High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics
Abstract
1. Introduction
2. Simulation
2.1. Inverse Taper Simulation
2.2. Coupling Efficiency Improvement
2.3. Multi-Tip Taper Simulation
3. Fabrication
Edge Facet
4. Characterization
4.1. Cut-Back Measurement
4.2. OFDR Measurements
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| UHNA | Ultra-High Numerical Aperture |
| PIC | Photonic integrated circuits |
| QKD | Quantum key distribution |
| SOI | Silicon-on-insulator |
| MPW | Multi-Project Wafer |
| DUV | Deep ultraviolet |
| FDE | Finite-difference eigenmode |
| FDTD | Finite-difference time-domain |
| FAU | Fiber array unit |
| DRIE | Deep reactive ion plasma etching |
| RIE | Reactive ion plasma etching |
| ICP | Inductively Coupled Plasma |
| OFDR | Optical frequency domain reflectometry |
| SMF | Single-Mode Fiber |
References
- Malhouitre, S.; Fowler, D.; Garcia, S.; Lemonnier, O.; Tyler, N.; Rabaud, W. Silicon nitride photonic platform for LiDAR applications. In Proceedings of the 2018 IEEE 15th International Conference on Group IV Photonics (GFP), Cancun, Mexico, 29–31 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–2. [Google Scholar]
- Rodionov, I.A.; Baburin, A.S.; Zverev, A.V.; Philippov, I.A.; Gabidulin, A.R.; Dobronosova, A.A.; Ryzhova, E.V.; Vinogradov, A.P.; Ivanov, A.I.; Maklakov, S.S.; et al. Mass-production compatible fabrication techniques of single-crystalline silver metamaterials and plasmonic devices. In Metamaterials, Metadevices, and Metasystems 2017; Engheta, N., Noginov, M.A., Zheludev, N.I., Eds.; SPIE: Bellingham, WA, USA, 2017; Volume 10343, p. 1034337. [Google Scholar]
- Baburin, A.S.; Ivanov, A.; Trofimov, I.; Dobronosova, A.; Melentiev, P.; Balykin, V.; Moskalev, D.; Pishchimova, A.; Ganieva, L.; Ryzhikov, I.; et al. Highly directional plasmonic nanolaser based on high-performance noble metal film photonic crystal. In Nanophotonics VII; SPIE: Bellingham, WA, USA, 2018; p. 159. [Google Scholar]
- Yankovskii, G.M.; Komarov, A.V.; Puz’ko, R.S.; Baryshev, A.V.; Afanas’ev, K.N.; Boginskaya, I.A.; Bykov, I.V.; Merzlikin, A.M.; Rodionov, I.A.; Ryzhikov, I.A. Structural and optical properties of single and bilayer silver and gold films. Phys. Solid State 2016, 58, 2503–2510. [Google Scholar] [CrossRef]
- Baburin, A.S.; Ivanov, A.I.; Ryzhikov, I.A.; Trofimov, I.V.; Gabidullin, A.R.; Moskalev, D.O.; Panfilov, Y.V.; Rodionov, I.A. Crystalline structure dependence on optical properties of silver thin film over time. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium (PIERS), St. Petersburg, Russia, 22–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 1497–1502. [Google Scholar]
- Baburin, A.S.; Moskalev, D.O.; Lotkov, E.S.; Sorokina, O.S.; Baklykov, D.A.; Avdeev, S.S.; Buzaverov, K.A.; Yankovskii, G.M.; Baryshev, A.V.; Ryzhikov, I.A.; et al. Evolutionary selection growth of silver films for low-loss nanophotonic devices. Surf. Interfaces 2023, 39, 102897. [Google Scholar] [CrossRef]
- Lagarkov, A.; Boginskaya, I.; Bykov, I.; Budashov, I.; Ivanov, A.; Kurochkin, I.; Ryzhikov, I.; Rodionov, I.; Sedova, M.; Zverev, A.; et al. Light localization and SERS in tip-shaped silicon metasurface. Opt. Express 2017, 25, 17021–17038. [Google Scholar] [CrossRef] [PubMed]
- Hoi, H.; Rezaie, S.S.; Gong, L.; Sen, P.; Zeng, H.; Montemagno, C.; Gupta, M. Biofunctionalized silicon nitride platform for sensing applications. Biosens. Bioelectron. 2018, 102, 497–503. [Google Scholar] [CrossRef]
- Lotkov, E.S.; Baburin, A.S.; Ryzhikov, I.A.; Sorokina, O.S.; Ivanov, A.I.; Zverev, A.V.; Ryzhkov, V.V.; Bykov, I.V.; Baryshev, A.V.; Panfilov, Y.V.; et al. ITO film stack engineering for low-loss silicon optical modulators. Sci. Rep. 2022, 12, 14902. [Google Scholar] [CrossRef]
- Stepanov, I.A.; Baburin, A.S.; Kushnev, D.V.; Sergeev, E.V.; Shmonina, O.I.; Matanin, A.R.; Echeistov, V.V.; Ryzhikov, I.A.; Panfilov, Y.V.; Rodionov, I.A. Sputtered NbN films for ultra-high performance superconducting nanowire single-photon detectors. APL Mater. 2024, 12, 021101. [Google Scholar] [CrossRef]
- Taballione, C.; Wolterink, T.A.W.; Lugani, J.; Eckstein, A.; Bell, B.A.; Grootjans, R.; Visscher, I.; Geskus, D.; Roeloffzen, C.G.H.; Renema, J.J.; et al. 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 2019, 27, 26842–26857. [Google Scholar] [CrossRef]
- Weng, H.-C.; Monroy-Ruz, J.; Matthews, J.C.F.; Rarity, J.G.; Balram, K.C.; Smith, J.A. Heterogeneous integration of solid-state quantum systems with a foundry photonics platform. ACS Photonics 2023, 10, 3302–3309. [Google Scholar] [CrossRef]
- Xiang, C.; Jin, W.; Bowers, J.E. Silicon nitride passive and active photonic integrated circuits: Trends and prospects. Photonics Res. 2022, 10, A82–A96. [Google Scholar] [CrossRef]
- Guo, X.; Ji, X.; Yao, B.; Tan, T.; Chu, A.; Westreich, O.; Dutt, A.; Wong, C.; Su, Y. Ultra-wideband integrated photonic devices on silicon platform: From visible to mid-IR. Nanophotonics 2023, 12, 167–196. [Google Scholar] [CrossRef]
- Baets, R.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Bienstman, P.; Le Thomas, N.; Roelkens, G.; Van Thourhout, D.; Helin, P.; Severi, S. Silicon photonics: Silicon nitride versus silicon-on-insulator. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; OSA: Washington, DC, USA, 2016. [Google Scholar]
- Muñoz, P.; Micó, G.; Bru, L.; Pastor, D.; Pérez, D.; Doménech, J.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef] [PubMed]
- Ben Bakir, B.; de Gyves, A.V.; Orobtchouk, R.; Lyan, P.; Porzier, C.; Roman, A.; Fedeli, J.-M. Low-loss (<1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm silicon-on-insulator wafers. IEEE Photonics Technol. Lett. 2010, 22, 739–741. [Google Scholar] [CrossRef]
- Hatori, N.; Shimizu, T.; Okano, M.; Ishizaka, M.; Yamamoto, T.; Urino, Y.; Mori, M.; Nakamura, T.; Arakawa, Y. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J. Light. Technol. 2014, 32, 1329–1336. [Google Scholar] [CrossRef]
- Urino, Y.; Usuki, T.; Fujikata, J.; Ishizaka, M.; Yamada, K.; Horikawa, T.; Nakamura, T.; Arakawa, Y. High-density and wide-bandwidth optical interconnects with silicon optical interposers [Invited]. Photonics Res. 2014, 2, A1–A10. [Google Scholar] [CrossRef]
- Cheben, P.; Schmid, J.H.; Wang, S.; Xu, D.-X.; Vachon, M.; Janz, S.; Lapointe, J.; Painchaud, Y.; Picard, M.-J. Broadband polarization-independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express 2015, 23, 22553–22563. [Google Scholar] [CrossRef]
- Papes, M.; Cheben, P.; Benedikovic, D.; Schmid, J.H.; Pond, J.; Halir, R.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Ye, W.N.; Xu, D.-X.; et al. Fiber–chip edge coupler with large mode size for silicon photonic wire waveguides. Opt. Express 2016, 24, 5026–5038. [Google Scholar] [CrossRef]
- Atsumi, Y.; Yoshida, T.; Omoda, E.; Sakakibara, Y. Broadband surface optical coupler based on a SiO2-capped vertically curved silicon waveguide. Opt. Express 2018, 26, 10400–10408. [Google Scholar] [CrossRef]
- Shoji, T.; Tsuchizawa, T.; Watanabe, K.; Yamada, K.; Morita, H. Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres. Electron. Lett. 2002, 38, 1669–1670. [Google Scholar] [CrossRef]
- Almeida, V.R.; Panepucci, R.R.; Lipson, M. Nanotaper for compact mode conversion. Opt. Lett. 2003, 28, 1302–1304. [Google Scholar] [CrossRef]
- Roelkens, G.; Dumon, P.; Bogaerts, W.; Van Thourhout, D.; Baets, R. Efficient silicon-on-insulator fiber coupler fabricated using 248-nm deep UV lithography. IEEE Photonics Technol. Lett. 2005, 17, 2613–2615. [Google Scholar] [CrossRef]
- McNab, S.; Moll, N.; Vlasov, Y. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 2003, 11, 2927–2939. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Res. 2019, 7, 201–239. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Xie, W.; Tian, B.; Li, Y.; Brainis, E.; Jiao, Y.; Van Thourhout, D. Ultra-compact silicon nitride grating coupler for microscopy systems. Opt. Express 2017, 25, 33297–33305. [Google Scholar] [CrossRef]
- Mak, J.C.C.; Sacher, W.D.; Ying, H.; Luo, X.; Lo, P.G.-Q.; Poon, J.K.S. Multi-layer silicon nitride-on-silicon polarization-independent grating couplers. Opt. Express 2018, 26, 30623–30633. [Google Scholar] [CrossRef]
- Son, G.; Han, S.; Park, J.; Kwon, K.; Yu, K. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits. Nanophotonics 2018, 7, 1845–1864. [Google Scholar] [CrossRef]
- Mitomi, O.; Kasaya, K.; Miyazawa, H. Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling. IEEE J. Quantum Electron. 1994, 30, 1787–1793. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Xu, X.; Zhang, X. Short and efficient mode-size converter designed by segmented-stepwise method. Opt. Lett. 2014, 39, 6273–6276. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, T.; Kitoh, T.; Ishii, M.; Inoue, Y.; Saida, T.; Itoh, M.; Shibata, T.; Hibino, Y. Compact and low-loss arrayed waveguide grating module with tolerance-relaxed spot-size converter. IEEE Photonics Technol. Lett. 2003, 15, 239–241. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Xie, H.; Zhang, N.; Xu, K.; Yao, Y.; Xiao, S.; Song, Q. Adiabatic and ultracompact waveguide tapers based on digital metamaterials. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Tao, H.; Song, J.; Fang, Q.; Yu, M.; Lo, G.; Kwong, D. Improving coupling efficiency of fiber–waveguide coupling with a double-tip coupler. Opt. Express 2008, 16, 20803–20810. [Google Scholar] [CrossRef]
- Kohli, N.; Ménard, M.; Ye, W.N. Efficient TE/TM spot-size converter for broadband coupling to single-mode fibers. OSA Contin. 2019, 2, 2428–2441. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, Y.; Gatkine, P.; Veilleux, S.; Bland-Hawthorn, J.; Dagenais, M. Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon. IEEE Photonics J. 2016, 8, 1–12. [Google Scholar]
- Sethi, P.; Kallega, R.; Haldar, A.; Selvaraja, S.K. Compact broadband low-loss taper for coupling to a silicon nitride photonic wire. Opt. Lett. 2018, 43, 3433–3436. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Baños, R.; Doménech, D.; Domínguez, C.; Muñoz, P. Low-loss inverted taper edge coupler in silicon nitride. IET Optoelectron. 2019, 13, 62–66. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Yun, H.; Ma, M.; Kumar, A.; El-Fiky, E.; Li, R.; Abadiacalvo, N.; Chrostowski, L.; Jaeger, N.A.F.; et al. Polarization-independent mode-evolution-based coupler for the silicon-on-insulator platform. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Kumar, A.; El-Fiky, E.; Mao, D.; Tamazin, H.; Jacques, M.; Xing, Z.; Saber, M.d.G.; Plant, D.V. Compact high-performance adiabatic 3-dB coupler enabled by subwavelength-grating slot in the silicon-on-insulator platform. Opt. Express 2018, 26, 29873–29884. [Google Scholar] [CrossRef]
- Yun, H.; Chrostowski, L.; Jaeger, N.A.F. Ultra-broadband 2 × 2 adiabatic 3-dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides. Opt. Lett. 2018, 43, 1935–1938. [Google Scholar] [CrossRef]
- Mao, D.; Alam, M.S.; Zhang, J.; Zhu, M.; Koh, P.-C.; Plant, D.V.; Wang, Y.; El-Fiky, E.; Xu, L.; Kumar, A.; et al. Adiabatic coupler with design-intended splitting ratio. J. Light. Technol. 2019, 37, 6147–6155. [Google Scholar] [CrossRef]
- Fu, Y.; Ye, T.; Tang, W.; Chu, T. Efficient adiabatic silicon-on-insulator waveguide taper. Photonics Res. 2014, 2, A41–A45. [Google Scholar] [CrossRef]
- Pu, M.; Liu, L.; Ou, H.; Yvind, K.; Hvam, J.M. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun. 2010, 283, 3678–3682. [Google Scholar] [CrossRef]
- Tobing, L.Y.M.; Cao, Y.; Lau, C.; Tong, A.S.K.; Lee, S.H.J.; Tsang, Y.F.; Goh, J.S.; Toh, Y.T.; Luo, X. Compact edge coupler with <1 dB/facet insertion loss in the C-band. In Integrated Optics: Devices, Materials, and Technologies XXIX; SPIE: Bellingham, WA, USA, 2025; Volume 13369, p. 1336907. [Google Scholar]
- Hettrick, S.J.; Wang, J.; Li, C.; Wilkinson, J.S.; Shepherd, D.P. An experimental comparison of linear and parabolic tapered waveguide lasers and a demonstration of broad-stripe diode pumping. J. Light. Technol. 2004, 22, 845–849. [Google Scholar] [CrossRef]
- Bhandari, B.; Im, C.-S.; Lee, K.-P.; Kim, S.-M.; Oh, M.-C.; Lee, S.-S. Compact and broadband edge coupler based on multi-stage silicon nitride tapers. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- PsiQuantum Team. A manufacturable platform for photonic quantum computing. Nature 2025, 641, 876–883. [Google Scholar] [CrossRef]
- He, A.; Guo, X.; Wang, T.; Su, Y. Ultracompact fiber-to-chip metamaterial edge coupler. ACS Photonics 2021, 8, 3226–3233. [Google Scholar] [CrossRef]
- Fedeli, J.M.; Orobtchouk, R.; Seassal, C.; Vivien, L. Integration issues of a photonic layer on top of a CMOS circuit. In Silicon Photonics; SPIE: Bellingham, WA, USA, 2006; p. 61250H. [Google Scholar]
- Konstantinova, T.G.; Andronic, M.M.; Baklykov, D.A.; Stukalova, V.E.; Ezenkova, D.A.; Zikiy, E.V.; Bashinova, M.V.; Solovev, A.A.; Lotkov, E.S.; Ryzhikov, I.A.; et al. Deep multilevel wet etching of fused silica glass microstructures in BOE solution. Sci. Rep. 2023, 13, 5228. [Google Scholar] [CrossRef]
- Schnarrenberger, M.; Zimmermann, L.; Mitze, T.; Bruns, J.; Petermann, K. Facet preparation of SOI waveguides by etching and cleaving compared to dicing and polishing. In Proceedings of the First IEEE International Conference on Group IV Photonics (GFP 2004), Hong Kong, China, 29 September–1 October 2004; IEEE: New York, NY, USA, 2004; pp. 72–74. [Google Scholar]
- Buzaverov, K.A.; Baburin, A.S.; Sergeev, E.V.; Avdeev, S.S.; Lotkov, E.S.; Andronic, M.; Stukalova, V.E.; Baklykov, D.A.; Dyakonov, I.V.; Skryabin, N.N.; et al. Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth. Opt. Express 2023, 31, 16227–16242. [Google Scholar] [CrossRef]
- Baklykov, D.A.; Andronic, M.; Sorokina, O.S.; Avdeev, S.S.; Buzaverov, K.A.; Ryzhikov, I.A.; Rodionov, I.A. Self-controlled cleaving method for silicon DRIE process cross-section characterization. Micromachines 2021, 12, 534. [Google Scholar] [CrossRef]
- Liao, Z.; Aitchison, J.S. Precision etching for multi-level AlGaAs waveguides. Opt. Mater. Express 2017, 7, 895–903. [Google Scholar] [CrossRef]
- Sacher, W.D.; Luo, X.; Yang, Y.; Chen, F.-D.; Lordello, T.; Mak, J.C.C.; Liu, X.; Hu, T.; Xue, T.; Lo, P.G.-Q.; et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200-mm silicon wafers. Opt. Express 2019, 27, 37400–37418. [Google Scholar] [CrossRef] [PubMed]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High-resolution optical frequency-domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef]
- Bauters, J.F.; Heck, M.J.R.; John, D.; Dai, D.; Tien, M.-C.; Barton, J.S.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express 2011, 19, 3163–3174. [Google Scholar] [CrossRef] [PubMed]
- Glombitza, U.; Brinkmeyer, E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Light. Technol. 1993, 11, 1377–1384. [Google Scholar] [CrossRef]









| Reference | Taper Length / Width | Coupling Efficiency, Measured (Calculated) | 3 dB Alignment Tolerance, μm Measured (Calculated) | Fiber Type (Mode Size, μm) | Waveguide Cross-Section/Technology | |
|---|---|---|---|---|---|---|
| TE Mode Losses, dB | Horizontal | Vertical | ||||
| [42] | 500 μm / 300 nm | 0.17 (0.087) | ±3.8 (±3.6) | ±3.6 (±3.5) | UHNA-3 (4.1 ± 0.3) | 100 × 900 nm/a single step litho |
| [35] | 500 μm / 180 nm | 2.00 | - | - | LPMFs (2.5 ± 0.3) | 400 × 700 nm/polished with diamond films |
| [39] | 45 μm / 750 nm | 1.47 (0.58) | – (±1.0) | – (±1.0) | UHNA-3 (4.1 ± 0.3) | 300 × 1000 nm/shadow mask |
| [48] | 76 μm / 200 nm | 0.36 (0.29) | ±3.5 | ±3.3 | UHNA-3 (4.1 ± 0.3) | 500 × 2000 nm/a single step litho |
| [46] | 100 μm / ~300 nm | 0.70 (0.70–0.80) | - | - | LPMFs (3.0) | 400 nm thick/ trident edge coupler, single etch step, no substrate removal 8 μm oxide thickness |
| [49] | - | 0.127 ± 0.018 | - | - | SMF-28 | - |
| - | 0.052 ± 0.012 | - | - | UHNA-4 | ||
| Current work | 360 μm/ 275 nm | 3.28 (2.52) | ±2.8 (±3.2) | ±2.4 (±2.9) | SMF-28 (10.5 ± 0.5) | 220 × 1200 nm/double step litho, 5 μm oxide thickness |
| 0.97 (1.55) | ±1.4 (±2.0) | ±1.1 (±1.5) | SM1500es (4 ± 0.5) | |||
| 1.25 (0.55) | ±0.9 (±1.5) | ±0.7 (±1.2) | LPMFs (2.5 ± 0.3) | |||
| 0.81 (0.75) | ±1.2 (±1.7) | ±0.8 (±1.3) | UHNA-7 (3.2 ± 0.3) | |||
| 280 μm/500 nm | 0.15 (0.10) | – (±1.2) | – (±0.9) | UHNA-7 (3.2 ± 0.3) | 20 × 1200 nm/double step litho, 8 μm oxide thickness | |
| Current work Multi-tip taper | 265 μm/ 8.55 μm | 1.50 (0.51) | – (±5) | – (± 3) | SMF-28 (10.5 ± 0.5) | 220 × 1200 nm/double step litho, 8 μm oxide thickness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avdeev, S.S.; Baburin, A.S.; Sergeev, E.V.; Kramarenko, A.B.; Belyaev, A.V.; Kushnev, D.V.; Buzaverov, K.A.; Stepanov, I.A.; Echeistov, V.V.; Loginov, A.S.; et al. High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics. Micromachines 2025, 16, 1401. https://doi.org/10.3390/mi16121401
Avdeev SS, Baburin AS, Sergeev EV, Kramarenko AB, Belyaev AV, Kushnev DV, Buzaverov KA, Stepanov IA, Echeistov VV, Loginov AS, et al. High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics. Micromachines. 2025; 16(12):1401. https://doi.org/10.3390/mi16121401
Chicago/Turabian StyleAvdeev, Sergey S., Aleksandr S. Baburin, Evgeniy V. Sergeev, Alexei B. Kramarenko, Arseniy V. Belyaev, Danil V. Kushnev, Kirill A. Buzaverov, Ilya A. Stepanov, Vladimir V. Echeistov, Ales S. Loginov, and et al. 2025. "High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics" Micromachines 16, no. 12: 1401. https://doi.org/10.3390/mi16121401
APA StyleAvdeev, S. S., Baburin, A. S., Sergeev, E. V., Kramarenko, A. B., Belyaev, A. V., Kushnev, D. V., Buzaverov, K. A., Stepanov, I. A., Echeistov, V. V., Loginov, A. S., Bukatin, S. V., Amiraslanov, A. S., Lotkov, E. S., Baklykov, D. A., & Rodionov, I. A. (2025). High-Efficiency Fiber Edge Coupling for Silicon Nitride Integrated Photonics. Micromachines, 16(12), 1401. https://doi.org/10.3390/mi16121401

