Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Materials and Reagents
2.2. Perovskite Solar Cells Fabrication
2.3. Material Characterization
2.4. Device Characterization
3. Results and Discussion
3.1. Modulating the Perovskite Film with Glycerol
3.2. Formation of Hydrogen Bond Involving Iodide
3.3. Photovoltaic Performance of Perovskite Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Xiao, Y.; Li, S.; Jia, X.; Luo, D.; Zhang, W.; Snaith, H.J.; Gong, Q.; Zhu, R. The Promise and Challenges of Inverted Perovskite Solar Cells. Chem. Rev. 2024, 124, 10623–10700. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.D.; Wang, L.Y.; Luo, S.W.; Yan, H.; Chen, S.S. Polymeric Charge-Transporting Materials for Inverted Perovskite Solar Cells. Adv. Mater. 2025, 37, 2412327. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Zhang, Q.; Cai, K.; Zhou, H.T.; Song, Q.; Han, Z.Y.; Kang, S.Q.; Li, Y.W.; Jiang, Q.; Zhang, X.W.; et al. Homogenized chlorine distribution for >27% power conversion efficiency in perovskite solar cells. Science 2025, 390, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.W.; Jung, H.S.; Shin, H.; Park, N.G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and Challenges of Perovskite Solar Cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef]
- Zhao, P.J.; Kim, B.J.; Ren, X.D.; Lee, D.G.; Bang, G.J.; Jeon, J.B.; Kim, W.B.; Jung, H.S. Antisolvent with an Ultrawide Processing Window for the One-Step Fabrication of Efficient and Large-Area Perovskite Solar Cells. Adv. Mater. 2018, 30, 1802763. [Google Scholar] [CrossRef]
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.Z.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A General Approach to High-Efficiency Perovskite Solar Cells by Any Antisolvent. Nat. Commun. 2021, 12, 1878. [Google Scholar] [CrossRef]
- Chen, Y.T.; Wang, Q.; Yao, Y.Q.; Yang, J.W.; Tang, W.J.; Qiu, W.K.; Wu, Y.H.; Peng, Q. Synergistic Transition Metal Ion Co-Doping and Multiple Functional Additive Passivation for Realizing 25.30% Efficiency Perovskite Solar Cells. Energy Environ. Sci. 2023, 16, 5243–5254. [Google Scholar] [CrossRef]
- Shen, X.Y.; Gallant, B.M.; Holzhey, P.; Smith, J.A.; Elmestekawy, K.A.; Yuan, Z.C.; Rathnayake, P.; Bernardi, S.; Dasgupta, A.; Kasparavicius, E.; et al. Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells. Adv. Mater. 2023, 35, 2211742. [Google Scholar] [CrossRef]
- Lim, J.; Rafieh, A.I.; Shibayama, N.; Xia, J.X.; Audinot, J.N.; Wirtz, T.; Kinge, S.; Glunz, S.W.; Ding, Y.; Ding, B.; et al. Ultra-Uniform Perovskite Crystals Formed in the Presence of Tetrabutylammonium Bistriflimide Afford Efficient and Stable Perovskite Solar Cells. Energy Environ. Sci. 2024, 17, 8209–8218. [Google Scholar] [CrossRef]
- Zhang, S.S.; Yan, X.B.; Liu, Z.H.; Zhu, H.M.; Yang, Z.C.; Huang, Y.Q.; Liu, S.W.; Wu, D.; Pan, M.; Chen, W. Evaporated Potassium Chloride for Double-Sided Interfacial Passivation in Inverted Planar Perovskite Solar Cells. J. Energy Chem. 2021, 54, 493–500. [Google Scholar] [CrossRef]
- Jiang, S.; Wu, C.C.; Li, F.; Zhang, Y.Q.; Zhang, Z.H.; Zhang, Q.H.; Chen, Z.J.; Qu, B.; Xiao, L.X.; Jiang, M.L. Machine Learning (ML)-Assisted Optimization Doping of KI in MAPbI3 Solar Cells. Rare Met. 2021, 40, 1698–1707. [Google Scholar] [CrossRef]
- Hsu, H.T.; Kung, Y.M.; Venkatesan, S.; Teng, H.; Lee, Y.L. Improving the Solar Energy Utilization of Perovskite Solar Cells via Synergistic Effects of Alkylamine and Alkyl Acid on Defect Passivation. Sol. RRL 2023, 7, 2300122. [Google Scholar] [CrossRef]
- Liu, J.L.; He, J.W.; Wu, W.J. Molecular Symmetry of Small-Molecule Passivating Agents Improves Crystal Quality of Perovskite Solar Cells. ChemSusChem 2024, 17, e202301458. [Google Scholar] [CrossRef] [PubMed]
- Li, K.P.; Zhu, Y.; Chang, X.; Zhou, M.N.; Yu, X.X.; Zhao, X.L.; Wang, T.; Cai, Z.M.; Zhu, X.; Wang, H.; et al. Self-Induced Bi-interfacial Modification via Fluoropyridinic Acid for High-Performance Inverted Perovskite Solar Cells. Adv. Energy Mater. 2025, 15, 2404335. [Google Scholar] [CrossRef]
- Liu, L.D.; Zheng, C.; Xu, Z.; Li, Y.; Cao, Y.; Yang, T.T.; Zhang, H.; Wang, Q.; Liu, Z.K.; Yuan, N.Y.; et al. Manipulating Electron Density Distribution of Nicotinamide Derivatives Toward Defect Passivation in Perovskite Solar Cells. Adv. Energy Mater. 2023, 13, 2300610. [Google Scholar] [CrossRef]
- Zuo, C.T.; Hao, F.; Dong, H.; Chang, J.J.; Yan, K.Y.; Ding, Y.; Xiao, Z.; Ding, L.M. Regulating solution spreading and intermediate phase evolution for large-area perovskite films and solar modules. Energy Environ. Sci. 2025, 18, 10125–10134. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.J.; Wang, K.L.; Wang, Z.K.; Luo, Y.Q.; Fenning, D.; Xu, G.W.; Nuryyeva, S.; Huang, T.Y.; Zhao, Y.P.; et al. Constructive Molecular Configurations for Surface-Defect Passivation of Perovskite Photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Singh, P.; Chamoli, P.; Sachdev, S.; Raina, K.K.; Shukla, R.K. Structural, Optical and Rheological Behavior Investigations of Graphene Oxide/Glycerol Based Lyotropic Liquid Crystalline Phases. Appl. Surf. Sci. 2020, 509, 144710. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Wan, Z.; Du, W.L.; Liu, X.; Chen, L.; Li, S.X.; Kang, N.; Wang, C.L. In Situ Growth of Nickel Oxide Hole-Transport Layer through the Nickel Oleate Route for High-Performance Perovskite Solar Cells. ACS Appl. Electron. Mater. 2024, 6, 4523–4531. [Google Scholar] [CrossRef]
- Du, W.L.; Wan, Z.; Zhu, J.Y.; Liu, X.; Chen, L.; Li, S.X.; Kang, N.; Wang, C.L. In Situ One Step Growth of Amorphous Tin Oxide Electron Transport Layer for High-Performance Perovskite Solar Cells. RSC Adv. 2024, 14, 12650–12657. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.H.; Wang, P.; Zhang, W.H.; Li, B.Y.; Wu, X.P.; Xu, L.B.; Lin, P.; He, H.Y.; Yu, X.G.; Cui, C. Multifunctional Thiophene-Based Interfacial Passivating Layer for High-Performance Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 6823–6832. [Google Scholar] [CrossRef]
- Mirzehmet, A.; Ohtsuka, T.; Abd Rahman, S.A.; Yuyama, T.; Krüger, P.; Yoshida, H. Surface Termination of Solution-Processed CH3NH3PbI3 Perovskite Film Examined using Electron Spectroscopies. Adv. Mater. 2021, 33, 2004981. [Google Scholar] [CrossRef] [PubMed]
- Das, C.; Wussler, M.; Hellmann, T.; Mayer, T.; Zimmermann, I.; Maheu, C.; Nazeeruddin, M.K.; Jaegermann, W. Surface, Interface, and Bulk Electronic and Chemical Properties of Complete Perovskite Solar Cells: Tapered Cross-Section Photoelectron Spectroscopy, a Novel Solution. ACS Appl. Mater. Interfaces 2020, 12, 40949–40957. [Google Scholar] [CrossRef]
- Karim, M.A.; Chappidi, V.R.; Kayesh, M.E.; Raavi, S.S.K.; Islam, A. Crosslinker Additive Integration: A Strategy to Boost Performance and Stability in FASnI3 Perovskite Solar Cells. Sol. Energy 2024, 278, 112761. [Google Scholar] [CrossRef]
- Jiang, H.; Yan, Z.; Zhao, H.; Yuan, S.H.; Yang, Z.; Li, J.; Liu, B.; Niu, T.Q.; Feng, J.S.; Wang, Q.; et al. Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 900–909. [Google Scholar] [CrossRef]
- Meng, X.Y.; Lin, J.B.; Liu, X.; He, X.; Wang, Y.; Noda, T.; Wu, T.H.; Yang, X.D.; Han, L.Y. Highly Stable and Efficient FASnI3-Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Adv. Mater. 2019, 31, 1903721. [Google Scholar] [CrossRef]
- Chen, C.; Li, F.M.; Zhu, L.X.; Shen, Z.T.; Weng, Y.J.; Lou, Q.; Tan, F.R.; Yue, G.T.; Huang, Q.S.; Wang, M.T. Efficient and Stable Perovskite Solar Cells Thanks to Dual Functions of Oleyl Amine-Coated PbSO4(PbO)4 Quantum Dots: Defect Passivation and Moisture/Oxygen Blocking. Nano Energy 2020, 68, 104313. [Google Scholar] [CrossRef]
- Nimens, W.J.; Lefave, S.J.; Flannery, L.; Ogle, J.; Smilgies, D.M.; Kieber-Emmons, M.T.; Whittaker-Brooks, L. Understanding Hydrogen Bonding Interactions in Crosslinked Methylammonium Lead Iodide Crystals: Towards Reducing Moisture and Light Degradation Pathways. Angew. Chem. Int. Ed. 2019, 58, 13912–13921. [Google Scholar] [CrossRef]
- Hou, X.; Huang, S.M.; Wei, O.Y.; Pan, L.K.; Sun, Z.; Chen, X.H. Constructing Efficient and Stable Perovskite Solar Cells via Interconnecting Perovskite Grains. ACS Appl. Mater. Interfaces 2017, 9, 35200–35208. [Google Scholar] [CrossRef]
- Huang, Y.C.; Yan, K.R.; Niu, B.F.; Chen, Z.; Gu, E.; Liu, H.R.; Yan, B.Y.; Yao, J.Z.; Zhu, H.M.; Chen, H.Z.; et al. Finite Perovskite Hierarchical Structures via Ligand Confinement Leading to Efficient Inverted Perovskite Solar Cells. Energy Environ. Sci. 2023, 16, 557–564. [Google Scholar] [CrossRef]
- Myung, C.W.; Javaid, S.; Kim, K.S.; Lee, G. Rashba-Dresselhaus Effect in Inorganic/Organic Lead Iodide Perovskite Interfaces. ACS Energy Lett. 2018, 3, 1294–1300. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, W.B.; Chen, J.L.; Xie, X.; Zhu, J.W.; Zheng, Y.X.; Li, Y.F.; Li, J.M.; Wei, M.D. Multidentate Anchoring Strategy for Synergistically Modulating Crystallization and Stability towards Efficient Perovskite Solar Cells. Chem. Eng. J. 2024, 480, 148249. [Google Scholar] [CrossRef]
- Yerlanuly, Y.; Shalenov, E.O.; Parkhomenko, H.P.; Kiani, M.S.; Kukhayeva, Z.; Ng, A.; Jumabekov, A.N. Elucidating the Hysteresis Effect in Printed Flexible Perovskite Solar Cells with SnO2 Quantum dot-and PCBM-based Electron Transport Layers. Heliyon 2024, 10, e39667. [Google Scholar] [CrossRef]
- Zeng, W.Q.; He, X.F.; Bian, H.Y.; Guo, P.J.; Wang, M.; Xu, C.Y.; Xu, G.B.; Zhong, Y.X.; Lu, D.C.; Sofer, Z.; et al. Multi-functional Strategy: Ammonium Citrate-Modified SnO2 ETL for Efficient and Stable Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 43975–43986. [Google Scholar] [CrossRef] [PubMed]
- Bisquert, J. Hysteresis, Impedance, and Transients Effects in Halide Perovskite Solar Cells and Memory Devices Analysis by Neuron-Style Models. Adv. Energy Mater. 2024, 14, 2400442. [Google Scholar] [CrossRef]
- Chen, R.S.; Chen, L.D.; Liang, Z.Q. Directional Regulation of Photogenerated Carriers in Tin Halide Perovskites for Enhanced Thermoelectrics. ACS Energy Lett. 2024, 9, 5721–5727. [Google Scholar] [CrossRef]
- Wu, X.F.; Deng, J.D.; Yang, T.S.; Fu, L.M.; Xu, J. Small Molecule Induced Interfacial Defect Healing to Construct Inverted Perovskite Solar Cells with High Fill Factor and Stability. J. Colloid Interface Sci. 2025, 678, 776–784. [Google Scholar] [CrossRef]
- Wang, J.H.; Fu, S.Q.; Huang, L.K.; Lu, Y.; Liu, X.H.; Zhang, J.; Hu, Z.Y.; Zhu, Y.J. Heterojunction Engineering and Ideal Factor Optimization Toward Efficient MINP Perovskite Solar Cells. Adv. Energy Mater. 2021, 11, 2102724. [Google Scholar] [CrossRef]
- Razzaq, A.; Ullah, A.; Subbiah, A.S.; Wolf, S.D. Practical Fill Factor Limits for Perovskite Solar Cells. ACS Energy Lett. 2024, 9, 5635–5638. [Google Scholar] [CrossRef]
- Lin, Y.S.; Chen, C.P.; Lin, C.Y.; Jiang, B.H.; Wu, K.C.; Chow, T.J.; Chang, Y.J. Rational Molecular Design of Indeno [1,2-b]Quinoxaline-Based Passivators with Multifunctional Groups to Effectively Retard Recombination and Enhance Voc in Perovskite Solar Cells. ChemSusChem 2025, 18, e202401555. [Google Scholar] [CrossRef]
- Zhang, S.C.; Xu, C.Z.; Fan, W.Q.; Sun, H.C.; Cheng, F.Y.; Dai, F.L.; Liang, Z.J.; Kang, Z.; Zhang, Y. Sp-Hybridized Carbon Enabled Crystal Lattice Manipulation, Pushing the Limit of Fill Factor in β-CsPbI3 Perovskite Solar Cells. Matter 2024, 7, 3205–3220. [Google Scholar] [CrossRef]
- Pylnev, M.; Nishikubo, R.; Ishiwari, F.; Wakamiya, A.; Saeki, A. Performance Boost by Dark Electro Treatment in MACl-Added FAPbI3 Perovskite Solar Cells. Adv. Opt. Mater. 2024, 12, 2401902. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kang, N.; Li, L.; Wan, Z.; Yang, L.; Liang, Z.; Chen, L.; Li, P.; Sun, Y.; Wang, Z.; Wang, C. Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells. Micromachines 2026, 17, 15. https://doi.org/10.3390/mi17010015
Kang N, Li L, Wan Z, Yang L, Liang Z, Chen L, Li P, Sun Y, Wang Z, Wang C. Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells. Micromachines. 2026; 17(1):15. https://doi.org/10.3390/mi17010015
Chicago/Turabian StyleKang, Ning, Lu Li, Zhe Wan, Liping Yang, Zhen Liang, Li Chen, Peng Li, Yongrong Sun, Zuyong Wang, and Chenglong Wang. 2026. "Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells" Micromachines 17, no. 1: 15. https://doi.org/10.3390/mi17010015
APA StyleKang, N., Li, L., Wan, Z., Yang, L., Liang, Z., Chen, L., Li, P., Sun, Y., Wang, Z., & Wang, C. (2026). Weak Hydrogen Bond with Iodide Modulating Crystallization of Methylammonium Lead Iodide for High-Performance Perovskite Solar Cells. Micromachines, 17(1), 15. https://doi.org/10.3390/mi17010015
