Metallic Particles in Sodium Battery Anodes: A Review
Abstract
1. Introduction
2. Sodium and Interface
3. Sodium Clusters in the Carbon Electrode
4. Sodium-Alloying
4.1. Tin
4.2. Antimony
4.3. Tellurium
4.4. Bismuth
4.5. Binders for Metals
5. Formation of Metallic Particles Through Conversion-Type Electrodes
5.1. Transition-Metal Oxides
- –
- Step 1. Veritable insertion of sodium ions into the host structure of the spinel in the range between ca. 3.0 and ca. 0.8 V. This step remains little explored.
- –
- Step 2. Destruction of the spinel structure and formation of NiO, CoO, and Na2O, at around 0.8–0.2 V. This intermediate step was particularly corroborated by Zhu et al. [127], using in situ TEM and electron diffraction patterns.
- –
- Step 3. Reduction of the oxides into metallic nickel and metallic cobalt, and further formation of sodium oxide near 0.0 V. This reduction process has been reported by several authors [25,123,124,125]. Thus, Zhu et al. observed the diffraction rings of metallic Co, Ni, and Na2O in the electron diffraction images of the fully sodiated product [123].

5.2. Transition-Metal Phosphides
5.3. Metal Sulfides
6. Innovative Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statements
Conflicts of Interest
Abbreviations
| SIBs | Sodium-ion batteries |
| SHE | Standard hydrogen electrode |
| LIBs | Lithium-ion batteries |
| SEI | Solid electrolyte interface |
| FEC | Fluoroethylene carbonate |
| LUMO | Lowest unoccupied molecular orbital |
| CTAI | Cetyltrimethylammonium iodide |
| LiTFSI | Lithium bis(trifluoromethanesulfonyl)imide |
| PC | Propylene carbonate |
| TTE | 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether |
| THF | Tetrahydrofuran |
| 2-MeTHF | 2-methyltetrahydrofuran |
| DFT | Density Functional Theory |
| EPR | Electron Paramagnetic Resonance |
| XPS | X-ray Photoelectron Spectroscopy |
| NMR | Nuclear Magnetic Resonance |
| MASNMR | Magic Angle Spinning Nuclear Magnetic Resonance |
| XRD | X-Ray Diffraction |
| SAXS | Small-Angle X-Ray Scattering |
| ReaxFF | Reactive Force Field |
| PTCDA | Perylene-3,4,9,10-tetracarboxylic dianhydride |
| PAA | Poly (acrylic acid) |
| GLY | Glycerin |
| PVP | Polyvinylpyrrolidone |
| PVDF | Poly (vinylidene fluoride) |
| MWCNT | Multi-walled carbon nanotubes |
| TEM | Transmission Electron Microscopy |
| SAED | Selected area electron diffraction |
| PECVD | Plasma-enhanced Chemical Vapor Deposition |
References
- Tarascon, J.-M. Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule 2020, 4, 1616–1620. [Google Scholar] [CrossRef]
- Rojo, T.; Hu, Y.-S.; Forsyth, M.; Li, X. Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1800880. [Google Scholar] [CrossRef]
- Xu, Z.; You, J.; Zhang, B.; Li, Y.; Wang, W. Enhancing carbonate ester electrolyte selection for sodium-metal batteries through simulation and experimental validation. J. Energy Storage 2025, 116, 116068. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, F.; Wang, Y.; Yao, Y.; Shao, Y.; Rui, X.; Wu, F.; Yu, Y. Heterogeneous Interfacial Layers Derived from the In Situ Reaction of CoF2 Nanoparticles with Sodium Metal for Dendrite-Free Na Metal Anodes. Adv. Energy Mater. 2022, 12, 2202323. [Google Scholar] [CrossRef]
- Xie, J.; Li, Z.; Zheng, X.; Tian, F.; Lei, D.; Wang, C. Built-In Electric Field of In Situ Formed Artificial Interface Layer Induces Fast and Uniform Sodium-Ions Transmission to Achieve a Long-Term Stable Sodium Metal Battery Under Harsh Conditions. Adv. Funct. Mater. 2024, 34, 2315309. [Google Scholar] [CrossRef]
- Mittal, N.; Tien, S.; Lizundia, E.; Niederberger, M. Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. Small 2022, 18, 2107183. [Google Scholar] [CrossRef]
- Li, J.; Peng, C.; Li, J.; Wang, J.; Zhang, H. Insight into Sodium Storage Behaviors in Hard Carbon by ReaxFF Molecular Dynamics Simulation. Energy Fuels 2022, 36, 5937–5952. [Google Scholar] [CrossRef]
- Yang, H.; Yang, C.; Zhang, Y.; Li, Q.; Zhang, J.; Lu, Z.; Chu, Y.; Yang, Q.-H.; Tao, Y. Carbon vacancies boost plateau sodium storage in sieving carbon anodes. Carbon 2025, 243, 120506. [Google Scholar] [CrossRef]
- Lv, H.; Yao, Q.; Zheng, C.; Sun, Y.; Qian, Z.; Wei, Z.; Xie, F.; Ahuja, R.; Yang, J. Anion-Dipole Repulsions Improve Low-Temperature Performance of μ-Sn for Advanced Sodium-Ion Batteries. Small 2025, 21, 2502038. [Google Scholar] [CrossRef]
- Albenga, C.; Gott, J.A.; Skurtveit, A.; Warnett, J.M.; Maddar, F.M.; Koposov, A.Y.; Pinzon, G.; West, G.; Hasa, I. Assessing the role of morphological changes as the origin of improved cycling stability of Sn-based anodes for sodium-ion batteries. J. Mater. Chem. A 2025, 13, 30967. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Wang, Y.; Hong, Z.; Zheng, L.; Zhang, Y.; Wei, M.; Lu, J. Highly Reversible Sodium Metal Batteries Enabled by Extraordinary Alloying Reaction of Single-Atom Antimony. Adv. Energy Mater. 2024, 15, 2403432. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, Y. Encapsulating Sb/MoS2 into Carbon Nanofibers via Electrospinning Towards Enhanced Sodium Storage. ChemistrySelect 2024, 9, e202400172. [Google Scholar] [CrossRef]
- Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321. [Google Scholar] [CrossRef]
- Farbod, B.; Cui, K.; Kalisvaart, W.P.; Kupsta, M.; Zahiri, B.; Kohandehghan, A.; Lotfabad, E.M.; Li, Z.; Luber, E.J.; Mitlin, D. Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys. ACS Nano 2014, 8, 4415–4429. [Google Scholar] [CrossRef]
- Fan, H.; Mao, P.; Sun, H.; Wang, Y.; Mofarah, S.S.; Koshy, P.; Arandiyan, H.; Wang, Z.; Liu, Y.; Shao, Z. Recent advances of metal telluride anodes for high-performance lithium/sodium–ion batteries. Mater. Horiz. 2022, 9, 524–546. [Google Scholar] [CrossRef]
- Hu, H.; Zhong, J.; Jian, B.; Zheng, C.; Zeng, Y.; Kou, C.; Xiao, Q.; Luo, Y.; Wang, H.; Guo, Z.; et al. In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage. Nanomaterials 2024, 14, 118. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, H.; Yang, C.; Liu, Z.; Wen, D.; Peng, X.; Li, S.; Wu, X. Constructing FeTe2 nanoparticles embedded in N-doped carbon nanofiber composites as a long-life and high-rate anode material for sodium-ion batteries. Sustain. Energy Fuels 2024, 8, 934–941. [Google Scholar] [CrossRef]
- Su, D.; Dou, S.; Wang, G. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, S.; Zhang, H.; Yan, Y.; Peng, Z.; Zhao, H. Bismuth nanoparticles embedded in carbon fibers as flexible and free-standing anodes for efficient sodium ion batteries. RSC Adv. 2024, 14, 39921–39926. [Google Scholar] [CrossRef]
- Xu, L.T.; Yuan, Y.F.; Shen, S.H.; Zhu, M.; Wang, B.X.; Huang, X.H.; Guo, S.Y. Metallic bismuth nanoparticles encapsulated within nanoporous hollow carbon sphere/polydopamine-derived carbon shell for stable and rapid sodium storage. J. Power Sources 2025, 629, 236066. [Google Scholar] [CrossRef]
- Bai, J.; Jia, J.H.; Wang, Y.; Yang, C.C.; Jiang, Q. Ideal Bi-Based Hybrid Anode Material for Ultrafast Charging of Sodium-Ion Batteries at Extremely Low Temperatures. Nano Micro Lett. 2025, 17, 60. [Google Scholar] [CrossRef]
- Wang, X.; Feng, B.; Huang, L.; Fu, Q.; Li, W.; Zhu, C.; Chen, P.; Yang, C.; Ding, Y.-L. Superior electrochemical performance of Sb-Bi alloy for sodium storage: Understanding from alloying element effects and new cause of capacity attenuation. J. Power Sources 2021, 520, 230826. [Google Scholar] [CrossRef]
- Pu, B.; Liu, Y.; Bai, J.; Chu, X.; Zhou, X.; Qing, Y.; Wang, Y.; Zhang, M.; Ma, Q.; Xu, Z.; et al. Iodine-Ion-Assisted Galvanic Replacement Synthesis of Bismuth Nanotubes for Ultrafast and Ultrastable Sodium Storage. ACS Nano 2022, 16, 18746–18756. [Google Scholar] [CrossRef]
- Kuroiwa, M.; Sato, F.; Honma, T.; Daiko, Y. Synthesis of highly dispersed metallic bismuth nanoparticles in CuO–Bi2O3–SiO2 glass-ceramics for sodium ion battery anode. J. Solid State Chem. 2024, 338, 124838. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Liao, H.; Zheng, Y.; Fu, X.; Lu, J.; Cheng, S.; Gao, Y. Progress and Prospect of Bimetallic Oxides for Sodium-Ion Batteries: Synthesis, Mechanism, and Optimization Strategy. ACS Nano 2024, 18, 7796–7824. [Google Scholar] [CrossRef]
- Li, L.; Ding, Y.; Yu, D.; Li, L.; Ramakrishna, S.; Peng, S. Electrospun NiCo2O4 Nanotubes as Anodes for Li- and Na-Ion Batteries. J. Alloys Compd. 2019, 777, 1286–1293. [Google Scholar] [CrossRef]
- Muhamad, S.U.; Idris, N.H.; Yusoff, H.M.; Majid, S.R.; Din, M.F.M.; Noerochim, L. Enhanced reversible sodium storage performance in CoFe2O4 nanoparticles as an anode material for sodium-ion batteries. Ionics 2025, 31, 2487–2500. [Google Scholar] [CrossRef]
- Zhao, M.; Xiong, J.; Yang, Y.; Zhao, J. Template-Assisted Synthesis of Honeycomb-Like CoFe2O4/CNTs/rGO Composite as Anode Material for Li/Na-Ion Batteries. ChemElectroChem 2019, 6, 3468. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Zhu, G.; Lu, T.; Pan, L. Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 2017, 499, 145–150. [Google Scholar] [CrossRef]
- Iturrondobeitia, A.; Goñi, A.; Gil de Muro, I.; Lezama, L.; Rojo, T. Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes. Nanomaterials 2017, 7, 423. [Google Scholar] [CrossRef]
- Vincent, M.; Sajeev, S.; Srivastava, M.; Kowalska, E.; Srinivasan, S.; Kowalski, D. Hierarchical Co3O4 anode for high-performance Na-ion battery. Electrochim. Acta 2025, 509, 145309. [Google Scholar] [CrossRef]
- Jiang, L.; Xu, W.; Yao, J.; Chen, H.; Li, Y.; Lei, C. Sodium storage properties and mechanism of three-dimensional rose-like CoNiO2 as anode for sodium-ion batteries. J. Power Sources 2025, 648, 237342. [Google Scholar] [CrossRef]
- Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. Rational Design of Three-Dimensional Graphene Encapsulated with Hollow FeP@Carbon Nanocomposite as Outstanding Anode Material for Lithium Ion and Sodium Ion Batteries. ACS Nano 2017, 11, 11602–11616. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Chen, H.; Lv, X.; Jiang, Y.; Feng, Y.; Rui, X.; Yu, Y. Advances in metal phosphides for sodium-ion batteries. SusMat 2021, 1, 359–392. [Google Scholar] [CrossRef]
- Dou, Y.; Yue, L.; Song, W.; Feng, Y.; Zhang, L.; Shi, R.; Jiang, L.; Song, J.; Qu, Y.; Qi, G.; et al. Interfacial engineering via Mott-Schottky heterojunction enables high-rate capability and cycling life in FeS2 anodes for sodium-ion batteries. J. Alloys Compd. 2025, 1035, 181492. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-S.; Park, J.-W.; Nam, T.-H.; Kim, K.-W.; Ahn, J.-H.; Wang, G.; Ahn, H.-J. Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427–432. [Google Scholar] [CrossRef]
- David, L.; Bhandavat, R.; Singh, G. MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano 2014, 8, 1759–1770. [Google Scholar] [CrossRef]
- González, J.R.; Alcántara, R.; Tirado, J.L.; Fielding, A.J.; Dryfe, R.A.W. Electrochemical Interaction of Few-Layer Molybdenum Disulfide Composites vs Sodium: New Insights on the Reaction Mechanism. Chem. Mater. 2017, 29, 5886–5895. [Google Scholar] [CrossRef]
- Arcon, D.; Zorko, A.; Cevc, P.; Mrzel, A.; Remskar, M.; Dominko, R.; Gaberscek, M.; Mihailović, D. Electron spin resonance of doped chalcogenide nanotubes. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 67, 125423. [Google Scholar] [CrossRef]
- Bi, H.; Ma, L.; Li, Y.; Hu, J.; Ma, H.; Li, R.; Ma, X.; Chen, J.; Huang, H.; Wang, X.; et al. The influence of crystal growth mechanism based on various sulfur sources on the morphology, component and electrochemical performance of cobalt sulfide as anode material for sodium-ion batteries. J. Alloys Compd. 2022, 907, 164483. [Google Scholar] [CrossRef]
- Song, J.-X.; Deng, D.-R.; Cai, S.-L.; Huang, H.; Li, G.-F.; Zeng, Y.; Weng, J.-C.; Fan, X.-H.; Li, Y.; Wu, Q.-H. Effective protection for cobalt sulfide constructed using a three-layer core-shell structure in biomass carbon for sodium ion batteries. J. Power Sources 2025, 629, 236056. [Google Scholar] [CrossRef]
- Zhang, S.; Zuo, W.; Fu, X.; Li, J.; Zhang, Q.; Yang, W.; Chen, H.; Zhang, J.; Xiao, X.; Amine, K.; et al. High-entropy sulfoselenide as negative electrodes with fast kinetics and high stability for sodium-ion batteries. Nat. Commun. 2025, 16, 4052. [Google Scholar] [CrossRef]
- Kusada, K.; Kitagawa, H. Phase Control in Monometallic and Alloy Nanomaterials. Chem. Rev. 2025, 125, 599–659. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Das, P.; Lu, P.; Yu, Y.; Wu, Z. Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Struct. 2020, 1, 2000053. [Google Scholar] [CrossRef]
- Cabello, M.; Ortiz, G.F.; López, M.C.; Alcántara, R.; González, J.R.; Tirado, J.L.; Stoyanova, R.; Zhecheva, E. Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries. J. Alloys Compd. 2015, 646, 816–826. [Google Scholar] [CrossRef]
- Moghadami, M.; Massoudi, A.; Nangir, M. Unveiling the recent advances in micro-electrode materials and configurations for sodium-ion micro-batteries. J. Mater. Chem. A 2024, 12, 17923–17957. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Z.L. Design and manufacture of high-performance microbatteries: Lithium and beyond. Microstructures 2022, 2, 2022012. [Google Scholar] [CrossRef]
- Huang, F.; Xu, P.; Fang, G.; Liang, S. In-Depth Understanding of Interfacial Na+ Behaviors in Sodium Metal Anode: Migration, Desolvation, and Deposition. Adv. Mater. 2024, 36, 2405310. [Google Scholar] [CrossRef]
- Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168. [Google Scholar] [CrossRef]
- Pérez-Vicente, C.; Alcántara, R. New perspectives on the multianion approach to adapt electrode materials for lithium and post-lithium batteries. Phys. Chem. Chem. Phys. 2023, 25, 15600–15623. [Google Scholar] [CrossRef]
- Ali, M.; Iqbal, S.; Ali, M.; Aman, S.; Chishti, A.N.; Zhang, J.; Shen, Z.; Huang, H.; Yousaf, M.; Jiang, Y. Tailoring the NaI-rich solid electrolyte interphase for enhanced stability in sodium metal batteries. J. Power Sources 2025, 640, 236733. [Google Scholar] [CrossRef]
- Xia, L.; Lin, L.; Li, J.; Zhang, Y.; Zheng, H.; Chang, X.; Liang, J.; Sa, B.; Wang, L.; Lin, J.; et al. Lithium-containing hybrid SEI layer enabling high mass loading and anode-less sodium metal batteries. Angew. Chem. Int. Ed. 2025, 64, e202423090. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Li, H.; Qiao, R. Low-Concentration Electrolyte Design for Wide-Temperature Operation in Sodium Metal Batteries. J. Electrochem. Soc. 2025, 172, 010501. [Google Scholar] [CrossRef]
- You, S.; Ye, M.; Xiong, J.; Hu, Z.; Zhang, Y.; Yang, Y.; Li, C.C. Interfacial Protection Engineering of Sodium Nanoparticles toward Dendrite-Free and Long-Life Sodium Metal Battery. Small 2021, 17, 2102400. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, C.; Yao, Q.; Lv, H.; Ma, H.; Yang, J. Rational Screening of Siloxane Molecules as Electrolyte Additives for High-Temperature Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2025, 64, e202420573. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Chen, Z.; Zhong, Y.; Wang, X.; Tu, J. Semi-Solid Na-K Alloy Anode with Enhanced Stabilities for Advanced Sodium-Ion Batteries. Adv. Funct. Mater. 2025, 35, 2502682. [Google Scholar] [CrossRef]
- Ruan, J.; Hu, J.; Li, Q.; Luo, S.; Yang, J.; Liu, Y.; Zheng, S.; Sun, D.; Fang, F.; Wang, F. Current collector interphase design for high-energy and stable anode-less sodium batteries. Nat. Sustain. 2025, 8, 530–541. [Google Scholar] [CrossRef]
- Chen, C.; Yang, R.; Zhu, J.; Yao, W.; Tang, Y. Superior Sodium Metal Anodes Enabled by 3D Hierarchical Metallic Scaffolds with Enhanced Sodiophilicity. Adv. Sci. 2025, 12, 2500756. [Google Scholar] [CrossRef] [PubMed]
- Huwig, K.; Grigoryan, V.G.; Springborg, M. Global Optimization of Li and Na Clusters: Application of a Modified Embedded Atom Method. J. Clust. Sci. 2020, 31, 769–790. [Google Scholar] [CrossRef]
- Ghazi, S.M.; Mahmoudi, M. Statistical and data visualization techniques to study the role of one-electron in the energy of neutral and charged clusters of Na39. Sci. Rep. 2025, 15, 1739. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Merinov, B.V.; Goddard, W.A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Zhong, L.; Geng, F.; Tao, Y.; Geng, C.; Li, S.; Hu, B.; Yang, Q.-H. Unraveling the Key Atomic Interactions in Determining the Varying Li/Na/K Storage Mechanism of Hard Carbon Anodes. Adv. Energy Mater. 2022, 12, 2201734. [Google Scholar] [CrossRef]
- Eren, E.O.; Esen, C.; Scoppola, E.; Song, Z.; Senokos, E.; Zschiesche, H.; Cruz, D.; Lauermann, I.; Tarakina, N.V.; Kumru, B.; et al. Microporous Sulfur–Carbon Materials with Extended Sodium Storage Window. Adv. Sci. 2024, 11, 2310196. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.O.; Senokos, E.; Scoppola, E.; Song, Z.; Antonietti, M.; Giusto, P. An enhanced three-stage model for sodium storage in hard carbons. Energy Environ. Sci. 2025, 18, 7859–7868. [Google Scholar] [CrossRef] [PubMed]
- Bommier, C.; Surta, T.W.; Dolgos, M.; Ji, X. New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. Nano Lett. 2015, 15, 5888–5892. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.A.; Dahn, J.R. High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries. J. Electrochem. Soc. 2000, 147, 1271. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, H.; Wang, X.; Xie, X.; Li, Y.; Ma, G.; Lei, Z. Micropore filling and sodium cluster formation in optimized hard carbon for robust sodium storage. J. Energy. Chem. 2025, 108, 118. [Google Scholar] [CrossRef]
- Morikawa, Y.; Nishimura, S.; Hashimoto, R.; Ohnuma, M.; Yamada, A. Mechanism of Sodium Storage in Hard Carbon: An X-Ray Scattering Analysis. Adv. Energy Mater. 2020, 10, 1903176. [Google Scholar] [CrossRef]
- Escher, I.; Ferrero, G.A.; Goktas, M.; Adelhelm, P. In Situ (Operando) Electrochemical Dilatometry as a Method to Distinguish Charge Storage Mechanisms and Metal Plating Processes for Sodium and Lithium Ions in Hard Carbon Battery Electrodes. Adv. Mater. Interfaces 2022, 9, 2100596. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, X.; Bai, Y.; Yang, H.; Dong, R.; Wang, X.; Xu, H.; Wang, Q.; Li, H.; Gao, H.; et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854. [Google Scholar] [CrossRef]
- Stratford, J.M.; Allan, P.K.; Pecher, O.; Chater, P.A.; Grey, C.P. Mechanistic Insights into Sodium Storage in Hard Carbon Anodes Using Local Structure Probes. Chem. Commun. 2016, 52, 12430–12433. [Google Scholar] [CrossRef]
- Qiu, C.; Li, A.; Qiu, D.; Wu, Y.; Jiang, Z.; Zhang, J.; Xiao, J.; Yuan, R.; Jiang, Z.; Liu, X.; et al. One-Step Construction of Closed Pores Enabling High Plateau Capacity Hard Carbon Anodes for Sodium-Ion Batteries: Closed-Pore Formation and Energy Storage Mechanisms. ACS Nano 2024, 18, 11941–11954. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Rubio, S.; Lavela, P.; Tirado, J.T.; Alcántara, R. From acorn to microporous carbon for sustainable sodium-ion battery. J. Electroanal. Chem. 2025, 980, 118988. [Google Scholar] [CrossRef]
- Cheng, M.-G.; Xie, L.-J.; Yi, Z.L.; Mao, Y.-X.; Su, F.-Y.; Wey, X.-X.; Sun, G.-H.; Chen, C.-M. Preparation of Enriched Closed-Pores Hard Carbon for High-Performance Sodium-Ion Batteries by the Poly (vinyl butyral) Template Method. ACS Appl. Energy Mater. 2024, 7, 3452–3461. [Google Scholar] [CrossRef]
- Huang, Q.; You, S.; Yang, C. Surface Porousization of Hard Carbon Anode Materials for Sodium-Ion Batteries. Micromachines 2025, 16, 771. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Li, Y.; Sun, Y.; Fielding, A.J.; Iamprasertkun, P.; Yang, J.; Wang, B.; Li, Q.; Wu, M.; et al. Evaluation of the Impact of Conductive Additives on the EPR Spectra of Hard Carbon Anodes. Small Methods 2025, 2500786. [Google Scholar] [CrossRef]
- Wang, B.; Fitzpatrick, J.R.; Brookfield, A.; Fielding, A.J.; Reynolds, E.; Entwistle, J.; Tong, J.; Spencer, B.F.; Baldock, S.; Hunter, K.; et al. Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 2024, 15, 3013. [Google Scholar] [CrossRef]
- Kukeva, R.R.; Kalapsazova, M.; Harizanova, S.; Uzunov, I.M.; Markov, P.; Spassova, I.; Stoyanova, R. Electron Paramagnetic Resonance Monitoring of Sodium Clustering and Its Effect on the Sodium Storage of Biowaste-Derived Carbons. ACS Appl. Energy Mater. 2024, 7, 9543–9550. [Google Scholar] [CrossRef]
- Cui, J.; Li, W.; Su, P.; Song, X.; Ye, W.; Zhang, Y.; Chen, Z. Repair Surface Defects on Biomass Derived Hard Carbon Anodes with N-Doped Soft Carbon to Boost Performance for Sodium-Ion Batteries. Adv. Energy Mater. 2025, 15, 2502082. [Google Scholar] [CrossRef]
- Morita, R.; Gotoh, K.; Kubota, K.; Komaba, S.; Hashi, K.; Shimizu, T.; Ishida, H. Correlation of Carbonization Condition with Metallic Property of Sodium Clusters Formed in Hard Carbon Studied Using 23Na Nuclear Magnetic Resonance. Carbon 2019, 145, 712–715. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Xie, X.; Li, Y.; Peng, H.; Ma, G.; Lei, Z. Dual-regulation of pore confinement and mouth size for enhanced sodium storage in hard carbon. J. Energy Chem. 2026, 112, 1–12. [Google Scholar] [CrossRef]
- Shan, P.; Chen, J.; Tao, M.; Zhao, D.; Lin, H.; Fu, R.; Yang, Y. The applications of solid-state NMR and MRI techniques in the study of rechargeable sodium-ion batteries. J. Magn. Reson. 2023, 353, 107516. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Di, M.; Zhang, X.; Wang, Z.; Chen, S.; Zhang, Q.; Bai, Y. Nanoconfined Strategy Optimizing Hard Carbon for Robust Sodium Storage. Adv. Energy Mater. 2024, 14, 2401763. [Google Scholar] [CrossRef]
- Yu, X.; Yang, D.; Qiu, X.; Xiong, X.; Yi, C.; Lou, H.; Liu, W.; Zhang, W. Self-activated micropores tailor carbon layer stacking and graphitic microstructures for high-performance sodium storage. J. Energy Chem. 2025, 107, 660–670. [Google Scholar] [CrossRef]
- Youn, Y.; Gao, B.; Kamiyama, A.; Kubota, K.; Komaba, S.; Tateyama, Y. Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. NPJ Comput. Mater. 2021, 7, 48. [Google Scholar] [CrossRef]
- Xie, Y.; Li, S.; Xie, S.; Zhang, Y.; Fan, Z.; Chen, Y.; Zhu, J.; Dou, Q.; Yan, X. Molecular-level biomass composition and crosslinking regulation towards hard carbon with high initial Coulombic efficiency for sodium-ion battery. Sci. China Mater. 2025, 68, 2408–2418. [Google Scholar] [CrossRef]
- Xie, F.; Niu, Y.; Zhang, Q.; Guo, Z.; Hu, Z.; Zhou, Q.; Xu, Z.; Li, Y.; Yan, R.; Lu, Y.; et al. Screening Heteroatom Configurations for Reversible Sloping Capacity Promises High-Power Na-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202116394. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, X.; Hu, X.; Li, Y.; Wang, K.; Tu, H.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region. Adv. Funct. Mater. 2024, 34, 2308392. [Google Scholar] [CrossRef]
- Medina, A.; Alcántara, R.; Lavela, P.; Tirado, J.L. A facile method to transform pickled olive wastes into sulfur-doped carbon for sodium-ion battery electrode. ChemSusChem 2024, 17, e202400708. [Google Scholar] [CrossRef]
- Xiao, S.; Guo, Y.-J.; Chen, H.-X.; Liu, H.; Lei, Z.-Q.; Huang, L.-B.; Jin, R.-X.; Su, X.-C.; Zhang, Q.; Guo, Y.-G. Insight into the Role of Closed-Pore Size on Rate Capability of Hard Carbon for Fast-Charging Sodium-Ion Batteries. Adv. Mater. 2025, 37, 2501434. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Tang, Y.; Wang, J.; Zhong, Y.; Guo, C.; Shi, L.; Hu, M.; Ding, J. Regulating closed pores structure of hard carbon anodes to boost plateau storage for advanced sodium-ion batteries. J. Energy Storage 2025, 129, 117379. [Google Scholar] [CrossRef]
- Guo, L.; Qiu, C.; Liu, H.; Yuan, R.; Li, X.; Li, X.; Li, K.; Zhu, W.; Tabish, M.; Liu, X.; et al. Spatial configuration engineering of phenolic resins to tune the closed pores of hard carbon for enhanced plateau-capacity sodium storage. Chem. Eng. J. 2025, 512, 162478. [Google Scholar] [CrossRef]
- Alcántara, R.; Lavela, P.; Ortiz, G.F.; Tirado, J.T. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid State Lett. 2005, 8, A222. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Zhang, J.; Guo, L.; Zhang, H.; Yuan, R.; Liu, H.; Li, A.; Chen, X.; Song, H. C60 to Modulate the Closed Pore Structures of Hard Carbon for High-Performance Sodium-Ion Batteries. ACS Nano 2025, 19, 14829–14838. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiorski, J.; Morawski, A.W.; Konno, H.; Inagaki, M. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 2010, 48, 2690–2707. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. A general and facile synthesis strategy towards highly porous carbons: Carbonization of organic salts. J. Mater. Chem. A 2013, 1, 13738–13741. [Google Scholar] [CrossRef]
- Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-Template Synthesis of Extremely High Capacity Hard Carbon for Na-Ion Battery. Angew. Chem. Int. Ed. 2021, 60, 5114–5120. [Google Scholar] [CrossRef]
- Wang, N.; Bai, Z.; Lu, Z.; Tang, B. Method for Preparing Porous Carbon Material for Lithium/Sodium-Ion Battery. CN106654268A. 9 December 2016. Available online: https://worldwide.espacenet.com/patent/search/family/058824758/publication/CN106654268A?q=pn%3DCN106654268A (accessed on 1 December 2025).
- Chen, X.; Tian, J.; Li, P.; Fang, Y.; Fang, Y.; Liang, X.; Feng, J.; Dong, J.; Ai, X.; Yang, H.; et al. An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an “Adsorption-Intercalation/Filling” Hybrid Mechanism. Adv. Energy Mater. 2022, 12, 2200886. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Wang, X.; Peng, Y.; Liu, Y.; Ullah, S.; Duan, Z.; Gao, W.; Song, B.; Wei, M.; et al. Evidence of Quasi-Na Metallic Clusters in Sodium Ion Batteries Through in Situ X-Ray Diffraction. Adv. Mater. 2025, 37, 2410673. [Google Scholar] [CrossRef]
- Jia, Z.; Duan, Y.; Chen, X.; Sun, Z.; Liu, L.; Fu, L.; Chen, Y.; Wang, F.; Wang, T.; Wu, Y. Active Component Design of Amorphous SnPx/SnSx and Interfacial Bonding Engineering in N/P/S-Doped Hard Carbon for High-Rate Sodium-Ion Hybrid Capacitors. Adv. Sci. 2025, 12, e06532. [Google Scholar] [CrossRef]
- Zhong, L.; Qiu, X.; Hao, S.; Jiang, Z.; Zhang, W. Molecular pillaring driven microcrystalline structure engineering of hard carbon for high-rate sodium storage. Chem. Eng. J. 2025, 516, 164007. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, L.; Zhong, Y. Construction of Porous Sulfur-Doped Petroleum Coke-Derived Carbon Materials with Adjustable Interlayer Spacing via a Low-Temperature Sulfurization Strategy and Its Efficient Sodium Storage Mechanism. Ind. Eng. Chem. Res. 2025, 64, 17732–17749. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, G.; Wang, C.; Wan, F.; Qiu, L.; Xiao, Y.; Wu, Z.; Guo, X. Closed-Pore Engineering Based on Spatiotemporally Partitioned Radical Editing for High-Performance Hard Carbon Anodes in Sodium-Ion Batteries. Adv. Funct. Mater. 2025, e15405. [Google Scholar] [CrossRef]
- Niu, J.; Dong, J.; Zhang, X.; Huang, L.; Guoli, L.; Han, X.; Wang, J.; Gong, T.; Chen, Z.; Zhao, J.; et al. Sodium cluster-driven safety concerns of sodium-ion batteries. Energy Environ. Sci. 2025, 18, 2474–2484. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Wang, J.W.; Liu, X.H.; Huang, J.Y. Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction. Nano Lett. 2012, 12, 5897–5902. [Google Scholar] [CrossRef]
- González, J.R.; Nacimiento, F.; Alcántara, R.; Ortiz, G.F.; Tirado, J.L. Electrodeposited CoSn2 on nickel open-cell foam: Advancing towards high power lithium ion and sodium ion batteries. CrystEngComm. 2013, 15, 9196. [Google Scholar] [CrossRef]
- Kempf, A.; Zajac, M.G.; Riedel, R. High-Capacity C/Sn-Composites as Next-Generation Anodes for Sodium-Ion Batteries. ACS Mater. Lett. 2025, 7, 275–285. [Google Scholar] [CrossRef]
- Lim, H.; Yu, S.; Chang, W.; Yoon, K.; Chung, K.Y.; Choi, W.; Kim, S.-O. Boosting the Sodiation Kinetics of Sn Anode Using a Yolk-Shell Nanohybrid Structure for High-Rate and Ultrastable Sodium-Ion Batteries. Adv. Sci. 2024, 11, 2408450. [Google Scholar] [CrossRef]
- Jiang, F.; Luo, F.; Fan, Q.; Guo, P.; Liao, Y.; Chen, M.; Liu, C.; Chen, J.; Wang, D.; Zheng, Z. A composite material consisting of tin nanospheres anchored on and embedded in carbon nanofibers for outstanding sodium-ion storage. J. Electroanal. Chem. 2024, 959, 118186. [Google Scholar] [CrossRef]
- Lai, Q.; Wei, R.; Yang, R.; Li, Q.; Mou, K.; Yang, D.; Liu, Z.; Gao, X.-W.; Gu, Q.; Luo, W.-B. Reversible Na15Sn4 alloy compensation for hard carbon anodes to enhance the initial coulombic efficiency in sodium-ion full cells. Chem. Commun. 2025, 61, 8363–8366. [Google Scholar] [CrossRef]
- Kim, C.; Kim, I.; Kim, H.; Sadan, M.K.; Yeo, H.; Cho, G.-B.; Ahn, J.; Ahn, J.-H.; Ahn, H.-J. A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 22809–22818. [Google Scholar] [CrossRef]
- Luo, W.; Li, F.; Gaumet, J.-J.; Magri, P.; Diliberto, S.; Zhou, L.; Mai, L. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1703237. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Z.; Liu, C.; Liao, H.; Li, Z.; Jiang, Y.; Hou, Y.; Sun, L.; Gao, Y. A self-encapsulation hollow structure design for high-capacity and fast-charging sodium-ion batteries at high-temperature. Chem. Eng. J. 2025, 510, 161745. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, X.; Zhao, J.; He, P.; Ding, X. Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes. Electrochim. Acta 2023, 439, 141602. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, C.; Zhang, Z.; Liao, H.; Li, Z.; Jiang, Y.; Hou, Y.; Sun, L.; Su, J.; Gao, Y. Regulating (010) Exposed Facets of a Sb2O3 Anode to Achieve High-Performance Sodium-Ion Batteries. Nano Lett. 2025, 25, 5461–5468. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, C.; Zhang, S.; Hu, X.; Zhang, K.; Zhou, W.; Guo, S.; Xu, F.; Zeng, H. Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Lett. 2019, 19, 1118–1123. [Google Scholar] [CrossRef]
- Ali, M.; Sun, J.; Li, Z.; Liang, H.; Liu, C. Mechanisms and Properties of Bismuthene and Graphene/Bismuthene Heterostructures as Anodes of Lithium-/Sodium-Ion Batteries by First-Principles Study. J. Phys. Chem. C 2021, 125, 11391–11401. [Google Scholar] [CrossRef]
- Mu, B.; Wang, G.; Chi, C.; Cao, K.; Li, Z.; Qi, B.; Miao, Q.; Wu, D.; Wei, T.; Fan, Z. Heterostructured Bi@Bi2O3 nanoparticles bonding on reduced graphene oxide with high-rate capability and outstanding cycling stability for sodium-ion batteries. Carbon 2025, 240, 120370. [Google Scholar] [CrossRef]
- Wang, C.; Su, L.; Wang, N.; Lv, D.; Wang, D.; Yang, J.; Qian, Y. Unravelling binder chemistry in sodium/potassium ion batteries for superior electrochemical performances. Mater. Chem. A 2022, 10, 4060–4067. [Google Scholar] [CrossRef]
- Yao, Q.; Zhu, Y.; Zheng, C.; Wang, N.; Wang, D.; Tian, F.; Bai, Z.; Yang, J.; Qian, Y.; Dou, S. Intermolecular Cross-Linking Reinforces Polymer Binders for Durable Alloy-Type Anode Materials of Sodium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2202939. [Google Scholar] [CrossRef]
- Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J.T. NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chem. Mater. 2002, 14, 2847–2848. [Google Scholar] [CrossRef]
- Chadwick, A.V.; Savin, S.L.P.; Fiddy, S.; Alcantara, R.; Fernandez Lisbona, D.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-ray Absorption Spectroscopic Study. J. Phys. Chem. C 2007, 111, 4636–4642. [Google Scholar] [CrossRef]
- Thissen, A.; Ensling, D.; Madrigal, F.J.F.; Jaegermann, W.; Alcántara, R.; Lavela, P.; Tirado, J.L. Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chem. Mater. 2005, 17, 5202. [Google Scholar] [CrossRef]
- Chang, T.-C.; Lu, Y.T.; Lee, C.H.; Gupta, J.K.; Hardwick, L.J.; Hu, C.-C.; Chen, H.T. The Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo2O4: A Density Functional Theory Study. ACS Omega 2021, 6, 9692–9699. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xu, F.; Min, H.; Huang, Y.; Xia, W.; Wang, Y.; Xu, Q.; Gao, P.; Sun, L. Identifying the Conversion Mechanism of NiCo2O4 during Sodiation–Desodiation Cycling by In Situ TEM. Adv. Funct. Mater. 2017, 27, 1606163. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, P.; Zhang, Z.; Zhao, Y.; Zhang, Y.; Li, L.; Yang, K.; Li, X.; Gu, L. Nickel/cobalt metal-organic framework derived 1D hierarchical NiCo2O4/NiO/carbon nanofibers for advanced sodium storage. Chem. Eng. J. 2019, 364, 123–131. [Google Scholar] [CrossRef]
- Chen, J.; Ru, Q.; Mo, Y.; Hu, S.; Hou, X. Design and Synthesis of Hollow NiCo2O4 Nanoboxes as Anodes for Lithium-Ion and Sodium-Ion Batteries. Phys. Chem. Chem. Phys. 2016, 18, 18949–18957. [Google Scholar] [CrossRef]
- Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K.Y.; Shao, M. Hierarchical NiCo2O4 Micro- and Nanostructures with Tunable Morphologies as Anode Materials for Lithium- and Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 16194–16201. [Google Scholar] [CrossRef]
- Tang, X.; Ren, Q.; Yu, F.-D.; Wang, Z.-B. The improved cycling stability of nanostructured NiCo2O4 anodes for lithium and sodium ion batteries. Ionics 2023, 29, 3943–3954. [Google Scholar] [CrossRef]
- Lee, J.W.; Shin, H.S.; Lee, C.W.; Jung, K.N. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction. Nanoscale Res. Lett. 2016, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- López, M.C.; Aragón, M.J.; Ortiz, G.F.; Lavela, P.; Alcántara, R.; Tirado, J.L. High Performance Full Sodium-Ion Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. Chem. Eur. J. 2015, 21, 14879–14885. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X.; et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. Edge Sites-Driven Accelerated Kinetics in Ultrafine Fe2O3 Nanocrystals Anchored Graphene for Enhanced Alkali Metal Ion Storage. Chem. Eng. J. 2022, 428, 131204. [Google Scholar] [CrossRef]
- Guo, S.; Ait Tamerd, M.; Li, C.; Shi, X.; Yang, M.; Hou, J.; Liu, J.; Tang, M.; Haw, S.-C.; Chen, C.-T.; et al. Activating Sodium Intercalation in Cation-Deficient Fe3O4 Through Mo Substitution. Small 2025, 21, 2408212. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Liu, X.; Fan, J.; Ren, L.; Tong, J. Ni2P/Cu3P bimetallic phosphide embedded in nitrogen-doped carbon as SIB anode: Constructed hetero interface promoting fast Na+ diffusion and storage performance. Chem. Eng. J. 2024, 502, 157889. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, J.; Zhang, Y.; Qu, W.; Wang, W.; Yao, M.; Zhang, Y.; Wang, Q.; Tang, Y. Revealing Na+-coordination induced Failure Mechanism of Metal Sulfide Anode for Sodium Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202403463. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Y.; Zhou, H.; Wang, X.; Sun, S.; He, X.; Luo, Y.; Ying, B.; Yao, Y.; Ma, X.; et al. Optimizing Reversible Phase-Transformation of FeS2 Anode via Atomic-Interface Engineering Toward Fast-Charging Sodium Storage: Theoretical Predication and Experimental Validation. Adv. Sci. 2025, 12, 2411884. [Google Scholar] [CrossRef]
- Sahoo, S.; Garlapati, K.K.; Martha, S.K. Design of NH2- MIL-101(Fe) Derived N, S Co-Doped Carbon Encapsulated Iron Pyrrhotite Anode for Sodium-Ion Batteries: Mechanistic Correlation of Degradation Pathways. Small 2025, 21, 2504016. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Wang, J.; Zhu, Z.; Wu, R.; Niu, X.; Jiang, J.; Li, H.; Chen, J.S. Encapsulating tin disulfide nanoparticles in carbon nanofibers for durable sodium storage. J. Solid State Chem. 2025, 346, 125279. [Google Scholar] [CrossRef]
- Samad, A.; Noord-A-Alam, M.; Shin, Y.-H. First principles study of a SnS2/graphene heterostructure: A promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A 2016, 4, 14316. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Wang, C.; Jin, W.; Li, Y.; Wang, H.; Ding, C.; Wang, Z. First-principles insight into SnS2/graphene heterostructure as potential anode materials for rechargeable lithium/sodium ion batteries. Chem. Phys. 2025, 594, 112664. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, F.; Xue, S.; Yu, D.; Jin, Y.; Song, L.; Zhang, M.; Zheng, H. Constructing ZnS@hard carbon nanosheets for high-performance and long-cycle sodium-ion batteries. Chem. Eng. J. 2025, 509, 161551. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, Z.; Goli, N.; Podjaski, F.; Zheng, K.; Jiang, J.; Ramadan, S.; Kerherve, G.; Tagliaferri, S.; Och, M.; et al. Photo-Rechargeable Sodium-Ion Batteries with a Two-Dimensional MoSe2 Crystal Cathode. Nano Lett. 2025, 25, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, M.; Wu, Y.; Ren, R.; Ge, Q.; Fan, L.; Qin, P.; Qian, J.; Ding, X. High-entropy BiSnSbCuAl nanoalloys conformed in carbon fibers as fast-charging and high-capacity anode material for sodium-ion batteries. J. Power Sources 2025, 652, 237600. [Google Scholar] [CrossRef]
- Li, H.; Ding, Y.; Ha, H.; Shi, Y.; Peng, L.; Zhang, X.; Ellison, C.J.; Yu, G. An All-Stretchable-Component Sodium-Ion Full Battery. Adv. Mater. 2017, 29, 1700898. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Li, Y.; Fang, X.; Wang, G.; Hu, F.; Yang, Y. Three-dimensional graphene networks as efficient Sb anode skeleton for high-performance Si-based sodium ion microbatteries. J. Power Sources 2024, 604, 234497. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Chi, L.; Liu, Y.; Zhang, Y.; Wang, K.; Wu, Z.-S. 3D Printing Flexible Sodium-Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability. Adv. Mater. 2022, 34, 2205569. [Google Scholar] [CrossRef]
- Chen, K.; Deng, Z.; Luo, W.; Wei, S.; Tu, Z.; Wu, X. The Application of 3D Printing in Battery Manufacturing. ChemSusChem 2025, 18, e202500904. [Google Scholar] [CrossRef]
- Ramírez, C.; Osendi, M.I.; Moyano, J.J.; Mosa, J.; Aparicio, M. Electrochemical Response of 3D-Printed Free-Standing Reduced Graphene Oxide Electrode for Sodium Ion Batteries Using a Three-Electrode Glass Cell. Materials 2023, 16, 5386. [Google Scholar] [CrossRef]




| Type | Compound | Calculated Capacity, mAh g−1 | Experimental Capacity, mAh g−1 | References |
|---|---|---|---|---|
| Metal | Na | 1166 | - | [3,4,5,6] |
| Intercalation | hard carbon | 140 (NaC16) + 105 (pores) | 172 (sloping) + 299 (plateau) | [7,8] |
| Alloy | Sn | 847 | 676 (Sn-C) | [9,10] |
| Sb | 660 | 662 | [11,12,13,14] | |
| Te | 420 | 338 (Te-C) | [15,16,17] | |
| Bi | 385 | 355 | [18,19,20,21,22,23,24] | |
| Conversion | NiCo2O4 | 890 | 701 | [25,26] |
| CoFe2O4 | 910 | 390 | [27,28,29] | |
| NiO | 720 | 250 | [30] | |
| Co3O4 | 890 | 622 | [31] | |
| CoNiO2 | 716 | 385 | [32] | |
| FeP | 926 | 656 (FeP-C) | [33,34] | |
| FeS2 | 894 | 629 | [35] | |
| MoS2 | 335 | 338 (MoS2-C) | [36,37,38,39] | |
| CoS2 | 870 | 833 | [40,41] | |
| Cu0.88Sn0.02Sb0.02Bi0.02Mn0.02S0.9Se0.1 | - | 583 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, R.; Pérez-Vicente, C.; Alcántara, R. Metallic Particles in Sodium Battery Anodes: A Review. Micromachines 2025, 16, 1391. https://doi.org/10.3390/mi16121391
Ruiz R, Pérez-Vicente C, Alcántara R. Metallic Particles in Sodium Battery Anodes: A Review. Micromachines. 2025; 16(12):1391. https://doi.org/10.3390/mi16121391
Chicago/Turabian StyleRuiz, Rafaela, Carlos Pérez-Vicente, and Ricardo Alcántara. 2025. "Metallic Particles in Sodium Battery Anodes: A Review" Micromachines 16, no. 12: 1391. https://doi.org/10.3390/mi16121391
APA StyleRuiz, R., Pérez-Vicente, C., & Alcántara, R. (2025). Metallic Particles in Sodium Battery Anodes: A Review. Micromachines, 16(12), 1391. https://doi.org/10.3390/mi16121391

