Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method
Abstract
1. Introduction
2. Experiment Design and Procedure
3. Results and Discussion
3.1. Experimental Result Analysis
3.2. Factor Analysis
3.3. Confirmation Run
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Terry, S.C.; Jerman, J.H.; Angell, J.B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Devices 1979, 26, 1880–1886. [Google Scholar] [CrossRef]
- Pinto, E.; Faustino, V.; Rodrigues, R.O.; Pinho, D.; Garcia, V.; Miranda, J.M.; Lima, R. A Rapid and Low-Cost Nonlithographic Method to Fabricate. Micromachines 2015, 6, 121–135. [Google Scholar] [CrossRef]
- Liu, Z.H.; Xu, W.C.; Hou, Z.N.; Wu, Z.G. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility. Micromachines 2016, 7, 201. [Google Scholar] [CrossRef]
- Pinto, V.C.; Sousa, P.J.; Cardoso, V.F.; Minas, G. Optimized SU-8 Processing for Low-Cost Microstructures. Micromachines 2014, 5, 738–755. [Google Scholar] [CrossRef]
- Jang, H.; Haq, M.R.; Ju, J.; Kim, Y.; Kim, S.M.; Lim, J. Fabrication of All Glass Bifurcation Microfluidic Chip. Micromachines 2017, 8, 67. [Google Scholar] [CrossRef]
- Faustino, V.; Catarino, S.O.; Lima, R.; Minas, G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016, 49, 2280–2292. [Google Scholar] [CrossRef] [PubMed]
- Dornfeld, D.; Min, S.; Takeuchi, Y. Recent advances in mechanical micromachining. CIRP Ann.-Manuf. Technol. 2006, 55, 745–768. [Google Scholar] [CrossRef]
- Xu, B.Y.; Yan, X.N.; Zhang, J.D.; Xu, J.J.; Chen, H.Y. Glass etching to bridge micro- and nanofluidics. Lab Chip 2012, 12, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Park, D.S.; Chen, P.C.; You, B.H.; Kim, N.; Park, T.; Lee, T.Y.; Datta, P.; Desta, Y.; Soper, S.A.; Nikitopoulos, D.E.; et al. Titer-plate formatted continuous flow thermal reactors for highthroughput applications: Fabrication and test. J. Micromech. Microeng. 2010, 20, 055003. [Google Scholar] [CrossRef]
- Chen, P.C.; Park, D.S.; You, B.H.; Kim, N.; Park, T.; Soper, S.A.; Nikitopoulos, D.E.; Murphy, M.C. Titer-plate formatted continuous flow thermal reactors: Design and performance of a nanoliter reactor. Sens. Actuators B-Chem. 2010, 149, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Lee, J.Y.; Seong, S.; Cha, S.H.; Lee, S.H.; Kim, J.J.; Park, T.H. Fabrication and characterization of a PDMS-glass hybrid continuous flow PCR chip. Biochem. Eng. J. 2006, 29, 91–97. [Google Scholar] [CrossRef]
- Mecomber, J.S.; Hurd, D.; Limbach, P.A. Enhanced machining of micron-scale features in microchip molding masters by CNC milling. Int. J. Mach. Tools Manuf. 2005, 45, 1542–1550. [Google Scholar] [CrossRef]
- Mecomber, J.S.; Stalcup, A.M.; Hurd, D.; Halsall, H.B.; Heineman, W.R.; Seliskar, C.J.; Wehmeyer, K.R.; Limbach, P.A. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining. Anal. Chem. 2006, 78, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 2000, 83, 30–135. [Google Scholar] [CrossRef]
- Becker, H.; Gartner, C. Polymer based micro-reactors. Rev. Mol. Biotechnol. 2001, 82, 89–99. [Google Scholar] [CrossRef]
- Hupert, M.L.; Guy, W.J.; Llopis, S.D.; Shadpour, H.; Rani, S.; Nikitopoulos, D.E.; Soper, S.A. Valuation of micromilled metal mold masters for the replication of microchip electrophoresis devices. Microfluid. Nanofluid. 2007, 3, 1–11. [Google Scholar] [CrossRef]
- Park, C.H.; Song, C.K.; Hwang, J.; Kim, B.S. Development of an ultra precision machine tool for micromachining on large surfaces. Int. J. Precis. Eng. Manuf. 2009, 10, 85–91. [Google Scholar] [CrossRef]
- Vazquez, E.; Rodriguez, C.A.; Elias-Zuniga, A.; Ciurana, J. An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int. J. Adv. Manuf. Technol. 2010, 51, 945–955. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Chen, J.C.; Kirby, E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 2007, 184, 233–239. [Google Scholar] [CrossRef]
- Chung, Y.C.; Lai, L.W.; Yang, L.J.; Liao, W.J. Comparison of Different Metal Film Thicknesses of COC-Substrate Polymerase Chain Reaction Chips With Single-Side and Double-Side Heaters. In Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, USA, 13–19 November 2009; Volume 149, pp. 435–437. [Google Scholar]
- Yu, H.H.; Hwang, S.J.; Hwang, K.C. Preparation and characterization of a novel flexible substrate for OLED. Opt. Commun. 2005, 248, 51–57. [Google Scholar] [CrossRef]
- Ma, K.S.; Reza, F.; Saaem, I.; Tian, J. Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. J. Mater. Chem. 2009, 19, 7914–7920. [Google Scholar] [CrossRef]
- Yoon, H.S.; Wu, R.; Lee, T.M.; Ahn, S.H. Geometric optimization of micro drills using Taguchi methods and response surface methodology. Int. J. Precis. Eng. Manuf. 2011, 12, 871–875. [Google Scholar] [CrossRef]
Factor | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Spindle speed (N) (mm/min) | 10,000 | 15,000 | 20,000 |
Feed rate (F) (mm/min) | 300 | 600 | 800 |
Depth of cut (DOC) (μm) | 10 | 15 | 20 |
No. | N | F | DOC | Average Ra | S | S/N Ratio |
---|---|---|---|---|---|---|
1 | 10,000 | 300 | 10 | 0.317 | 0.021 | 9.975 |
2 | 10,000 | 600 | 15 | 0.337 | 0.021 | 9.445 |
3 | 10,000 | 800 | 20 | 0.353 | 0.021 | 9.026 |
4 | 15,000 | 300 | 10 | 0.247 | 0.006 | 12.156 |
5 | 15,000 | 600 | 15 | 0.267 | 0.006 | 11.479 |
6 | 15,000 | 800 | 20 | 0.323 | 0.012 | 9.803 |
7 | 20,000 | 300 | 10 | 0.223 | 0.006 | 13.019 |
8 | 20,000 | 600 | 15 | 0.297 | 0.015 | 10.547 |
9 | 20,000 | 800 | 20 | 0.310 | 0.000 | 10.173 |
10 | 10,000 | 300 | 15 | 0.300 | 0.026 | 10.435 |
11 | 10,000 | 600 | 20 | 0.343 | 0.006 | 9.285 |
12 | 10,000 | 800 | 10 | 0.357 | 0.006 | 8.954 |
13 | 15,000 | 300 | 15 | 0.227 | 0.006 | 12.890 |
14 | 15,000 | 600 | 20 | 0.290 | 0.035 | 10.711 |
15 | 15,000 | 800 | 10 | 0.287 | 0.006 | 10.851 |
16 | 20,000 | 300 | 15 | 0.223 | 0.006 | 13.019 |
17 | 20,000 | 600 | 20 | 0.287 | 0.023 | 10.834 |
18 | 20,000 | 800 | 10 | 0.300 | 0.017 | 10.448 |
19 | 10,000 | 300 | 20 | 0.240 | 0.010 | 12.391 |
20 | 10,000 | 600 | 10 | 0.307 | 0.006 | 10.266 |
21 | 10,000 | 800 | 15 | 0.337 | 0.023 | 9.442 |
22 | 15,000 | 300 | 20 | 0.217 | 0.006 | 13.282 |
23 | 15,000 | 600 | 10 | 0.273 | 0.006 | 11.265 |
24 | 15,000 | 800 | 15 | 0.307 | 0.006 | 10.266 |
25 | 20,000 | 300 | 20 | 0.173 | 0.006 | 15.219 |
26 | 20,000 | 600 | 10 | 0.223 | 0.012 | 13.013 |
27 | 20,000 | 800 | 15 | 0.250 | 0.010 | 12.037 |
Levels and Response | A (Spindle Speed) | B (Feed Rate) | C (Depth of Cut) |
---|---|---|---|
Level 1 | 9.913 | 12.487 | 11.105 |
Level 2 | 11.412 | 10.760 | 11.062 |
Level 3 | 12.034 | 10.111 | 11.192 |
Range | 2.121 | 2.376 | 0.129 |
Rank | 2 | 1 | 3 |
No. | 1 | 2 | 3 | Average (Ra) µm |
---|---|---|---|---|
1 | 0.14 | 0.14 | 0.15 | 0.143 |
2 | 0.18 | 0.19 | 0.18 | 0.183 |
3 | 0.20 | 0.20 | 0.20 | 0.200 |
4 | 0.15 | 0.14 | 0.15 | 0.147 |
5 | 0.18 | 0.20 | 0.19 | 0.190 |
6 | 0.21 | 0.20 | 0.20 | 0.203 |
7 | 0.17 | 0.17 | 0.18 | 0.173 |
8 | 0.19 | 0.19 | 0.18 | 0.187 |
9 | 0.19 | 0.20 | 0.20 | 0.197 |
10 | 0.20 | 0.22 | 0.21 | 0.210 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-C.; Zhang, R.-H.; Aue-u-lan, Y.; Chang, G.-E. Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method. Micromachines 2017, 8, 264. https://doi.org/10.3390/mi8090264
Chen P-C, Zhang R-H, Aue-u-lan Y, Chang G-E. Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method. Micromachines. 2017; 8(9):264. https://doi.org/10.3390/mi8090264
Chicago/Turabian StyleChen, Pin-Chuan, Ren-Hao Zhang, Yingyot Aue-u-lan, and Guo-En Chang. 2017. "Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method" Micromachines 8, no. 9: 264. https://doi.org/10.3390/mi8090264
APA StyleChen, P.-C., Zhang, R.-H., Aue-u-lan, Y., & Chang, G.-E. (2017). Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method. Micromachines, 8(9), 264. https://doi.org/10.3390/mi8090264