Next Article in Journal
Variability Predictions for the Next Technology Generations of n-type SixGe1−x Nanowire MOSFETs
Next Article in Special Issue
The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects
Previous Article in Journal
Performance Evaluation of a Magnetically Actuated Capsule Microrobotic System for Medical Applications
Previous Article in Special Issue
Development of Flexible Robot Skin for Safe and Natural Human–Robot Collaboration
Article Menu

Export Article

Open AccessArticle
Micromachines 2018, 9(12), 642; https://doi.org/10.3390/mi9120642

Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics

1
Fraunhofer Institute for Electronic Nanosystems ENAS, Printed Functionalities, 09126 Chemnitz, Germany
2
Digital Printing and Imaging Technology Department, Technische Universität Chemnitz, 09126 Chemnitz, Germany
3
Fraunhofer Institute for Applied Polymer Research, Functional Materials and Devices, 14476 Potsdam, Germany
*
Authors to whom correspondence should be addressed.
Received: 22 October 2018 / Revised: 27 November 2018 / Accepted: 29 November 2018 / Published: 4 December 2018
(This article belongs to the Special Issue Printed Flexible and Stretchable Electronics)
PDF [759 KB, uploaded 4 December 2018]   |   Review Reports

Abstract

The generation of electrical energy depending on renewable sources is rapidly growing and gaining serious attention due to its green sustainability. With fewer adverse impacts on the environment, the sun is considered as a nearly infinite source of renewable energy in the production of electrical energy using photovoltaic devices. On the other end, organic photovoltaic (OPV) is the class of solar cells that offers several advantages such as mechanical flexibility, solution processability, environmental friendliness, and being lightweight. In this research, we demonstrate the manufacturing route for printed OPV device arrays based on conventional architecture and using inkjet printing technology over an industrial platform. Inkjet technology is presently considered to be one of the most matured digital manufacturing technologies because it offers inherent additive nature and last stage customization flexibility (if the main goal is to obtain custom design devices). In this research paper, commercially available electronically functional inks were carefully selected and then implemented to show the importance of compatibility between OPV material stacks and the device architecture. One of the main outcomes of this work is that the manufacturing of the OPV devices was accomplished using inkjet technology in massive numbers ranging up to 1500 containing different device sizes, all of which were deposited on a flexible polymeric film and under normal atmospheric conditions. In this investigation, it was found that with a set of correct functional materials and architecture, a manufacturing yield of more than 85% could be accomplished, which would reflect high manufacturing repeatability, deposition accuracy, and processability of the inkjet technology.
Keywords: organic photovoltaics; flexible electronics; Indium Tin Oxide (ITO) free solar cells; inkjet technology organic photovoltaics; flexible electronics; Indium Tin Oxide (ITO) free solar cells; inkjet technology
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Mitra, K.Y.; Alalawe, A.; Voigt, S.; Boeffel, C.; Baumann, R.R. Manufacturing of All Inkjet-Printed Organic Photovoltaic Cell Arrays and Evaluating their Suitability for Flexible Electronics. Micromachines 2018, 9, 642.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top