Active Wavelength Control of Fiber Bragg Gratings: A Systematic Review of Tuning Mechanisms, Emerging Applications, and Future Frontiers
Abstract
1. Introduction
2. Fundamental Tuning Mechanisms and Key Technological Pathways
2.1. Fundamental Tuning
- (1)
- Mechanical Tuning Mechanisms
- (2)
- Thermal Tuning Mechanism
- (3)
- Electromagnetic Tuning Mechanisms
- (4)
- Optical Tuning Mechanisms
- (5)
- Hybrid Tuning Techniques
2.2. Key Technologies and Performance Enhancement
- (1)
- Mechanical Tuning Enhancement Techniques
- (2)
- Thermal Tuning Enhancement Techniques
- (3)
- Interrogation and Control Techniques
- (4)
- Special Structures and Fabrication Techniques
3. Application Field: Tunable Fiber Lasers
3.1. Enabling Wavelength Agility and Tuning
3.2. Achieving Kilohertz-Level Linewidth Stabilization
3.3. Toward High-Power and Robust Single-Frequency Operation
4. Application Field: Microwave Photonics and Communication Networks
4.1. Dynamic Spectral Filtering and Channel Management
4.2. All-Optical Signal Processing and Computing
4.3. Performance Optimization for Transmission Systems
5. Application Field—Other Emerging Application Fields
5.1. Quantum Information Systems: Enabling Precision and Stability
5.2. Advanced Biomedical Imaging and Sensing: Toward Programmability
5.3. Consolidated Technology Landscape
6. Frontier Directions and Open Challenges
6.1. Core Challenges
6.2. Future Trends and Research Directions
6.2.1. New-Material and Hybrid Tuning Platforms
6.2.2. AI-Driven Intelligent Tuning
6.2.3. Toward Fully Programmable Photonic Systems
6.2.4. Quantum-Compatible Bragg Structures
6.3. Synthesis and Prospective Vision
7. Conclusions
7.1. Summary of Key Findings
7.2. Main Contributions of This Review
- Unifying Diverse Technologies: Presenting a unified taxonomy and comparative analysis of tuning mechanisms and enhancement techniques, offering a clear reference for selecting appropriate strategies for specific application needs.
- Connecting Applications with Technology: Demonstrating how specific technical advancements directly enable groundbreaking functionalities in disparate fields, from laser spectroscopy to quantum key distribution, thereby illustrating the technology’s cross-disciplinary value.
- Providing a Forward-Looking Roadmap: Synthesizing current challenges into a coherent set of future research trajectories, offering actionable guidance for advancing the field towards intelligent, integrated, and application-specific photonic systems.
7.3. Limitations of the Study
7.4. Final Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, K.O.; Fujii, Y.; Johnson, D.C.; Kawasaki, B.S. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Othonos, A. Fiber Bragg Gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Kersey, A.D. Fiber grating sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Theodosiou, A.; Díaz, C.R.; Marques, C.; Pontes, M.J.; Kalli, K. Simultaneous Measurement of Axial Strain, Bending and Torsion with a Single Fiber Bragg Grating in CYTOP Fiber. J. Light. Technol. 2019, 37, 971–980. [Google Scholar] [CrossRef]
- Günday, A. Investigation of the Effects of Grating Length, Bragg Wavelength and Wavelength Shift on Temperature Sensitivity in Fiber Bragg Grating-Based Sensing Systems. Opt. Quantum Electron. 2024, 56, 290. [Google Scholar] [CrossRef]
- Sun, S.; Ma, F.; He, Y.; Niu, B.; Wang, C.; Dai, L.; Zhao, Z. An Optimized PZT-FBG Voltage/Temperature Sensor. Micromachines 2025, 16, 235. [Google Scholar] [CrossRef]
- Li, A.; Wang, H.; Zhang, L.; An, G.; Jia, P. Wide Tunable Random Fiber Laser with Sub-kHz Narrow Linewidth Based on a Disordered Fiber Bragg Grating Array. Opt. Express 2025, 33, 228–237. [Google Scholar] [CrossRef]
- Chen, C.; Li, R.; Pan, H.; Li, B.; Li, Y.; Zhao, Z. Tunable Wavelength Optical Injection Locked Actively Q-Switched Random Fiber Laser Based on RPS-FBG and EOM and Analysis of Multi Pulse Phenomenon. Infrared Phys. Technol. 2025, 145, 105737. [Google Scholar] [CrossRef]
- Suchita; Kaushalram, A.; Bhardwaj, A. Optimization of Bending Loss for Higher Order Modes of Anti-Resonant Hollow Core Fibers. In Proceedings of the 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 26–30 June 2023; p. 1. [Google Scholar]
- Yu, Y.; Tam, H.; Geng, S.; Demokan, M.; Liu, Z.; Chung, W. Chirp-Free Tuning of Fiber Bragg Grating Using a Cantilever Beam. Jpn. J. Appl. Phys. 1999, 38, L1032–L1034. [Google Scholar] [CrossRef]
- Tu, X.; Ou, J.; Li, L.; Zhao, H.; Diao, J. A Theoretical Model for Small-Area Transverse Force Measurement Based on Linearly Chirped Fiber Bragg Grating. Appl. Phys. B 2025, 131, 81. [Google Scholar] [CrossRef]
- Luo, F.; Yeh, T.F. Tuning Fiber Bragg Gratings by Deformable Slides. J. Light. Technol. 2018, 36, 3746–3751. [Google Scholar] [CrossRef]
- Singer, C.; Goetz, A.; Prasad, A.S.; Becker, M.; Rothhardt, M.; Skoff, S.M. Thermal Tuning of a Fiber-Integrated Fabry-Pérot Cavity. Opt. Express 2021, 29, 28778–28786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kahrizi, M. High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication. IEEE Sens. J. 2007, 7, 586–591. [Google Scholar] [CrossRef]
- Zaynetdinov, M.; See, E.M.; Geist, B.; Ciovati, G.; Robinson, H.D.; Kochergin, V. A Fiber Bragg Grating Temperature Sensor for 2–400 K. IEEE Sens. J. 2015, 15, 1908–1912. [Google Scholar] [CrossRef]
- Korenko, B.; Jasenek, J.; Červeňová, J. Pockels and Kerr Effect Investigation in Fiber Bragg Gratings. J. Electr. Eng. 2012, 63, 148–151. [Google Scholar]
- Laffont, G.; Ferdinand, P. Tilted Short-Period Fibre-Bragg-Grating-Induced Coupling to Cladding Modes for Accurate Refractometry. Meas. Sci. Technol. 2001, 12, 765–770. [Google Scholar] [CrossRef]
- Bao-Jian, W.; Xin, L.; Kun, Q. Magneto-Optic Fiber Gratings Useful for Dynamic Dispersion Management and Tunable Comb Filtering. Chin. Phys. Lett. 2010, 27, 067803. [Google Scholar] [CrossRef]
- Littler, I.C.M.; Grujic, T.; Eggleton, B.J. Photothermal Effects in Fiber Bragg Gratings. Appl. Opt. 2006, 45, 4679–4685. [Google Scholar] [CrossRef]
- Moghimi, M.J.; Fard, H.G. Multi-Wavelengths Optical Switching and Tunable Filters Using Dynamic Superimposed Photorefractive Bragg Grating. Prog. Electromagn. Res. C 2008, 3, 129–142. [Google Scholar] [CrossRef]
- Song, Z.; Wang, M.; Payne, F.P.; Salter, P.S.; Liu, T.; Elston, S.J.; Booth, M.J.; Morris, S.M.; Fells, J.A.J. Fiber Bragg Gratings with Micro-Engineered Temperature Coefficients. Adv. Opt. Mater. 2025, 13, 2402726. [Google Scholar] [CrossRef]
- Fan, W.; Jin, H.; Fu, Y.; Lin, Y. A Type of Symmetrical Differential Lever Displacement Amplification Mechanism. Mech. Ind. 2021, 22, 4. [Google Scholar] [CrossRef]
- Jiang, B.; Zhao, J.; Qin, C.; Huang, Z.; Fan, F. An Optimized Strain Demodulation Method Based on Dynamic Double Matched Fiber Bragg Grating Filtering. Opt. Lasers Eng. 2011, 49, 415–418. [Google Scholar] [CrossRef]
- da Silva, R.E.; Manuylovich, E.; Sahoo, N.; Becker, M.; Rothhardt, M.; Bartelt, H. Highly Efficient Side-Coupled Acousto-Optic Modulation of a Suspended Core Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2021, 33, 1379–1382. [Google Scholar] [CrossRef]
- da Silva, R.E.; Manuylovich, E.; Sahoo, N.; Franco, M.A.R.; Bartelt, H.; Webb, D.J. All-Fiber Fast Acousto-Optic Temporal Control of Tunable Optical Pulses. Opt. Fiber Technol. 2024, 87, 103877. [Google Scholar] [CrossRef]
- Phua, E.J.R.; Liu, M.; Cho, B.; Liu, Q.; Amini, S.; Hu, X.; Gan, C.L. Novel High Temperature Polymeric Encapsulation Material for Extreme Environment Electronics Packaging. Mater. Des. 2018, 141, 202–209. [Google Scholar] [CrossRef]
- Li, X.; Chong, Y.; Wang, J.; Xue, T.; Yan, J.; Feng, D.; Jiang, Y.; Zou, J.; Du, B.; Yang, D. A Linear Chirp Fiber Bragg Grating with Tunable Bandwidth Enabled by MXene’s Photothermal Effect. Appl. Phys. Lett. 2023, 123, 161101. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Jiang, J.; Liu, X.; Liu, T. A High-Precision Wavelength Demodulation Method Based on Optical Fiber Fabry-Perot Tunable Filter. IEEE Access 2018, 6, 45983–45989. [Google Scholar] [CrossRef]
- Wang, P.; Shao, M.; Han, X.; Li, S. FPGA-Based Real-Time System for Demodulating FBG Wavelength. Int. J. Smart Home 2015, 9, 91–98. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, H.; Hu, C.; Bai, W.; Dai, Y. Field-Programmable Gate Array-Based Large-Capacity Sensing Network with Ultra-Weak Fiber Bragg Gratings. Chin. Opt. Lett. 2016, 14, 010601. [Google Scholar] [CrossRef]
- Wu, J.; Xu, X.; Liao, C.; Weng, X.; Liu, L.; Qu, J.; Wang, Y.; He, J. Optimized Femtosecond Laser Direct-Written Fiber Bragg Gratings with High Reflectivity and Low Loss. Opt. Express 2023, 31, 3831–3838. [Google Scholar] [CrossRef]
- Halstuch, A.; Ishaaya, A.A. Femtosecond Inscription of a Fiber Bragg Grating Spectral Array in the Same Spatial Location. Sensors 2023, 23, 4064. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Wang, C.; Liao, C.; Wang, Y. Femtosecond-Laser-Inscribed Sampled Fiber Bragg Grating with Ultrahigh Thermal Stability. Opt. Express 2016, 24, 3981–3988. [Google Scholar] [CrossRef] [PubMed]
- Dostovalov, A.V.; Kokhanovskiy, A.Y.; Revjakin, A.; Munkueva, Z.E.; Kharenko, D.S.; Babin, S.A. The Fs-Laser Inscription of Fiber Bragg Gratings Based on Spatial Light Modulator. In Proceedings of the 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 1–5 July 2024; p. 224. [Google Scholar]
- Li, X.; Wang, J.; Chen, F.; Qiao, X. Femtosecond Laser Direct Writing Tilted Fiber Bragg Gratings in Multicore Fiber. Opt. Lett. 2024, 49, 6984–6987. [Google Scholar] [CrossRef] [PubMed]
- Strutynski, C.; Evrard, M.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Brachais, C.-H.; Kibler, B.; Smektala, F. 4D Optical Fibers Based on Shape-Memory Polymers. Nat. Commun. 2023, 14, 6561. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwaran, A.; Sherman, S.; Zappe, H. Spectral Response of Bragg Gratings in Multimode Polymer Waveguides. Appl. Opt. 2017, 56, 9573–9582. [Google Scholar] [CrossRef]
- Zhang, Z. Polymer Optical Fiber Bragg Grating. In Handbook of Smart Textiles; Tao, X., Ed.; Springer: Singapore, 2015. [Google Scholar]
- Nie, L.; Wu, Y.; Gao, X.; Luo, H.; Li, X.; Wang, X.; Liu, G. Optimized Optical Tunable Microfiber-Bragg Grating. Optik 2022, 270, 170086. [Google Scholar] [CrossRef]
- Liu, A.Q.; Zhang, X.M. A Review of MEMS External-Cavity Tunable Lasers. J. Micromech. Microeng. 2006, 17, R1–R13. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, F.; Sun, G.; Chen, D.; Cai, H.; Qu, R. Thermal Tunable Narrow Linewidth External Cavity Laser with Thermal Enhanced FBG. IEEE Photonics Technol. Lett. 2017, 29, 385–388. [Google Scholar] [CrossRef]
- Xu, X.; Dai, Y.; Chen, X.; Jiang, D.; Xie, S. Chirped and Phase-Sampled Fiber Bragg Grating for Tunable DBR Fiber Laser. Opt. Express 2005, 13, 3877–3882. [Google Scholar] [CrossRef]
- Jiang, C.; Wan, Y.; Yun, L.; Ma, Y.; Chen, S.; Sun, B.; Dai, L.; Mou, C.; Liu, Y.; Zhang, Z. Optically Tunable Mode-Locked Fiber Laser Using Long-Period Grating Coated with Multiwall Carbon Nannotubes. Appl. Phys. Lett. 2024, 124, 111104. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Z.; Feng, X.; Li, F.; Cao, Y.; Wang, X.; Guan, B.O. Tunable Single-Longitudinal-Mode Fiber Laser Based on a Chirped Fiber Bragg Grating. Opt. Laser Technol. 2020, 121, 105775. [Google Scholar] [CrossRef]
- Su, Y.; Zhao, T.; Wang, X.; Liu, S. Design of Feedback Wavelength Demodulation and Compensation System for FBG-Tuned CW Fiber Laser. Sens. Actuators Phys. 2021, 330, 112881. [Google Scholar] [CrossRef]
- Zou, M.; Shen, K.; Song, Q.; Dai, Y.; Xiao, X.; Sun, Q.; Yan, Z. Sub-kHz-Linewidth Laser Generation by Self-Injection Locked Distributed Feedback Fiber Laser. Opt. Laser Technol. 2024, 169, 110022. [Google Scholar] [CrossRef]
- Zou, M.; Dai, Y.; Xiao, X.; Zhao, W.; Shen, K.; Li, W. Sub-kHz Linewidth Fiber Laser via Weak Fiber Bragg Grating Enabled Self-Injection Locking. IEEE Photonics Technol. Lett. 2024, 36, 1405–1408. [Google Scholar] [CrossRef]
- Wong, A.C.L.; Chen, D.; Wang, H.-J.; Chung, W.H.; Tam, H.-Y.; Lu, C.; Guan, B.-O. Extremely Short Distributed Bragg Reflector Fibre Lasers with Sub-Kilohertz Linewidth and Ultra-Low Polarization Beat Frequency for Sensing Applications. Meas. Sci. Technol. 2011, 22, 045202. [Google Scholar] [CrossRef]
- Li, Z.; Shang, J.; Zhu, E.; Ding, S.; Zhang, Y.; Luo, B.; Yu, S. Ultra-Narrow Linewidth Single-Longitudinal-Mode Fiber Laser Using Nested Fiber Ring and Saturable Absorber. Opt. Fiber Technol. 2024, 85, 103784. [Google Scholar] [CrossRef]
- Hao, J.; Zhao, H.; Zhang, D.; Zhang, L.; Zhang, K. kW-Level Narrow Linewidth Fiber Amplifier Seeded by a Fiber Bragg Grating Based Oscillator. Appl. Opt. 2015, 54, 4857–4862. [Google Scholar] [CrossRef]
- Tian, X.; Rao, B.; Wang, M.; Xi, X.; Li, Z.; Chen, Z.; Xiao, H.; Ma, P.; Wang, Z. Brightness Enhancement on a Narrow-Linewidth Fiber Bragg Grating-Based Master Oscillator Power Amplification Fiber Laser. High Power Laser Sci. Eng. 2024, 12, e44. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Y.; Wang, Y.; Wang, Y.; Li, T.; Liu, S.; Shi, X.; Wei, J.; Yan, Z.; Peng, W.; et al. Nonlinear Spectral Compression in High-Power Narrow-Linewidth Polarization Maintaining Fiber Amplifiers for SBS Suppression. Opt. Express 2023, 31, 28089–28100. [Google Scholar] [CrossRef]
- Liu, X.; Tian, X.; Rao, B.; Yang, B.; Xi, X.; Wang, Z. A 3.2 kW Single Stage Narrow Linewidth Fiber Amplifier Emitting at 1050 Nm. Micromachines 2024, 15, 871. [Google Scholar] [CrossRef]
- Anderson, B.M.; MacDonald, K.; Taliaferro, A.; Flores, A. SBS Suppression Techniques in High-Power, Narrow-Linewidth Fiber Amplifiers. In Proceedings of the SPIE LASE, Online, 6–12 March 2021; p. 116650G. [Google Scholar]
- Chen, S.-Y.; Deng, H.-Q.; Zhang, W.-R.; Dai, Y.-P.; Wang, T.; Yu, Q.; Li, C.; Jiang, M.; Su, R.-T.; Wu, J.; et al. Single-Frequency Linearly Polarized Q-Switched Fiber Laser Based on Nb2GeTe4 Saturable Absorber. Chin. Phys. B 2023, 32, 074203. [Google Scholar] [CrossRef]
- Kotb, H.E.; Abdallah, M.S.; Elhehyawy, H.; Sabry, Y.M.; Omran, H. MEMS-Based Tunable Single-Passband Microwave Photonic Filter. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019. [Google Scholar]
- Tang, Z.; Zhou, P.; Li, N. Tunable Single-Passband Microwave Photonic Filter with Enhanced Fineness. In Proceedings of the 2023 International Topical Meeting on Microwave Photonics (MWP), Nanjing, China, 15–18 October 2023. [Google Scholar]
- Yan, Y.; Blais, S.R.; Yao, J. Tunable Photonic Microwave Bandpass Filter with Negative Coefficients Implemented Using an Optical Phase Modulator and Chirped Fiber Bragg Gratings. J. Light. Technol. 2007, 25, 3283–3288. [Google Scholar] [CrossRef]
- Zhu, S.; Yuan, B.; Fan, Y.; Sun, Y.; Marsh, J.H.; Hou, L. Tunable Dual-Band Microwave Photonic Filters Covering 37.2 GHz to 186.1 GHz Utilizing Chirped Sampled Gratings. In Proceedings of the ECOC 2024—50th European Conference on Optical Communication, Frankfurt, Germany, 22–26 September 2024. [Google Scholar]
- You, Y.; Hou, J.; Liu, Y.; Liu, S.; Yang, X.; He, W.; Geng, W.; Liu, Y.; Chou, X. Flexible Tunable Microwave Photonic Filter with a Dual Ultra-Narrow Passband Based on a Dual-Wavelength Brillouin Laser. Opt. Express 2024, 32, 33904–33916. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ruiz, M.R.; Carballar, A. Fiber Bragg Grating-Based Optical Signal Processing: Review and Survey. Appl. Sci. 2021, 11, 8189. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Shu, X.; Zhang, L. Arbitrary-Order Photonic Hilbert Transformers Based on Phase-Modulated Fiber Bragg Gratings in Transmission. Photonics 2021, 8, 27. [Google Scholar] [CrossRef]
- Liu, X.; Shu, X. Design of an All-Optical Fractional-Order Differentiator with Terahertz Bandwidth Based on a Fiber Bragg Grating in Transmission. Appl. Opt. 2017, 56, 6714–6719. [Google Scholar] [CrossRef]
- Preciado, M.A.; Shu, X.; Harper, P.; Sugden, K. Experimental Demonstration of an Optical Differentiator Based on a Fiber Bragg Grating in Transmission. Opt. Lett. 2013, 38, 917–919. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.R.; Carballar, A.; Ashrafi, R.; LaRochelle, S.; Azaña, J. All-Optical Pulse Shaping in the Sub-Picosecond Regime Based on Fiber Grating Devices. In Shaping Light in Nonlinear Optical Fibers; Wiley Semiconductors: Hoboken, NJ, USA, 2017; pp. 257–292. [Google Scholar]
- Djordjevic, I.B. FBG-Based Weak Coherent State and Entanglement-Assisted Multidimensional QKD. IEEE Photonics J. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Nielsen, T.; Eggleton, B.; Rogers, J.; Westbrook, P.; Hansen, P.; Strasser, T. Dynamic Post Dispersion Optimization at 40 Gb/s Using a Tunable Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2000, 12, 173–175. [Google Scholar] [CrossRef]
- Sun, J.; Dai, Y.; Chen, X.; Zhang, Y.; Xie, S. Thermally Tunable Dispersion Compensator in 40-Gb/s System Using FBG Fabricated with Linearly Chirped Phase Mask. Opt. Express 2006, 14, 44–49. [Google Scholar] [CrossRef]
- Venkatrao, P.; Bhanu Prashanth, S.B. Nonlinear Chirped Grating Based Tunable Dispersion Compensation Using Strain. Optik 2018, 175, 181–188. [Google Scholar] [CrossRef]
- Pan, Z.; Song, Y.W.; Yu, C.; Wang, Y.; Willner, A.E. Using Sampled Nonlinearly Chirped Fiber Bragg Gratings to Achieve 40-Gbit/s Tunable Multi-Channel Dispersion Compensation. Opt. Commun. 2004, 241, 371–375. [Google Scholar] [CrossRef]
- Yoshiara, K.; Takabayashi, M.; Matsumoto, S.; Shimakura, Y.; Sugihara, T. Tunable Dispersion Compensator with Twin Chirped Fiber Gratings for Polarization Mode Dispersion and Chromatic Dispersion; IEEE: Anaheim, CA, USA, 2005. [Google Scholar]
- Talam, D.B.; El-Badawy, E.-S.A.; Shalaby, H.M.H.; Aly, M.H. EDFA Gain Flattening Using Fiber Bragg Gratings Employing Different Host Materials. Opt. Quantum Electron. 2020, 52, 161. [Google Scholar] [CrossRef]
- Ye, Z.-P.; Zhang, S.; Guo, Y.; Zhang, Q. Tunable Gain Clamping L-Band Erbium-Doped Fiber Amplifier Based on FBG and BBM. Opt. Fiber Technol. 2024, 88, 103823. [Google Scholar] [CrossRef]
- Tan, Z.; Yong, C.; Liu, Y.; Zhi, T.; Jihong, C.; Tigang, N.; Kai, Z.; Ting, C.; Jian, S. Cross-Phase Modulation in Long-Haul Systems with Chirped Fiber Bragg Gratings-Based Dispersion Compensators. Optik 2007, 118, 216–220. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Fourier Transform Ultrashort Optical Pulse Shaping Using a Single Chirped Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2009, 21, 1375–1377. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, G.; Wang, T. An Optical Add-Drop Multiplexer Design Based on Fiber Bragg Gratings. In Proceedings of the 2011 International Conference on Electronics and Optoelectronics, Dalian, China, 29–31 July 2011; pp. V2-41–V2-43. [Google Scholar] [CrossRef]
- Tiwari, U.; Tripathi, S.M.; Thyagarajan, K.; Shenoy, M.R.; Mishra, V.; Jain, S.C.; Singh, N.; Kapur, P. Tunable Wavelength Division Multiplexing Channel Isolation Filter Based on Dual Chirped Long-Period Fiber Gratings. Opt. Lett. 2011, 36, 3747–3749. [Google Scholar] [CrossRef]
- Rickert, L.; Betz, F.; Plock, M.; Burger, S.; Heindel, T. High-Performance Designs for Fiber-Pigtailed Quantum-Light Sources Based on Quantum Dots in Electrically-Controlled Circular Bragg Gratings. Opt. Express 2023, 31, 14750–14770. [Google Scholar] [CrossRef]
- Rickert, L.; Vajner, D.; Helversen, M.v.; Schall, J.; Rodt, S.; Reitzenstein, S.; Zolnac, K.; Musial, A.; Sek, G.; Li, S.; et al. Fiber-Pigtailed Quantum Dot Hybrid Circular Bragg Gratings. In Proceedings of the Quantum 2.0 Conference and Exhibition; Optica Publishing Group: Washington, DC, USA, 2024; p. QM5B.3. [Google Scholar]
- Tippmann, M.; Fitzke, E.; Nikiforov, O.; Kleinpaß, P.; Dolejsky, T.; Mengler, M.; Walther, T. Fiber-Based Double-Pass Single-Crystal Photon-Pair Source for Quantum Key Distribution in a Network. Phys. Rev. Appl. 2025, 23, 034017. [Google Scholar] [CrossRef]
- Field, B.; Mistry, C.; Luo, L.; Edvell, L.G.; Bland-Hawthorn, J.; Leon-Saval, S.; Bartholomew, J. Efficient, Ultra-High Attenuation Fiber Bragg Grating Filter for Photon Noise Suppression. arXiv 2024, arXiv:2412.00981. [Google Scholar] [CrossRef]
- Shang, C.; Liu, W.; Zeng, Z.; Wu, Z.; Fan, Z.; Yue, H.; Wang, P.; Wei, C.; Liu, Y. High-Power and High-Speed All-Optical All-Fiber Wavelength-Swept Source at 2 Μm Based on a Femtosecond Laser and Time Stretch Technique. Infrared Phys. Technol. 2024, 139, 105328. [Google Scholar] [CrossRef]
- Grelet, S.; Jimenez, A.M.; Montague, P.B.; Podoleanu, A. Shot-Noise Limited, 10 MHz Swept-Source Optical Coherence Tomography for Retinal Imaging. IEEE Photonics J. 2025, 17, 3900105. [Google Scholar] [CrossRef]
- Tao, C.; Guo, T.; Chen, Y.; Li, M. High-Speed Interrogation for Dynamic Fiber Bragg Grating Sensing. In Proceedings of the Fourth International Conference on Computational Imaging (CITA 2024), Xiamen, China, 20–22 September 2024. [Google Scholar]
- Kuroda, K.; Oka, H. Interrogation of Fiber Bragg Grating-Based Sensors Temporally and Spectrally Multiplexed in Tree Topology. J. Light. Technol. 2025, 43, 3786–3791. [Google Scholar] [CrossRef]
- Liu, W.; Cao, G.; Liu, Z.; Chen, H.; Zhang, H.; Li, R.; Lin, K.-T.; Lin, H.; Jia, B. Fully Automatic Fabrication of Fibre Bragg Gratings Using an AI-Powered Femtosecond Laser Inscription System. arXiv 2025, arXiv:2510.19148. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Tang, M.; Xu, P.; Xu, Y.; Liu, X. Micro-/Nanoscale Multi-Field Coupling in Nonlinear Photonic Devices. Semicond. Sci. Technol. 2017, 32, 083004. [Google Scholar] [CrossRef]
- Shuai, Y.; Zhou, Z.; Su, H. Toward Practical Optical Phased Arrays through Grating Antenna Engineering. Photonics 2023, 10, 520. [Google Scholar] [CrossRef]
- Fan, Y.; Bao, W.; Li, Q.; Liao, C.; Wang, Y. Fiber Bragg Grating Inscribed in Large Mode Area Double-Clad Fiber Using Femtosecond Laser Multi-Layer Line-by-Line Technology. J. Light. Technol. 2025, 43, 1400–1405. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Zhang, Y.; Peng, H.; Zhang, J.; Ye, S.; Shan, X.; Wang, L. Tunable Narrow Linewidth Diode Laser Based on a Fibre-Coupled External Cavity Feedback Structure. Opt. Laser Technol. 2025, 183, 112409. [Google Scholar] [CrossRef]
- Sun, B.; Wei, M.; Lei, K.; Chen, Z.; Sun, C.; Li, J.; Li, L.; Lin, H. Integrated Bragg Grating Filters Based on Silicon-Sb2Se3 with Non-Volatile Bandgap Engineering Capability. Opt. Express 2023, 31, 27905–27916. [Google Scholar] [CrossRef]
- Baets, R.; Rahim, A. Heterogeneous Integration in Silicon Photonics: Opportunities and Challenges: Opinion. Opt. Mater. Express 2023, 13, 3439–3454. [Google Scholar] [CrossRef]
- Huang, F.; Si, J.; Chen, T.; Hou, L.; Hou, X. Wide-Range Wavelength-Tunable Mode-Locked Fiber Laser Based on Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2020, 32, 1025–1028. [Google Scholar] [CrossRef]
- Sahoo, D.; Naik, R. GSST Phase Change Materials and Its Utilization in Optoelectronic Devices: A Review. Mater. Res. Bull. 2022, 148, 111679. [Google Scholar] [CrossRef]
- Jiang, B.Q.; Hou, Y.G.; Wu, J.X.; Ma, Y.X.; Gan, X.T.; Zhao, J. In-Fiber Photoelectric Device Based on Graphene-Coated Tilted Fiber Grating. Opto-Electron. Sci. 2023, 2, 230012. [Google Scholar] [CrossRef]
- Shivananju, B.N.; Bao, X.; Yu, W.; Yuan, J.; Mu, H.; Sun, T.; Xue, T.; Zhang, Y.; Liang, Z.; Kan, R.; et al. Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 Nm to 10.768 Μm. Adv. Funct. Mater. 2019, 29, 1807274. [Google Scholar] [CrossRef]
- Adibnia, E.; Ghadrdan, M.; Mansouri-Birjandi, M.A. Chirped Apodized Fiber Bragg Gratings Inverse Design via Deep Learning. Opt. Laser Technol. 2025, 181, 111766. [Google Scholar] [CrossRef]
- Chen, Y.; McNeil, A.M.; Park, T.; Wilson, B.A.; Iyer, V.; Bezick, M.; Choi, J.-I.; Ojha, R.; Mahendran, P.; Singh, D.K.; et al. Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization. Nanophotonics 2025, 14, 3761–3793. [Google Scholar] [CrossRef]
- Ghosh, B.; Mandal, S. Fiber Bragg Grating-Based Optical Filters for High-Resolution Sensing: A Comprehensive Analysis. Results Opt. 2023, 12, 100441. [Google Scholar] [CrossRef]
- Yang, Q.; Tao, H.; Kong, M.; Xu, Y. Spectrum Design of Multimode Fiber Bragg Gratings Based on Suppression of Mode Coupling. Appl. Opt. 2024, 63, 5867–5875. [Google Scholar] [CrossRef]
- Garg, A.; Singh, A.; Bansal, S.; Dudeja, S.; Singh, R.R. Spectral Behavior Optimization of Uniform Fiber Bragg Grating-Inscribed in SMF-28 Fiber. In Proceedings of the 2023 7th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, 18-20 December 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Nadeem, M.D.; Raghuwanshi, S.K.; Kumar, R. Efficient Photonics Beam Forming System Incorporating Super Structure Fiber Bragg Grating for Application in Ku Band. Opt. Fiber Technol. 2023, 80, 03436. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shinoda, Y. Multichannel High-Speed Fiber Bragg Grating Interrogation System Utilizing a Field Programmable Gate Array. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, J.; Hong, S.; Wang, C.; Liu, S.; Li, H.; Ju, X.; Ke, X.; Liu, D.; Dai, D. Towards Large-Scale Programmable Silicon Photonic Chip for Signal Processing. Nanophotonics 2024, 13, 2051–2073. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, W. Fully Reconfigurable Waveguide Bragg Gratings for Programmable Photonic Signal Processing. J. Light. Technol. 2020, 38, 202–214. [Google Scholar] [CrossRef]
- Cai, K.; Song, B.; Lin, W.; Duan, S.; Liu, H.; Zhang, H.; Liu, B. Reconfigurable Optical Convolution Operation Architecture Based on Fiber Bragg Gratings. Opt. Express 2025, 33, 41684–41698. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Z.; Yue, X.; Long, J.; Wang, H.; Zha, Y.; Feng, F.; Ran, Y.; Guan, B.-O. Kovacs-like Memory Effect Mediated Fiber Bragg Grating: Resembling a Silica Quipu. Nat. Commun. 2025, 16, 6250. [Google Scholar] [CrossRef]
- Field, B.R.; Mistry, C.; Luo, L.; Edvell, G.; Bland-Hawthorn, J.; Leon-Saval, S.; Bartholomew, J.G. Low Loss Fibre Bragg Grating Filters for Photon Noise Suppression. In Proceedings of the Optica Quantum 2.0 Conference and Exhibition; Optica Publishing Group: Washington, DC, USA, 2025; p. QM4B.5. [Google Scholar]






| Tuning Mechanism | Primary Parameter Changed | Tuning Range | Response Speed | Precision/ Linearity | Key Advantages | Key Challenges |
|---|---|---|---|---|---|---|
| Axial Strain | (Dominant) | Large (>40 nm) | Moderate (ms) | High/ Good | Large range, fast, linear | Mechanical reliability, hysteresis |
| Thermal | (Dominant) | Moderate (3–5 nm) | Slow (s) | Very High/ Excellent | No moving parts, highly stable & precise | Slow, power- intensive |
| Optothermal | (Via ΔT) | Moderate (5–10 nm) | Moderate (ms) | High/ Good | Non-contact, remote, precise | Speed limited by thermal diffusion |
| Transverse Load | (Birefringence) | Small (<1 nm) | Moderate (ms) | Low/ Poor | Vector sensing capability | Spectral splitting, not pure tuning |
| Electro-Optic | Very Small (<0.1 nm) | Fast (ns-ps) | Moderate | Ultra-high speed potential | Complex, costly, compatibility | |
| Nonlinear Optical | (Direct) | Very Small (<0.1 nm) | Fast (ns-fs) | Moderate | Ultra-fast, non-contact | High power required, complex |
| Hybrid | & | Extensible | Depends on combination | Optimizable | Performance synergy, functionality | System complexity, control |
| Tuning Mechanism | Primary Techniques/Methods | Core Performance Enhancement |
|---|---|---|
| Mechanical Tuning | Lever structure amplification, elastic beam optimization (cantilever/simply supported beam), ultrasonic vibration | Tuning range expansion, response speed improvement, linearity enhancement |
| Thermal Tuning | Packaging with high-thermal expansion materials, optothermal effect (e.g., using MXene films) | Significant enhancement of thermal sensitivity, enables gradient temperature fields and non-uniform tuning |
| Interrogation & Control System | Tunable Fabry–Perot filter, FPGA-based digital signal processing | Improved system measurement accuracy and speed, enhanced real-time capability, temperature drift compensation |
| Special Structures & Fabrication Techniques | Femtosecond laser direct writing, composite beams and differential structures | Enables complex device structures, multi-parameter decoupling, and sensitivity improvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Xia, E.; Wang, C.; Ren, W. Active Wavelength Control of Fiber Bragg Gratings: A Systematic Review of Tuning Mechanisms, Emerging Applications, and Future Frontiers. Micromachines 2026, 17, 263. https://doi.org/10.3390/mi17020263
Wang X, Xia E, Wang C, Ren W. Active Wavelength Control of Fiber Bragg Gratings: A Systematic Review of Tuning Mechanisms, Emerging Applications, and Future Frontiers. Micromachines. 2026; 17(2):263. https://doi.org/10.3390/mi17020263
Chicago/Turabian StyleWang, Xiaoyan, Erdong Xia, Chunrong Wang, and Wen Ren. 2026. "Active Wavelength Control of Fiber Bragg Gratings: A Systematic Review of Tuning Mechanisms, Emerging Applications, and Future Frontiers" Micromachines 17, no. 2: 263. https://doi.org/10.3390/mi17020263
APA StyleWang, X., Xia, E., Wang, C., & Ren, W. (2026). Active Wavelength Control of Fiber Bragg Gratings: A Systematic Review of Tuning Mechanisms, Emerging Applications, and Future Frontiers. Micromachines, 17(2), 263. https://doi.org/10.3390/mi17020263

