Response Surface Methodology for Optimizing the Design Parameters of Ultrasonic Liquid-Level Measurement System
Abstract
1. Introduction
2. Theory and Methods
2.1. Core Selection and Platform Construction of Liquid-Level Measurement System
2.2. Principle of Liquid-Level Measurement by Ultrasonic Impedance Method
2.3. Piezoelectric–Ultrasonic Propagation Coupling Modeling
2.3.1. Derivation of Ultrasonic Propagation Loss
2.3.2. Derivation of Input Voltage
3. Measurement and Discussion
3.1. Single-Factor Test of Ultrasonic Liquid-Level Detection
3.1.1. The Influence of the Diameter of the Piezoelectric Ceramic Sheet
3.1.2. The Influence of Ultrasonic Frequency
3.1.3. The Influence of the Excitation Voltage
3.1.4. The Influence of Liquid Temperature
3.2. Analysis of the Optimal System Parameters for Ultrasonic Liquid-Level Measurement
3.2.1. Experimental Design
3.2.2. Output Voltage Response Model Under the Combined Effect of Multiple Parameters
3.2.3. Response Surface Analysis
3.2.4. Optimization and Verification of System Environment Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kazemi, A.A.; Yang, C.; Chen, S. Fiber Optic Liquid-Level Sensor System for Aerospace Applications. In Photonics Applications for Aviation, Aerospace, Commercial, and Harsh Environments V; SPIE: Bellingham, WA, USA, 2014; Volume 9202. [Google Scholar]
- Zhang, J.; Rui, X.; Yu, Y.; Gao, H.; Qi, L.; Wu, Z.; Zhang, Y. Research on Imaging Method of Gas–Liquid Interface in Aerospace Propellant Tanks Based on Ultrasonic Tomography. Meas. Sci. Technol. 2025, 36, 055010. [Google Scholar] [CrossRef]
- Sivaprakasam, B.T.; Krishnamurthy, C.V.; Arunachalam, K. Design and demonstration of a RADAR gauge for in-situ level measurement in furnace. IEEE Sens. J. 2018, 18, 4081–4088. [Google Scholar] [CrossRef]
- Islam, T.; Maurya, O.P.; Khan, A.U. Design and fabrication of fringing field capacitive sensor for non-contact liquid level measurement. IEEE Sens. J. 2021, 21, 24812–24819. [Google Scholar] [CrossRef]
- Imperatore, P.; Persichetti, G.; Testa, G.; Bernini, R. Continuous liquid level sensor based on coupled light diffusing fibers. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8. [Google Scholar] [CrossRef]
- Marick, S.; Bera, S.K.; Bera, S.C. A Float Type Liquid Level Measuring System Using a Modified Inductive Transducer. Sens. Transducers 2014, 182, 111–118. [Google Scholar]
- Chen, H.; Chen, H. A Liquid Level Testing Method for Working Fluids Near Critical State Based on Three Differential-Pressure Transducers. In Proceedings of the 5th International Conference on Robotics, Control and Automation, Seoul, Republic of Korea, 5–7 March 2021; pp. 125–129. [Google Scholar]
- Zhao, B. Detection Technology of Internal Defects in Mass Concrete Based on Ultrasonic Wave. China Constr. Met. Struct. 2025, 24, 91–93. [Google Scholar]
- Yang, X.L. Analysis and Research on Coupling Resonance Performance of Ultrasonic Vibrator and Metal Spherical Shell. Master’s Thesis, Anhui Jianzhu University, Hefei, China, 2020. [Google Scholar]
- Zhang, B.; Wei, Y.J.; Liu, W.Y.; Zhang, Y.-J.; Yao, Z.; Zhao, L.-H.; Xiong, J.-J. A liquid level measurement technique outside a sealed metal container based on ultrasonic impedance and echo energy. Sensors 2017, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wei, Y.J.; Liu, W.Y.; Zhang, Y.-J.; Yao, Z.; Zhang, L.; Xiong, J.-J. A novel ultrasonic method for liquid level measurement based on the balance of echo energy. Sensors 2017, 17, 706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.; Zhang, L.; Li, Y.; Gao, X.; Liu, Z. Liquid level measurement model outside of closed containers based on continuous sound wave amplitude. Sensors 2018, 18, 2516. [Google Scholar] [CrossRef]
- Xue, W.Z.; Gao, W.J.; Liu, W.Y.; Zhang, H.X.; Guo, R.Q. Impact of Wedge Parameters on Ultrasonic Lamb Wave Liquid-Level Sensor. Sensors 2022, 22, 5046. [Google Scholar] [CrossRef]
- Li, S.L.; Gao, W.J.; Liu, W.Y. A Novel Temperature Drift Compensation Algorithm for Liquid-Level Measurement Systems. Micromachines 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Hosseingholilou, B.; Banakar, A.; Mostafaei, M. Design and Evaluation of a Novel Ultrasonic Desalination System by Response Surface Methodology. Desalination Water Treat. 2019, 164, 263–275. [Google Scholar] [CrossRef]
- Meng, L.H.; Zheng, H.; Gao, S.; Jia, Z.F. Simulation and Optimization of Electromagnetic Acoustic Transducers Based on Finite Element Method. In Proceedings of the 21st Shenyang Science Annual Conference—Third Prize in Natural Sciences, Shenyang, China, 2024; School of Information Science and Engineering, Shenyang University of Technology: Shenyang, China; DuPu New Energy Technology Co., Ltd.: Shenyang, China; BYD Company Limited: Shenyang, China, 2024; pp. 103–110. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, W.G.; Zhang, S.Y.; Pan, X. Frequency Tracking Method for Gas Ultrasonic Flowmeter Based on Echo Peak Detection. Chin. J. Sens. Actuators 2025, 38, 451–457. [Google Scholar]
- Chen, X.D.; Li, W. A monolithic self-sensing precision stage: Design, modeling, calibration, and hysteresis compensation. IEEE/ASME Trans. Mechatron. 2014, 20, 812–823. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.D. Compensation of hysteresis in piezoelectric actuators without dynamics modeling. Sens. Actuators A Phys. 2013, 199, 89–97. [Google Scholar] [CrossRef]
- Tafaghodinia, B. Optimization of Mucilage Secretion of Plantago ovata, Alyssum desertorum, and Ocimum basilicum Seeds by Response Surface Method. BMC Res. Notes 2025, 18, 188. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B (Methodol.) 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Yin, Z.H.; Tie, Y.; Duan, Y.; Li, C. Optimization of Nonlinear Lamb Wave Detection System Parameters in CFRP Laminates. Materials 2021, 14, 3186. [Google Scholar] [CrossRef]
- Tan, L.C.; Wu, Y.X.; Shi, W.Z.; Gong, H.; Fan, J. Genetic Algorithm Optimization Design of Electromagnet for Longitudinal Wave Electromagnetic Ultrasonic Testing in Aluminum Plate. Chin. J. Sens. Actuators 2016, 29, 813–820. [Google Scholar]
- Xu, M.H.; Yang, X.Y.; Fu, M.R. Combined Ultrasonic and Microwave Method for Juglone Extraction from Walnut Green Husk (Juglans nigra). Waste Biomass Valorization 2016, 7, 1159–1166. [Google Scholar] [CrossRef]
- Ying, Y.B.; Xiang, Y.; Liu, J.; Chen, X.; Hu, L.; Li, Y.; Hu, Y. Optimization of Ultrasonic-Assisted Freezing of Penaeus chinensis by Response Surface Methodology. Food Qual. Saf. 2021, 5, fyaa034. [Google Scholar] [CrossRef]
- GJB 390A-2008; Specification for Aluminium Alloy Sheet and Plate for Space. Defense Science and Technology Industry Commission of the People’s Republic of China: Beijing, China, 2008.
- NB/T 47013.3-2024; Non-Destructive Testing of Pressure Equipment—Part 3: Ultrasonic Testing. China Standard Press: Beijing, China, 2024.
- Cheng, Y.L.; Bao, H.; Li, J.; Li, X. Research Progress on Applications of Piezoelectric Ceramics. China Meas. Test. Technol. 2005, 31, 12–14. [Google Scholar]
- Hu, J.G. Research on Key Technologies of Mass Sensitivity for Quartz Crystal Microbalance (QCM). Doctoral Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. [Google Scholar]
- Liu, Y.; Li, H.J. Wave Reflection and Transmission by Porous Breakwaters: A New Analytical Solution. Coast. Eng. 2013, 78, 46–52. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Qin, L.; Zhao, P.; Sun, J. In-Situ Monitoring of Cement Hydration Based on Piezoelectric Ultrasonic Sensor. J. Test. Meas. Technol. 2025, 39, 148–154. [Google Scholar] [CrossRef]
- Yang, J.L. Piezoelectric Micromachined Ultrasonic Transducer for Underwater Metal Detection and Imaging. China Meas. 2019, 45, 84–88. [Google Scholar]
- Ye, X.T.; Zhao, P.; Zheng, K.; Wang, Y.; Zheng, H. Research on Underwater Hull Surface Imaging Method Based on Ultrasonic Phased Array. Acta Metrolog. Sin. 2020, 41, 79–84. [Google Scholar]
- Yan, J.; Ma, H.Z.; Zhu, H.; Zhang, Y.; Li, Y.; Xu, H. Transformer Winding Looseness Diagnosis Based on LMD Marginal Spectrum Energy Entropy and FWA-SVM. Electr. Meas. Instrum. 2021, 58, 74–80. [Google Scholar]
- Wu, W.H.; Zhai, W.; Wang, J.Y.; Wei, B. Research Progress on Cavitation and Acoustic Streaming Dynamics of Liquid Materials in Ultrasonic Fields. Sci. China Technol. Sci. 2023, 53, 2–27. [Google Scholar]
- QJ 3262-2005; General Specification for Aerospace Ultrasonic Liquid Level Sensors. Commission of Science Technology and Industry for National Defense: Beijing, China, 2005.







| Method | Sensitivity | Temperature Range | Measurement Range | Response Speed | Disadvantages |
|---|---|---|---|---|---|
| Radar method | 0.1~0.5 mm | −60~200 °C | 0.1~30 m | 10~50 ms | High cost, significantly affected by water vapor in the tank. |
| Capacitive method | 1~2 mm | −20~80 °C | 0.01~5 m | 20~50 ms | Contact measurement, not suitable for closed containers. |
| Optical method | 0.01~0.1 mm | −10~60 °C | 0.05~3 m | 5~20 ms | Not suitable for opaque propellants and high-temperature scenarios. |
| Float method | 2~5 mm | −40~150 °C | 0.1~20 m | 100~200 ms | Contact measurement, not suitable for closed containers. |
| Differential pressure method | 1~3 mm | −50~150 °C | 0.1~50 m | 50~100 ms | Not suitable for low-density and volatile propellants |
| Ultrasonic pulse echo method | 0.5~1 mm | −40~80 °C | 0.1~10 m | 50~100 ms | Not suitable for high-bubble propellants and large containers. |
| Ultrasonic impedance method (this study) | 0.3~0.8 mm | −20~120 °C | 0.05~8 m | 30~80 ms | Parameter optimization is required to improve temperature adaptability and signal stability. |
| Parameter Name | Symbol | Unit | Typical Value |
|---|---|---|---|
| Longitudinal Piezoelectric Strain Coefficient | d33 | m/V | 620 × 10−12 |
| Transverse Piezoelectric Strain Coefficient | d31 | m/V | 275 × 10−12 |
| Transverse Piezoelectric Stress Coefficient | e31 | C/m2 | 15.3 |
| Elastic Stiffness Coefficient in Direction 1 | Pa | 5.56 × 1010 | |
| Elastic Stiffness Coefficient in Direction 3 | Pa | 1.17 × 1011 | |
| Dielectric Constant in Direction 3 | F/m | 2.83 × 10−8 | |
| Dielectric Loss Factor | tanδ | % | ≤2.0 |
| Curie Temperature | Tc | °C | 230 |
| Mechanical Quality Factor | Qm | - | 70 |
| Disc Diameter | D | mm | 10–20 |
| Operating Frequency | f | MHz | 0.5–2.0 |
| Medium Type | Acoustic Impedance (20 °C, Mrayl) | Sound Velocity Temperature Coefficient (m/(s·°C)) | Sound Attenuation Coefficient (1 MHz, 20 °C, Np/m) | Acoustic Similarity to Water (%) * | Transmissivity (TW) |
|---|---|---|---|---|---|
| Deionized water (this study) | 1.48 | 2.1 | 0.003 | 100 | 23% |
| UDMH (tactical missile propellant) | 1.32 | 1.9 | 0.004 | 92 | 21% |
| N2O4 (upper-stage launch vehicle propellant) | 1.56 | 2.3 | 0.0028 | 95 | 24% |
| Parameter | Symbol | Parameter Value |
|---|---|---|
| Container Material | Mc | Al Alloy 2219 |
| Container Wall Thickness | δ | 3 mm |
| Probe Material | MTX | PZT-5H |
| Liquid-Level Height | h | 5 cm, 12 cm, 18 cm |
| Test Liquid | ML | Water |
| Coupling Material | Mcp | Organic Silicone |
| Acoustic Impedance of Al Alloy | ZAL | 31.6 Mrayl |
| Acoustic Impedance of Water | ZW | 1.48 Mray (20 °C) 1.5 Mrayl (30 °C) |
| Acoustic Impedance of Air (20 °C) | ZA | 4 × 10−4 Mrayl |
| Temperature Range | T | 0–40 °C |
| Equipment | Model | Manufacturer |
|---|---|---|
| Digital probe thermometer | TP101 | Wenzhou Shengce Instrument Co., Ltd. (Wenzhou, China) |
| Digital acquisition card (DAC) | USB-1610 | Beijing Xinchao Technology Co., Ltd. (Beijing, China) |
| Ultrasonic transmitting device | ULT-01 | North University of China (Taiyuan, China) |
| Factor | Level | ||
|---|---|---|---|
| Low Value (−1) | Center Point (0) | High Value (+1) | |
| x1: D (mm) | 10 | 15 | 20 |
| x2: f (MHz) | 0.5 | 1 | 1.5 |
| x3: T (°C) | 20 | 30 | 40 |
| Run No. | x1: D (mm) | x2: f (MHz) | x3: T (°C) | U (V) |
|---|---|---|---|---|
| 1 | 10 | 0.5 | 30 | 4.12 |
| 2 | 20 | 0.5 | 30 | 2.1 |
| 3 | 10 | 1.5 | 30 | 1.65 |
| 4 | 20 | 1.5 | 30 | 0.96 |
| 5 | 10 | 1 | 20 | 5.21 |
| 6 | 20 | 1 | 20 | 3.95 |
| 7 | 10 | 1 | 40 | 7.24 |
| 8 | 20 | 1 | 40 | 5.49 |
| 9 | 15 | 0.5 | 20 | 3.35 |
| 10 | 15 | 1.5 | 20 | 1.2 |
| 11 | 15 | 0.5 | 40 | 5.3 |
| 12 | 15 | 1.5 | 40 | 2.3 |
| 13 | 15 | 1 | 30 | 8.8 |
| 14 | 15 | 1 | 30 | 8.68 |
| 15 | 15 | 1 | 30 | 8.88 |
| Source | Sum of Squares (SS) | Degree of Freedom (df) | Mean Square (MS) | F-Value | p-Value |
|---|---|---|---|---|---|
| Model | 108.13 | 9 | 12.01 | 166.00 | <0.0001 |
| x1 | 4.09 | 1 | 4.09 | 56.47 | 0.0007 |
| x2 | 9.59 | 1 | 9.59 | 132.53 | <0.0001 |
| x3 | 5.48 | 1 | 5.48 | 75.73 | 0.0003 |
| x1 x2 | 0.4422 | 1 | 0.4422 | 6.11 | 0.0564 |
| x1 x3 | 0.0605 | 1 | 0.0605 | 0.8361 | 0.4024 |
| x2 x3 | 0.1806 | 1 | 0.1806 | 2.50 | 0.1750 |
| X12 | 15.86 | 1 | 15.86 | 219.09 | <0.0001 |
| X22 | 75.00 | 1 | 75.00 | 1036.21 | <0.0001 |
| X32 | 5.70 | 1 | 5.70 | 78.74 | 0.0003 |
| Residual | 0.3619 | 5 | 0.0724 | ||
| Lack of Fit | 0.3416 | 3 | 0.1139 | 11.24 | 0.0828 |
| Pure Error | 0.0203 | 2 | 0.0101 | ||
| Total | 108.13 | 9 | |||
| Model Summary Statistics | R2 = 0.9967 | R2adj = 0.9907 | |||
| Liquid Levels (cm) | Predicted Value (V) | Experimental Value (V) | Error (V) | Relative Error (%) |
|---|---|---|---|---|
| 5 | 16.675 | 16.553 | 0.122 | 0.73% |
| 12 | 8.976 | 8.893 | 0.083 | 0.93% |
| 18 | 6.346 | 6.408 | 0.062 | 0.98% |
| Parameter Combination (D/mm, f/MHz, T/°C, h/cm) | Calculated Output Voltage Ucalc/V | Experimental Measured Output Voltage Uexp/V | Relative Error (%) |
|---|---|---|---|
| 15, 1.0, 30, 12 | 8.84 | 8.8 | 0.45 |
| 10, 0.5, 30, 12 | 4.03 | 4.12 | 2.18 |
| 20, 1, 20, 12 | 3.3 | 3.95 | 16.46 |
| 14.773, 0.878, 33.661, 18 | 6.72 | 6.408 | 4.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Zhang, W.; Tian, Y. Response Surface Methodology for Optimizing the Design Parameters of Ultrasonic Liquid-Level Measurement System. Micromachines 2025, 16, 1281. https://doi.org/10.3390/mi16111281
Gao W, Zhang W, Tian Y. Response Surface Methodology for Optimizing the Design Parameters of Ultrasonic Liquid-Level Measurement System. Micromachines. 2025; 16(11):1281. https://doi.org/10.3390/mi16111281
Chicago/Turabian StyleGao, Wanjia, Wendong Zhang, and Yue Tian. 2025. "Response Surface Methodology for Optimizing the Design Parameters of Ultrasonic Liquid-Level Measurement System" Micromachines 16, no. 11: 1281. https://doi.org/10.3390/mi16111281
APA StyleGao, W., Zhang, W., & Tian, Y. (2025). Response Surface Methodology for Optimizing the Design Parameters of Ultrasonic Liquid-Level Measurement System. Micromachines, 16(11), 1281. https://doi.org/10.3390/mi16111281

