Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems
Abstract
1. Introduction
2. Auger Electron Spectroscopy
3. AES in Characterization of (Al,Ga)N-Based Systems—A Review
| Material | Type | BV (MV/cm) | (W/mK) | Bandgap (eV) | Key Benefits | Deposition Method | Source | |
|---|---|---|---|---|---|---|---|---|
| SiO2 | reference | 3.9 | 10–12 | 1.4 | 8.9–9.0 | chemically stable; very low leakage; well-understood interface | PECVD, LPCVD, ECR-CVD | [1,2,18,30] |
| Al2O3 | high- | 9–11 | 7–10 | ∼30 | 7.0–8.8 | low leakage; stable interface with AlGaN/GaN; widely used baseline dielectric | ALD | [1,14,16,51,52,53,54,55,56] |
| SiNx | standard | 6–8 | 10; 4.2 | 20–30 | 4.6–5.5 | industry standard; good passivation; increases 2DEG density due to positive charge | PECVD, ECR-CVD | [14,18,51,57,58] |
| AlN | special | 8.5–9.1 | ∼12 | 285 | 6.0–6.2 | high thermal conductivity, structural match to GaN/AlGaN | MOCVD, sputtering | [1,51,59,60] |
| AlGaN diel. | III-N comp. | n/a | n/a | n/a | n/a | band/polarization engineering, epitaxial compatibility | MOCVD | [61] |
| AlGaN ox. | oxide | n/a | n/a | n/a | n/a | native oxidation layer; may introduce traps at interface | air-exposure | [62] |
| AlON | mixed | n/a | n/a | n/a | n/a | intermediate between Al2O3 and SiON; good stability; tunable band alignment | ALD | [1] |
| HfO2 | high- | 20–25 | 5–7 | ∼1 | 5.3–5.8 | very high ; good scaling; moderate thermal stability | ALD, MOCVD | [1] |
| SiON | mixed | 4–6 | ∼9 | ∼10 | 4.5–6.0 | reduced fixed charge; tunable composition; low leakage when O > 3% | PECVD | [1,51] |
| Ga2O3 | oxide | 10–11 | ∼8 | 13–27 | 4.4 | wide bandgap; stable oxide of GaN; moderate permittivity | PLD, MBE, MOCVD | [63,64,65] |
| ITO | oxide | n/a | n/a | 5.1 | n/a | transparent conductor; useful in optoelectronics; sometimes as passivation | RF sputtering | [30] |
| Sc2O3 | oxide | 14 | 0.6 | ∼17 | 6.3 | good therm. stab.; lattice mismatch to GaN ∼9.2%; as cap layer to stabilize MgO and MgCaO | MBE, e-beam evap. | [65,66] |
| MgO | oxide | 9.8 | n/a | n/a | 8.0 | unstable in humid air; lattice mismatch with GaN ∼–6.5% | PLD, MBE, e-beam evap. | [65] |
| MgCaO | ternary ox. | ∼9–10 | n/a | n/a | ∼8.0 | reduces mismatch (down to ∼–2%); Sc2O3 capping layer improves thermal/environmental stability | e-beam evap. | [65] |
4. Experimental
4.1. Apparatus
4.2. Numerical Analysis of Measured Spectra
4.3. MIS AlGaN/GaN Structures
4.4. Oxidized AlN Epitaxial Layers
5. Results and Discussion
5.1. SiNX Passivation of AlGaN/GaN
5.2. SiO2 Passivation of AlGaN/GaN
5.3. Al2O3 Passivation of AlGaN/GaN
5.4. Oxidized AlN Layers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Narita, T.; Ito, K.; Iguchi, H.; Kikuta, D.; Kanechika, M.; Tomita, K.; Iwasaki, S.; Kataoka, K.; Kano, E.; Ikarashi, N.; et al. Engineered interface charges and traps in GaN MOSFETs providing high channel mobility and E-mode operation. Jpn. J. Appl. Phys. 2024, 63, 120801. [Google Scholar] [CrossRef]
- Gündoğdu, S.; Pazzagli, S.; Pregnolato, T.; Kolbe, T.; Hagedorn, S.; Weyers, M.; Schröder, T. AlGaN/AlN heterostructures: An emerging platform for integrated photonics. npj Nanophotonics 2025, 2, 2. [Google Scholar] [CrossRef]
- Kitagawa, K.; Matys, M.; Uesugi, T.; Horita, M.; Kachi, T.; Suda, J. Vertical GaN Junction Barrier Schottky Diodes Fabricated by Using Channeled Implantation of Mg Ions and Ultrahigh-Pressure Annealing. IEEE Trans. Electron Devices 2025, 72, 4036–4041. [Google Scholar] [CrossRef]
- Kitagawa, K.; Matys, M.; Kachi, T.; Suda, J. Study on the Impact of Mg-Channeled Implantation on Junction Termination Extension for GaN Vertical Power Devices Using TCAD Simulation. IEEE Trans. Electron Devices 2024, 71, 5239–5244. [Google Scholar] [CrossRef]
- Matys, M.; Kitagawa, K.; Narita, T.; Uesugi, T.; Bockowski, M.; Suda, J.; Kachi, T. Design and fabrication of vertical GaN junction barrier Schottky rectifiers using Mg ion implantation. Jpn. J. Appl. Phys. 2023, 62, SN0801. [Google Scholar] [CrossRef]
- Matys, M.; Ishida, T.; Nam, K.P.; Sakurai, H.; Kataoka, K.; Narita, T.; Uesugi, T.; Bockowski, M.; Nishimura, T.; Suda, J.; et al. Design and demonstration of nearly-ideal edge termination for GaN p–n junction using Mg-implanted field limiting rings. Appl. Phys. Express 2021, 14, 074002. [Google Scholar] [CrossRef]
- Matys, M.; Kitagawa, K.; Narita, T.; Uesugi, T.; Suda, J.; Kachi, T. Mg-implanted vertical GaN junction barrier Schottky rectifiers with low on resistance, low turn-on voltage, and nearly ideal nondestructive breakdown voltage. Appl. Phys. Lett. 2022, 121, 203507. [Google Scholar] [CrossRef]
- Kachi, T.; Narita, T.; Sakurai, H.; Matys, M.; Kataoka, K.; Hirukawa, K.; Sumida, K.; Horita, M.; Ikarashi, N.; Sierakowski, K.; et al. Process engineering of GaN power devices via selective-area p-type doping with ion implantation and ultra-high-pressure annealing. J. Appl. Phys. 2022, 132, 130901. [Google Scholar] [CrossRef]
- Matys, M.; Ishida, T.; Nam, K.P.; Sakurai, H.; Narita, T.; Uesugi, T.; Bockowski, M.; Suda, J.; Kachi, T. Mg-implanted bevel edge termination structure for GaN power device applications. Appl. Phys. Lett. 2021, 118, 093502. [Google Scholar] [CrossRef]
- Urushihara, N.; Iida, S.; Sanada, N.; Suzuki, M.; Paul, D.F.; Bryan, S.; Nakajima, Y.; Hanajiri, T.; Kakushima, K.; Ahmet, P.; et al. Three dimensional image construction and spectrum extraction from two dimensional elemental mapping in Auger electron spectroscopy. J. Vac. Sci. Technol. A 2008, 26, 668–672. [Google Scholar] [CrossRef]
- Adamowicz, B.; Miczek, M.; Hashizume, T.; Klimasek, A.; Bobek, P.; Zywicki, J. Capacitance-voltage and Auger chemical profile studies on AlGaN/GaN structures passivated by SiO2/Si3N4 and SiNx/Si3N4 bilayers. Opt. Appl. 2007, 37, 327–334. [Google Scholar]
- Bardwell, J.A.; Haffouz, S.; McKinnon, W.R.; Storey, C.; Tang, H.; Sproule, G.I.; Roth, D.; Wang, R. The Effect of Surface Cleaning on Current Collapse in AlGaN/GaN HEMTs. Electrochem. Solid-State Lett. 2007, 10, H46–H49. [Google Scholar] [CrossRef]
- Ajayan, J.; Sreenivasulu, V.B.; Kumari, N.A.; Sreejith, S.; Das, S. Challenges and Advances in Materials and Fabrication Technologies for the Development of p-GaN Gated E-Mode AlGaN/GaN Power HEMTs: A Critical Review. IEEE Access 2025, 13, 62045–62059. [Google Scholar] [CrossRef]
- Liu, A.C.; Chen, H.C.; Tu, P.T.; Chen, Y.L.; Chen, Y.C.; Yeh, P.C.; Wu, C.I.; Chang, S.T.; Kao, T.S.; Kuo, H.C. Characterization and simulation of AlGaN barrier structure effects in normally-off recessed gate AlGaN/GaN MISHEMTs. Mater. Res. Express 2025, 12, 025901. [Google Scholar] [CrossRef]
- Matys, M.; Stoklas, R.; Blaho, M.; Adamowicz, B. Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition. Appl. Phys. Lett. 2017, 110, 243505. [Google Scholar] [CrossRef]
- Jeong, M.G.; Atmaca, G.; Cha, H.Y. T-gate with dual dielectric layer for p-GaN/AlGaN/GaN HFETs: Suppressed gate leakage current and increased gate voltage range. Results Phys. 2025, 74, 108294. [Google Scholar] [CrossRef]
- Hasegawa, H.; Akazawa, M.; Domanowska, A.; Adamowicz, B. Surface passivation of III–V semiconductors for future CMOS devices—Past research, present status and key issues for future. Appl. Surf. Sci. 2010, 256, 5698–5707. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B.; Domanowska, A.; Michalewicz, A.; Stoklas, R.; Akazawa, M.; Yatabe, Z.; Hashizume, T. On the origin of interface states at oxide/III-nitride heterojunction interfaces. J. Appl. Phys. 2016, 120, 225305. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B.; Kachi, T.; Hashizume, T. Effect of carrier drift-diffusion transport process on thermal quenching of photoluminescence in GaN. J. Phys. D Appl. Phys. 2021, 54, 055106. [Google Scholar] [CrossRef]
- Deng, Y.; Gelan, J.; Uryu, K.; Suzuki, T. AlGaN/GaN devices with metal–semiconductor or insulator—Semiconductor interfacial layers: Vacuum level step due to dipole and interface fixed charge. J. Appl. Phys. 2024, 135, 084504. [Google Scholar] [CrossRef]
- Deng, Y.; Gelan, J.; Uryu, K.; Suzuki, T. Weak Frequency Dispersion of C–V Characteristics of AlGaN/GaN Metal-Insulator-Semiconductor Devices Despite High Interface Trap Density. Phys. Status Solidi (A) 2025, 222, 2500266. [Google Scholar] [CrossRef]
- Jiang, Z.; Hua, M.; Huang, X.; Li, L.; Wang, C.; Chen, J.; Chen, K.J. Negative Gate Bias Induced Dynamic ON-Resistance Degradation in Schottky-Type p -Gan Gate HEMTs. IEEE Trans. Power Electron. 2022, 37, 6018–6025. [Google Scholar] [CrossRef]
- Zhu, J.; Jing, S.; Ma, X.; Liu, S.; Wang, P.; Zhang, Y.; Zhu, Q.; Mi, M.; Hou, B.; Yang, L.; et al. Improvement of Electron Transport Property and on-Resistance in Normally-OFF Al2O3/AlGaN/GaN MOS-HEMTs Using Post-Etch Surface Treatment. IEEE Trans. Electron Devices 2020, 67, 3541–3547. [Google Scholar] [CrossRef]
- Fletcher, A.A.; Nirmal, D. A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct. 2017, 109, 519–537. [Google Scholar] [CrossRef]
- Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. J. Appl. Phys. 2017, 122, 224504. [Google Scholar] [CrossRef]
- Huang, S.; Wang, X.; Liu, X.; Kang, X.; Fan, J.; Yang, S.; Yin, H.; Wei, K.; Zheng, Y.; Wang, X.; et al. Revealing the Positive Bias Temperature Instability in Normally-OFF AlGaN/GaN MIS-HFETs by Constant-Capacitance DLTS. In Proceedings of the 2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD), Shanghai, China, 19–23 May 2019; pp. 411–414. [Google Scholar] [CrossRef]
- Guo, A.; del Alamo, J.A. Negative-bias temperature instability of GaN MOSFETs. In Proceedings of the 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, 17–21 April 2016; pp. 4A-1-1–4A-1-6. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B.; Hori, Y.; Hashizume, T. Direct measurement of donor-like interface state density and energy distribution at insulator/AlGaN interface in metal/Al2O3/AlGaN/GaN by photocapacitance method. Appl. Phys. Lett. 2013, 103, 021603. [Google Scholar] [CrossRef]
- Adamowicz, B. Characterization of interface states at oxide/GaN(AlGaN) interfaces using illumination. In Proceedings of the 2021 IEEE International Meeting for Future Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 18–19 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mondal, R.K.; Alzakia, F.I.; Lingaparthi, R.; Dharmarasu, N.; Radhakrishnan, K.; Kim, M. Demonstration of AlGaN/GaN HEMT-based non-classical optoelectronic logic inverter. Appl. Phys. Lett. 2025, 126, 172101. [Google Scholar] [CrossRef]
- Narang, K.; Bag, R.K.; Singh, V.K.; Pandey, A.; Saini, S.K.; Khan, R.; Arora, A.; Padmavati, M.; Tyagi, R.; Singh, R. Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT. J. Alloys Compd. 2020, 815, 152283. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Nafisa, M.T.; Feng, Z.C.; Wang, L.; Yiin, J.; Wan, L.; Klein, B.; Ferguson, I.; et al. Spectroscopic Ellipsometry and Correlated Studies of AlGaN-GaN HEMTs Prepared by MOCVD. Nanomaterials 2025, 15, 165. [Google Scholar] [CrossRef]
- Ling, M.; Sun, Z.; Li, J.; Wang, W.; Zhang, Y.; Zhang, P.; Zhao, Y.; Zhang, J.; Low, K.L.; van Zalinge, H.; et al. Au-Free Ti/Al/Ni/TiN Ohmic Contact to AlGaN/GaN Heterostructure: Ti/Al Thicknesses at an Optimized Ratio. Phys. Status Solidi A 2025, 222, 2400549. [Google Scholar] [CrossRef]
- Shima, K.; Narita, T.; Uedono, A.; Bockowski, M.; Suda, J.; Kachi, T.; Chichibu, S.F. Impacts of ultra-high-pressure annealing on undoped and ion-implanted GaN studied by photoluminescence measurements. J. Appl. Phys. 2025, 137, 235702. [Google Scholar] [CrossRef]
- Matys, M.; Adamowicz, B. Mechanism of yellow luminescence in GaN at room temperature. J. Appl. Phys. 2017, 121, 065104. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Chen, X.; Gao, H.; Li, F.; Zhong, Y.; Zhou, Y.; Li, Q.; Li, W.; Sun, Q.; et al. Influence of Mg doping level at the initial growth stage on the gate reliability of p-GaN gate HEMTs. J. Phys. D Appl. Phys. 2022, 55, 355103. [Google Scholar] [CrossRef]
- Ferrandis, P.; Charles, M.; Veillerot, M.; Gillot, C. Analysis of hole-like traps in deep level transient spectroscopy spectra of AlGaN/GaN heterojunctions. J. Phys. D Appl. Phys. 2020, 53, 185105. [Google Scholar] [CrossRef]
- Matys, M.; Yamada, A.; Ohki, T. Unusually High-Density 2D Electron Gases in N-Polar AlGaN/GaN Heterostructures with GaN/AlN Superlattice Back Barriers Grown on Sapphire Substrates. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2025, 19, 2400379. [Google Scholar] [CrossRef]
- Ondračka, P.; Nečas, D.; Carette, M.; Elisabeth, S.; Holec, D.; Granier, A.; Goullet, A.; Zajíčková, L.; Richard-Plouet, M. Unravelling local environments in mixed TiO2–SiO2 thin films by XPS and ab initio calculations. Appl. Surf. Sci. 2020, 510, 145056. [Google Scholar] [CrossRef]
- Caliskan, D.; Sezen, H.; Ozbay, E.; Suzer, S. Chemical Visualization of a GaN p-n junction by XPS. Sci. Rep. 2015, 5, 14091. [Google Scholar] [CrossRef] [PubMed]
- Domanowska, A.; Korbutowicz, R.; Teterycz, H. Morphology and element composition profiles of alumina films obtained by mixed thermal oxidation of AlN epitaxial layers. Appl. Surf. Sci. 2019, 484, 1234–1243. [Google Scholar] [CrossRef]
- Ekielski, M.; Wzorek, M.; Gołaszewska, K.; Domanowska, A.; Taube, A.; Sochacki, M. Implementation of the inductively coupled plasma etching processes for forming gallium nitride nanorods used in ultraviolet light-emitting diode technology. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Processing Meas. Phenom. 2020, 38, 042802. [Google Scholar] [CrossRef]
- Domanowska, A.; Adamowicz, B.; Bidziński, P.; Klimasek, A.; Szewczenko, J.; Gutt, T.; Przewłocki, H.M. Analysis of chemical shifts in Auger electron spectra versus sputtering time from passivated surfaces. Opt. Appl. 2011, 41, 441–447. [Google Scholar]
- Seah, M.P.; Dench, W.A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11. [Google Scholar] [CrossRef]
- Vickerman, J.C. Surface Analysis: The Principal Techniques, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997; pp. 106–108. [Google Scholar]
- Martinez, E.; Yadav, P.; Bouttemy, M.; Renault, O.; Borowik, Ł.; Bertin, F.; Etcheberry, A.; Chabli, A. Scanning Auger microscopy for high lateral and depth elemental sensitivity. J. Electron Spectrosc. Relat. Phenom. 2013, 191, 86–91. [Google Scholar] [CrossRef]
- Watson, D.G. Improved dynamic range and automated lineshape differentiation in AES/XPS composition versus depth profiles. Surf. Interface Anal. 1990, 15, 516–524. [Google Scholar] [CrossRef]
- Benzarti, Z.; Halidou, I.; Tottereau, O.; Boufaden, T.; El Jani, B. Silicon effect on GaN surface morphology. Microelectron. J. 2002, 33, 995–998. [Google Scholar] [CrossRef]
- Ťapajna, M. Current Understanding of Bias-Temperature Instabilities in GaN MIS Transistors for Power Switching Applications. Crystals 2020, 10, 1153. [Google Scholar] [CrossRef]
- Hasegawa, H.; Ohno, H. Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1986, 4, 1130–1138. [Google Scholar] [CrossRef]
- Enisherlova, K.L.; Temper, E.M.; Kolkovsky, Y.V.; Medvedev, B.K.; Kapilin, S.A. The ALD Films of Al2O3, SiNx, and SiON as Passivation Coatings in AlGaN/GaN HEMT. Russ. Microelectron. 2020, 49, 603–611. [Google Scholar] [CrossRef]
- Lahtiluoma, L.; Setälä, O.E.; Vähänissi, V.; Savin, H. Charged thin film enables dopant free ohmic metal–semiconductor contact formation. Appl. Surf. Sci. 2025, 701, 163260. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Wang, Z. Review of the AlGaN/GaN High-Electron-Mobility Transistor-Based Biosensors: Structure, Mechanisms, and Applications. Micromachines 2024, 15, 330. [Google Scholar] [CrossRef]
- Feng, F.; Liu, Y.; Zhang, K.; Yang, H.; Hyun, B.R.; Xu, K.; Kwok, H.S.; Liu, Z. High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography. Nat. Photonics 2024, 19, 101–108. [Google Scholar] [CrossRef]
- Yatabe, Z.; Nakamura, Y.; Asubar, J.T. Mist chemical vapor deposited-gate insulators for GaN-based MIS devices applications. In Proceedings of the 2022 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 28–30 November 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Sun, X.L.; Bradley, S.T.; Jessen, G.H.; Look, D.C.; Molnar, R.J.; Brillson, L.J. Micro-Auger electron spectroscopy studies of chemical and electronic effects at GaN-sapphire interfaces. J. Vac. Sci. Technol. A 2004, 22, 2284–2289. [Google Scholar] [CrossRef]
- Ding, K.; Zhu, C.; Ferreyra, R.A.; Morkoç, H. Modulation Doped FETs. In Encyclopedia of RF and Microwave Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 1–71. [Google Scholar] [CrossRef]
- Kim, H.S.; Kang, M.J.; Jang, W.H.; Seo, K.S.; Kim, H.; Cha, H.Y. PECVD SiNx passivation for AlGaN/GaN HFETs with ultra-thin AlGaN barrier. Solid-State Electron. 2020, 173, 107876. [Google Scholar] [CrossRef]
- Chiu, Y.S.; Luc, Q.H.; Lin, Y.C.; Huang, J.C.; Dee, C.F.; Majlis, B.Y.; Chang, E.Y. Evaluation of AlGaN/GaN metal–oxide–semicondutor high-electron mobility transistors with plasma-enhanced atomic layer deposition HfO2/AlN date dielectric for RF power applications. Jpn. J. Appl. Phys. 2017, 56, 094101. [Google Scholar] [CrossRef]
- Wu, X.; Liang, R.; Guo, L.; Liu, L.; Xiao, L.; Shen, S.; Xu, J.; Wang, J. Improved interface properties of GaN metal-oxide-semiconductor device with non-polar plane and AlN passivation layer. Appl. Phys. Lett. 2016, 109, 232101. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Li, P.; Zhou, X.; Yang, B.; Xiang, Y.; Bai, J. Performance Study of Ultraviolet AlGaN/GaN Light-Emitting Diodes Based on Superlattice Tunneling Junction. Micromachines 2025, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- DiSanto, D.W.; Sun, H.F.; Bolognesi, C.R. Ozone passivation of slow transient current collapse in AlGaN/GaN field-effect transistors: The role of threading dislocations and the passivation mechanism. Appl. Phys. Lett. 2006, 88, 013504. [Google Scholar] [CrossRef]
- Kumar, M.; Khandelwal, V.; Chettri, D.; Mainali, G.; García, G.I.M.; Pan, Z.; Li, X. High breakdown voltage normally off Ga2O3 transistors on silicon substrates using GaN buffer. Appl. Phys. Lett. 2025, 126, 193505. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, C.; Wang, B.; Huang, G.; Jiang, K.; Zhang, Y.; Sun, X.; Zhang, Z.H.; Li, D. Hybrid GaO/AlGaN/GaN Ultraviolet Detector With Gate Metal in the Grooved AlGaN Layer for Obtaining Low Dark Current and Large Detectivity. IEEE Trans. Electron Devices 2022, 69, 6166–6170. [Google Scholar] [CrossRef]
- Gila, B.P.; Thaler, G.T.; Onstine, A.H.; Hlad, M.; Gerger, A.; Herrero, A.; Allums, K.K.; Stodilka, D.; Jang, S.; Kang, B.; et al. Novel dielectrics for gate oxides and surface passivation on GaN. Solid-State Electron. 2006, 50, 1016–1023. [Google Scholar] [CrossRef]
- Park, P.; Norasetthekul, S.; Lee, K.; Baik, K.; Gila, B.; Shin, J.; Abernathy, C.; Ren, F.; Lambers, E.; Pearton, S. Wet and dry etching of Sc2Otextsubscript3. Appl. Surf. Sci. 2001, 185, 52–59. [Google Scholar] [CrossRef]
- Wu, T.; Hao, Z.B.; Tang, G.; Luo, Y. Dry Etching Characteristics of AlGaN/GaN Heterostructures Using Inductively Coupled H2Cl2, Ar/Cl2 and BCl3/Cl2 Plasmas. Jpn. J. Appl. Phys. 2003, 42, L257–L259. [Google Scholar] [CrossRef]
- Bradley, S.T.; Young, A.P.; Brillson, L.J.; Murphy, M.J.; Schaff, W.J. Role of barrier and buffer layer defect states in AlGaN/GaN HEMT structures. J. Electron. Mater. 2001, 30, 123–128. [Google Scholar] [CrossRef]
- Brillson, L.J. Nanoscale luminescence spectroscopy of defects at buried interfaces and ultrathin films. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 2001, 19, 1762. [Google Scholar] [CrossRef]
- Niebelschütz, M.; Ecke, G.; Cimalla, V.; Tonisch, K.; Ambacher, O. Work function analysis of GaN-based lateral polarity structures by Auger electron energy measurements. J. Appl. Phys. 2006, 100, 074909. [Google Scholar] [CrossRef]
- Miczek, M.; Mizue, C.; Hashizume, T.; Adamowicz, B. Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors. J. Appl. Phys. 2008, 103, 104510. [Google Scholar] [CrossRef]
- Maeda, N.; Hiroki, M.; Watanabe, N.; Oda, Y.; Yokoyama, H.; Yagi, T.; Makimoto, T.; Enoki, T.; Kobayashi, T. Systematic Study of Insulator Deposition Effect (Si3N4, SiO2, AlN, and Al2O3) on Electrical Properties in AlGaN/GaN Heterostructures. Jpn. J. Appl. Phys. 2007, 46, 547. [Google Scholar] [CrossRef]
- Capriotti, M.; Alexewicz, A.; Fleury, C.; Gavagnin, M.; Bethge, O.; Visalli, D.; Derluyn, J.; Wanzenböck, H.D.; Bertagnolli, E.; Pogany, D.; et al. Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability. Appl. Phys. Lett. 2014, 104, 113502. [Google Scholar] [CrossRef]
- Hori, Y.; Yatabe, Z.; Hashizume, T. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors. J. Appl. Phys. 2013, 114, 244503. [Google Scholar] [CrossRef]
- Wang, C.; Chuang, R.; Chang, S.; Su, Y.; Wei, S.; Lin, T.; Ko, T.; Chiou, Y.; Tang, J. High temperature and high frequency characteristics of AlGaN/GaN MOS-HFETs with photochemical vapor deposition SiO2 layer. Mater. Sci. Eng. B 2005, 119, 25–28. [Google Scholar] [CrossRef]
- Huang, C.Y.; Mazumder, S.; Lin, P.C.; Lee, K.W.; Wang, Y.H. Improved Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistor with Al2O3/ZrO2 Stacked Gate Dielectrics. Materials 2022, 15, 6895. [Google Scholar] [CrossRef]
- Dinara, S.M.; Jana, S.K.; Ghosh, S.; Mukhopadhyay, P.; Kumar, R.; Chakraborty, A.; Bhattacharya, S.; Biswas, D. Enhancement of two dimensional electron gas concentrations due to Si3N4 passivation on Al0.3Ga0.7N/GaN heterostructure: Strain and interface capacitance analysis. AIP Adv. 2015, 5, 047136. [Google Scholar] [CrossRef]
- Matys, M.; Stoklas, R.; Kuzmik, J.; Adamowicz, B.; Yatabe, Z.; Hashizume, T. Characterization of capture cross sections of interface states in dielectric/III-nitride heterojunction structures. J. Appl. Phys. 2016, 119, 205304. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, S.; Zou, B.; Yang, Y.; Sun, H.; Zhou, Y.; Liang, J. Interlayer Investigations of GaN Heterostructures Integrated into Silicon Substrates by Surface Activated Bonding. Crystals 2023, 13, 217. [Google Scholar] [CrossRef]
- Wang, P.S.; Malghan, S.G.; Hsu, S.M.; Wittberg, T.N. The oxidation of an aluminum nitride powder studied by bremsstrahlung-excited Auger electron spectroscopy and x-ray photoelectron spectroscopy. J. Mater. Res. 1995, 10, 302–305. [Google Scholar] [CrossRef]
- Malengreau, F.; Vermeersch, M.; Sporken, R.; Philippe, L.; Han, B.Y.; Caudano, R. Initial growth of AlN on clean and oxidized iron studied by AES and EELS. Surf. Interface Anal. 1994, 22, 193–196. [Google Scholar] [CrossRef]
- Fukumoto, S.; Ando, M.; Tsubakino, H.; Terasawa, M.; Mitamura, T. Morphology of AlN formed in aluminum by ion implantation. Mater. Chem. Phys. 1998, 54, 351–355. [Google Scholar] [CrossRef]
- Mizuhara, Y.; Mitsuhashi, R.; Nagatomi, T.; Takai, Y.; Inoue, M. Auger electron spectroscopy and ion scattering spectroscopy studies of altered layer formation in AlN thin film prepared by post-irradiation with N2+ ions. Surf. Interface Anal. 2002, 33, 437–440. [Google Scholar] [CrossRef]
- Stauden, T.; Eichhorn, G.; Cimalla, V.; Pezoldt, J.; Ecke, G. The deposition of aluminum nitride on silicon by plasma-enhanced metal-organic chemical vapour deposition. Diam. Relat. Mater. 1996, 5, 1210–1213. [Google Scholar] [CrossRef]
- Wang, P.W.; Sui, S.; Durrer, W.G.; Craig, J.H. Auger peak shape analysis of AlN film grown by ammonia plasma. Surf. Interface Anal. 2003, 35, 141–145. [Google Scholar] [CrossRef]
- Domanowska, A.; Miczek, M.; Ucka, R.; Matys, M.; Adamowicz, B.; Żywicki, J.; Taube, A.; Korwin-Mikke, K.; Gierałtowska, S.; Sochacki, M. Surface photovoltage and Auger electron spectromicroscopy studies of HfO2/SiO2/4H-SiC and HfO2/Al2O3/4H-SiC structures. Appl. Surf. Sci. 2012, 258, 8354–8359. [Google Scholar] [CrossRef]
- Krol, K.; Sochacki, M.; Turek, M.; Żuk, J.; Borowicz, P.; Teklińska, D.; Konarski, P.; Miśnik, M.; Domanowska, A.; Michalewicz, A.; et al. Influence of Phosphorus Implantation on Electrical Properties of Al/SiO2/4H-SiC MOS Structure. Mater. Sci. Forum 2015, 821–823, 496–499. [Google Scholar] [CrossRef]
- Lian, S.; Yang, H.; Terblans, J.J.; Swart, H.C.; Wang, J.; Xu, C. Preferential sputtering in quantitative sputter depth profiling of multi-element thin films. Thin Solid Film. 2021, 721, 138545. [Google Scholar] [CrossRef]
- Bauer, H.E. A fast and simple method for background removal in Auger electron spectroscopy. Anal. Bioanal. Chem. 1995, 353, 450–455. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Watts, J.F.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Vickerman, J.C.; Gilmore, I.S. (Eds.) Surface Analysis—The Principal Techniques, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Friedbacher, G.; Bubert, H. (Eds.) Surface and Thin Film Analysis: A Compendium of Principles, Instrumentation, and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Sena, H.; Thurston, M.L.S.; Meng, C.; Chowdhury, S. Systematic investigation of AlGaN channels on AlN/sapphire substrates using metal–organic chemical vapor deposition (MOCVD): Toward higher crystallinity and lower surface roughness. APL Mater. 2025, 13, 051111. [Google Scholar] [CrossRef]
- Chang, K.M.; Wang, S.W.; Yeh, T.H.; Li, C.H.; Luo, J.J. Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition. J. Electrochem. Soc. 1997, 144, 1754–1759. [Google Scholar] [CrossRef]
- Timmermans, B.; Vaeck, N.; Hubin, A.; Reniers, F. Chemical effects in Auger electron spectra of aluminium. Surf. Interface Anal. 2002, 34, 356–359. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, L. Auger chemical shift analysis and its applications to the identification of interface species in thin films. Appl. Surf. Sci. 1998, 133, 213–220. [Google Scholar] [CrossRef]
- Olefjord, I.; Mathieu, H.J.; Marcus, P. Intercomparison of surface analysis of thin aluminium oxide films. Surf. Interface Anal. 1990, 15, 681–692. [Google Scholar] [CrossRef]
- Yeh, C.T.; Tuan, W.H. Oxidation mechanism of aluminum nitride revisited. J. Adv. Ceram. 2017, 6, 27–32. [Google Scholar] [CrossRef]















| , eV−1cm-2 | , cm2 | , ×102 C/m2 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| x | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 |
| SiO2 | 4.07 | 3.54 | 2.19 | ||||||
| x | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 |
| Al2O3 | 4.07 | 3.54 | 2.19 | ||||||
| x | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 | 0.15 | 0.26 | 0.40 |
| SiNx | 3.78 | 2.79 | 1.64 | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Domanowska, A.; Adamowicz, B. Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems. Micromachines 2026, 17, 47. https://doi.org/10.3390/mi17010047
Domanowska A, Adamowicz B. Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems. Micromachines. 2026; 17(1):47. https://doi.org/10.3390/mi17010047
Chicago/Turabian StyleDomanowska, Alina, and Bogusława Adamowicz. 2026. "Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems" Micromachines 17, no. 1: 47. https://doi.org/10.3390/mi17010047
APA StyleDomanowska, A., & Adamowicz, B. (2026). Auger Electron Spectroscopy for Chemical Analysis of Passivated (Al,Ga)N-Based Systems. Micromachines, 17(1), 47. https://doi.org/10.3390/mi17010047

