Next Article in Journal
Qualitative Identification of the Static Pull-In and Fundamental Frequency of One-Electrode MEMS Resonators
Next Article in Special Issue
Growth Process and CQDs-modified Bi4Ti3O12 Square Plates with Enhanced Photocatalytic Performance
Previous Article in Journal
A Miniaturized Amperometric Hydrogen Sulfide Sensor Applicable for Bad Breath Monitoring
Article

Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation

by 1,2, 1,*, 2 and 1
1
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2
College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
*
Author to whom correspondence should be addressed.
Micromachines 2018, 9(12), 613; https://doi.org/10.3390/mi9120613
Received: 23 October 2018 / Revised: 10 November 2018 / Accepted: 20 November 2018 / Published: 22 November 2018
(This article belongs to the Special Issue Nanostructures for Photocatalysis)
In this work, ternary all-solid-state Z-scheme g-C3N4/carbon nanotubes/Bi2Fe4O9 (g-C3N4/CNT/BFO) composites with enhanced photocatalytic activity were prepared by a hydrothermal method. The morphology observation shows that ternary heterojunctions are formed in the g-C3N4/CNT/BFO composites. The photocatalytic activity of the samples for the degradation of acid orange 7 was investigated under simulated sunlight irradiation. It was found that the ternary composites exhibit remarkable enhanced photocatalytic activity when compared with bare BFO and g-C3N4/BFO composites. The effect of the CNT content on the photocatalytic performance of the ternary composites was investigated. The photocatalytic mechanism of g-C3N4/CNT/BFO was proposed according to the photoelectrochemical measurement, photoluminescence, active species trapping experiment and energy-band potential analysis. The results reveal that the introduction of CNT as an excellent solid electron mediator into the ternary composites can effectively accelerate the electron migration between BFO and g-C3N4. This charge transfer process results in highly-efficient separation of photogenerated charges, thus leading to greatly enhanced photocatalytic activity of g-C3N4/CNT/BFO composites. Furthermore, the g-C3N4/CNT/BFO composites also exhibit highly-efficient photo-Fenton-like catalysis property. View Full-Text
Keywords: Bi2Fe4O9; g-C3N4; CNT; photocatalysis; Z-scheme heterojunction Bi2Fe4O9; g-C3N4; CNT; photocatalysis; Z-scheme heterojunction
Show Figures

Figure 1

MDPI and ACS Style

Di, L.; Yang, H.; Xian, T.; Chen, X. Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation. Micromachines 2018, 9, 613. https://doi.org/10.3390/mi9120613

AMA Style

Di L, Yang H, Xian T, Chen X. Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation. Micromachines. 2018; 9(12):613. https://doi.org/10.3390/mi9120613

Chicago/Turabian Style

Di, Lijing, Hua Yang, Tao Xian, and Xiujuan Chen. 2018. "Construction of Z-Scheme g-C3N4/CNT/Bi2Fe4O9 Composites with Improved Simulated-Sunlight Photocatalytic Activity for the Dye Degradation" Micromachines 9, no. 12: 613. https://doi.org/10.3390/mi9120613

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop