 12. https://doi.org/10.3390/mi9010012
