You are currently viewing a new version of our website. To view the old version click .
Micromachines
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Review
  • Open Access

31 December 2025

Electrokinetic Microfluidics at the Convergence Frontier: From Charge-Driven Transport to Intelligent Chemical Systems

,
,
and
Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
This article belongs to the Collection Micro/Nanoscale Electrokinetics

Abstract

Electrokinetics has established itself as a central pillar in microfluidic research, offering a powerful, non-mechanical means to manipulate fluids and analytes. Mechanisms such as electroosmotic flow (EOF), electrophoresis (EP), and dielectrophoresis (DEP) re-main central to the field, once more layers of complexity emerge heterogeneous interfaces, viscoelastic liquids, or anisotropic droplets are introduced. Five research directions have become prominent. Field-driven manipulation of droplets and emulsions—most strikingly Janus droplets—demonstrates how asymmetric interfacial structures generate unconventional transport modes. Electrokinetic injection techniques follow as a second focus, because sharply defined sample plugs are essential for high-resolution separations and for maintaining analytical accuracy. Control of EOF is then framed as an integrated design challenge that involves tuning surface chemistry, engineering zeta potential, implementing nanoscale patterning, and navigating non-Newtonian flow behavior. Next, electrokinetic instabilities and electrically driven micromixing are examined through the lens of vortex-mediated perturbations that break diffusion limits in low-Reynolds-number flows. Finally, electrokinetic enrichment strategies—ranging from ion concentration polarization focusing to stacking-based preconcentration—demonstrate how trace analytes can be selectively accumulated to achieve detection sensitivity. Ultimately, electrokinetics is converging towards sophisticated integrated platforms and hybrid powering schemes, promising to expand microfluidic capabilities into previously inaccessible domains for analytical chemistry and diagnostics.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.