Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks
Abstract
1. Introduction
2. Integrated Chip-Scale Atomic Clock Architecture
3. Design of Metasurface-Based LP&QWP
4. Experimental Results
4.1. LP&QWP Manufacturing
4.2. Metasurface-Based LP&QWP Performance Analysis
4.3. Atomic Clock Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LP&QWP | Linear Polarizer and Quarter-wave Plate |
| CSAC | Chip-scale Atomic Clock |
| CPT | Coherent Population Trapping |
| M-PNT | Miniaturized Positioning, Navigation, and Timing |
| SOP | State of Polarization |
| MEMS | Micro Electro Mechanical Systems |
| VCSEL | Vertical-cavity Surface-emitting Laser |
| PD | Photodetector |
| AVCs | Atomic Vapor Cells |
| FDTD | Finite-difference Time-domain |
| RCP | Right-handed Circularly Polarized |
References
- Carlé, C.; Abdel Hafiz, M.; Keshavarzi, S.; Vicarini, R.; Passilly, N.; Boudot, R. Pulsed-CPT Cs-Ne microcell atomic clock with frequency stability below 2 × 10−12 at 105 s. Opt. Express 2023, 31, 8160–8169. [Google Scholar] [CrossRef] [PubMed]
- Kitching, J. Chip-scale atomic devices. Appl. Phys. Rev. 2018, 5, 031302. [Google Scholar] [CrossRef]
- Han, R.; You, Z.; Zhang, F.; Xue, H.; Ruan, Y. Microfabricated vapor cells with reflective sidewalls for chip scale atomic sensors. Micromachines 2018, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Knappe, S.; Shah, V.; Schwindt, P.D.; Hollberg, L.; Kitching, J.; Liew, L.A.; Moreland, J. A microfabricated atomic clock. Appl. Phys. Lett. 2004, 85, 1460–1462. [Google Scholar] [CrossRef]
- Vanier, J. Atomic clocks based on Coherent Population Trapping: A review. Appl. Phys. B 2005, 81, 421–442. [Google Scholar] [CrossRef]
- Wang, Z. Review of Chip-scale Atomic Clocks based on Coherent Population Trapping. Chin. Phys. B 2014, 23, 030601. [Google Scholar] [CrossRef]
- Wang, S.; Wen, S.; Deng, Z.-L.; Li, X.; Yang, Y. Metasurface-based solid poincaré sphere polarizer. Phys. Rev. Lett. 2023, 130, 123801. [Google Scholar] [CrossRef]
- Zhang, H.; Okada, K.; Herdian, H.; Narayanan, A.T.; Shirane, A.; Suzuki, M.; Harasaka, K.; Adachi, K.; Goka, S.; Yanagimachi, S. ULPAC: A Miniaturized Ultralow-Power Atomic Clock. IEEE J. Solid-State Circuits 2019, 54, 3135–3148. [Google Scholar] [CrossRef]
- Knappe, S.A. Emerging Topics: MEMS Atomic Clocks; Elsevier: Amsterdam, The Netherlands, 2007; pp. 571–612. [Google Scholar]
- Guo, P.; Meng, H.; Dan, L.; Zhao, J. Wafer-Level Filling of MEMS Vapor Cells Based on Chemical Reaction and Evaporation. Micromachines 2022, 13, 217. [Google Scholar] [CrossRef]
- Hasegawa, M.; Chutani, R.; Gorecki, C.; Boudot, R.; Dziuban, P.; Giordano, V.; Clatot, S.; Mauri, L. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens. Actuators A Phys. 2011, 167, 594–601. [Google Scholar] [CrossRef]
- Jia, S.; Jiang, Z.; Jiao, B.; Liu, X.; Pan, Y.; Song, Z.; Qu, J. The Microfabricated Alkali Vapor Cell with High Hermeticity for Chip-Scale Atomic Clock. Appl. Sci. 2022, 12, 436. [Google Scholar] [CrossRef]
- Knapkiewicz, P. Technological Assessment of MEMS Alkali Vapor Cells for Atomic References. Micromachines 2018, 10, 25. [Google Scholar] [CrossRef]
- Nishino, H.; Furuya, Y.; Ono, T. Micro-fabricated vapor cells with sealed Rb atoms by distillation at wafer level and two-step bonding for miniature atomic clocks. Opt. Express 2021, 29, 44316–44321. [Google Scholar] [CrossRef]
- Nishino, H.; Yano, Y.; Hara, M.; Toda, M.; Kajita, M.; Ido, T.; Ono, T. Reflection-type vapor cell for micro atomic clocks using local anodic bonding of 45° mirrors. Opt. Lett. 2021, 46, 2272–2275. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Duan, L.; Ma, N.; Liu, G. Two-channel whispering gallery mode self-injection locking lasers for hybrid optically pumped atomic comagnetometers. Measurement 2025, 246, 116674. [Google Scholar] [CrossRef]
- Wang, G.; Gao, L.; Huang, G.; Lei, X.; Cui, C.; Wang, S.; Yang, M.; Zhu, J.; Yan, S.; Li, X. A Wavelength-Stabilized and Quasi-Common-Path Heterodyne Grating Interferometer with Sub-Nanometer Precision. IEEE Trans. Instrum. Meas. 2024, 73, 7002509. [Google Scholar] [CrossRef]
- Deng, C.; Peng, Z.; Li, B. Ultrahigh Extinction Ratio Topological Polarization Beam Splitter Based on Dual-Polarization Second-Order Topological Photonic Crystals. Adv. Quantum Technol. 2025, 8, 2400637. [Google Scholar] [CrossRef]
- Chen, H.-F.; Tao, X.-Y.; Zhu, B.-H.; Pan, J.-T.; Ma, L.-L.; Chen, C.; Zhu, W.-G.; Chen, W.; Lu, Y.-Q. Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics. Light Sci. Appl. 2025, 14, 314. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Qu, G.; Han, J.; Li, C.; Bo, B.; Ruan, Q.; Liu, Z.; Song, Q.; Xiao, S. On-chip integration of achromatic metalens arrays. Nat. Commun. 2025, 16, 7485. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; He, Y.; Wang, H.; Su, Y. Subwavelength structured silicon waveguides and photonic devices. Nanophotonics 2020, 9, 1321–1340. [Google Scholar] [CrossRef]
- Benedikovic, D.; Berciano, M.; Alonso-Ramos, C.A.; Le Roux, X.; Guerber, S.; Marcaud, G.; Vakarin, V.; Pérez-Galacho, D.; Cassan, E.; Marris-Morini, D.; et al. Enhanced performance of integrated silicon nanophotonic devices engineered by sub-wavelength grating structures. In Proceedings of the Integrated Optics: Design, Devices, Systems, and Applications V, Prague, Czech Republic, 1–4 April 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11031, p. 1103104. [Google Scholar]
- Yang, X.; Benelajla, M.; Carpenter, S.; Choy, J.T. Analysis of atomic magnetometry using metasurface optics for balanced polarimetry. Opt. Express 2023, 31, 436–13446. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Kanwal, S.; Lu, Y.; Li, Y.; Wu, S.; Chen, L.; Qian, Z.; Xie, Z.; Wen, J.; Zhang, D. 3D nano-printed geometric phase metasurfaces for generating accelerating beams with complex amplitude manipulation. Sci. China Phys. Mech. Astron. 2024, 67, 264211. [Google Scholar] [CrossRef]
- Wen, J.; Xie, Z.; Liu, S.; Chen, X.; Tang, T.; Kanwal, S.; Zhang, D. Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging. Nanomaterials 2023, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Ropp, C.; Zhu, W.; Yulaev, A.; Westly, D.; Simelgor, G.; Rakholia, A.; Lunden, W.; Sheredy, D.; Boyd, M.M.; Papp, S.; et al. Integrating planar photonics for multi-beam generation and atomic clock packaging on chip. Light Sci. Appl. 2023, 12, 83. [Google Scholar] [CrossRef]
- Sebbag, Y.; Naiman, A.; Talker, E.; Barash, Y.; Levy, U. Chip-Scale Integration of Nanophotonic-Atomic Magnetic Sensors. ACS Photonics 2021, 8, 142–146. [Google Scholar] [CrossRef]
- Gallacher, K.; Griffin, P.F.; Riis, E.; Sorel, M.; Paul, D.J. Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photonics 2022, 7, 046101. [Google Scholar] [CrossRef]
- Hummon, M.T.; Kang, S.; Bopp, D.G.; Li, Q.; Westly, D.A.; Kim, S.; Fredrick, C.; Diddams, S.A.; Srinivasan, K.; Aksyuk, V.; et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 2018, 5, 443–449. [Google Scholar] [CrossRef]
- Zektzer, R.; Mazurski, N.; Barash, Y.; Levy, U. Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing. Nat. Photonics 2021, 15, 772–779. [Google Scholar] [CrossRef]
- Luo, K.; Fu, Q.; Liu, X.; Zhao, R.; He, Q.; Hu, B.; An, Z.; Yang, W.; Zhang, Y.; Zhang, S.; et al. Study of polarization transmission characteristics in nonspherical media. Opt. Lasers Eng. 2024, 174, 107970. [Google Scholar] [CrossRef]






| Test No. | PER (dB) | DOP (%) | Polarization Type | Stability | Experimental Significance |
|---|---|---|---|---|---|
| Conventional LP + QWP | 4.9 | 80.2 | Circular polarization (high purity) | High | Closest to ideal CPT polarization state |
| Metasurface LP&QWP | 4.8 | 74.2 | Right-handed circular polarization | High | Closest to ideal CPT polarization state |
| Year | Clock Type/Scheme | Frequency Stability@ 1 s | Frequency Stability@ 10,000 s | Note | |
|---|---|---|---|---|---|
| Ref. [8] | 2019 | Glass CPT Rb Clock | 6.71 × 10−11 | 2.2 × 10−12 | Typical vapor-cell CSAC |
| Ref. [15] | 2021 | MEMS CPT Rb Clock | 9.5 × 10−11 | - | Long-term data not reported |
| Ref. [1] | 2023 | ASG CPT Rb Clock | - | 1.4 × 10−12 | Focus on long-term data |
| SA.45 | 2011 | MEMS CPT Cs Clock | 6.2 × 10−11 | 6.7 × 10−12 | Typical vapor-cell CSAC Representative commercial products |
| XHTF 1045 | 2020 | Glass CPT Cs Clock | 8.2 × 10−11 | 1.1 × 10−11 | Experimentally tested (this work) |
| This Work | Metasurface-based CPT CSAC | 9.29 × 10−11 | 1.59 × 10−11 | Comparable short-term stability, integrated LP&QWP design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, T.; Li, Z.; Liang, T.; Yu, J.; Cui, X.; Li, X.; Yao, Z.; Lei, C. Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks. Micromachines 2026, 17, 25. https://doi.org/10.3390/mi17010025
Wang T, Li Z, Liang T, Yu J, Cui X, Li X, Yao Z, Lei C. Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks. Micromachines. 2026; 17(1):25. https://doi.org/10.3390/mi17010025
Chicago/Turabian StyleWang, Taolong, Zhiqiang Li, Ting Liang, Jiangang Yu, Xiaoqian Cui, Xinpu Li, Zong Yao, and Cheng Lei. 2026. "Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks" Micromachines 17, no. 1: 25. https://doi.org/10.3390/mi17010025
APA StyleWang, T., Li, Z., Liang, T., Yu, J., Cui, X., Li, X., Yao, Z., & Lei, C. (2026). Monolayer Metasurface Enabling Linear Polarizer and Quarter-Wave Plate for Chip-Scale Atomic Clocks. Micromachines, 17(1), 25. https://doi.org/10.3390/mi17010025

