Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices
Abstract
1. Introduction
2. Electrical Isolation of Ion Implantation in GaN Devices
3. Effect of Ion Implantation on Ohmic Contact
3.1. Modulation of Electrical Conductivity Using Ion Implantation Technique
3.2. Low-Resistance Ohmic Contact Using Ion Implantation Technique
4. Electrical Field Modulation of GaN-Based Power Device Using Ion Implantation Technique
4.1. F Ion Implantation
4.2. N Ion Implantation
4.3. Ar Ion Implantation
5. Conclusions
Funding
Conflicts of Interest
References
- Yang, L.; Jia, F.C.; Lu, H.; Hou, B.; Zhang, M.; Du, J.L.; Chang, Q.Y.; Deng, L.G.; Yu, Q.; Li, S.M.; et al. Record Power Performance of 33.1 W/mm with 62.9% PAE at X-band and 14.4 W/mm at Ka-band from AlGaN/GaN/AlN: Fe Heterostucture. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Liu, T.; Li, X.D.; Han, Z.F.; Zhai, L.L.; Wang, J.B.; You, S.Z.; Zhang, J.C.; Zhang, J.; Cheng, Z.B.; Zhang, Y.H.; et al. Improving the Manufacturability of Low-Temperature GaN Ohmic Contact by Blocking the Fluorine Ion Injection. IEEE J. Electron Devices Soc. 2024, 12, 170–175. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, M.; Yang, L.; Hou, B.; Martinez, R.P.; Mi, M.H.; Du, J.L.; Deng, L.G.; Wu, M.; Chowdhury, S.; et al. A Review of GaN RF Devices and Power Amplifiers for 5G Communication Applications. Fundam. Res. 2023, 5, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.C.; Xu, S.R.; Zhang, J.C.; Su, H.K.; Gao, Y.; Zhang, Y.C.; Zhou, H.; Hao, Y. Improved crystal quality and enhanced optical performance of GaN enabled by ion implantation induced high-quality nucleation. Opt. Express 2023, 31, 20850–20860. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Ma, X.H.; Hou, B.; Yang, L.; Zhang, M.; Wu, M.; Si, Z.Y.; Zhang, X.C.; Niu, X.R.; Hao, Y. Improved RF power performance of AlGaN/GaN HEMT using by Ti/Au/Al/Ni/Au shallow trench etching ohmic contact. IEEE Trans. Electron Devices 2021, 68, 4842–4846. [Google Scholar] [CrossRef]
- Lu, H.; Hou, B.; Yang, L.; Niu, X.R.; Si, Z.Y.; Zhang, M.; Wu, M.; Mi, M.H.; Zhu, Q.; Cheng, K.; et al. Aln/GaN/InGaN coupling-channel HEMTs for improved gm and gain linearity. IEEE Trans. Electron Devices 2021, 68, 3308–3313. [Google Scholar] [CrossRef]
- Lu, H.; Yang, L.; Hou, B.; Zhang, M.; Wu, M.; Ma, X.H.; Hao, Y. AlN/GaN/InGaN coupling-channel HEMTs with steep subthreshold swing of sub-60 mV/decade. Appl. Phys. Lett. 2022, 120, 173502. [Google Scholar] [CrossRef]
- Recht, F.; McCarthy, L.; Rajan, S.; Chakraborty, A.; Poblenz, C.; Corrion, A.; Speck, J.S.; Mishra, U.K. Nonalloyed ohmic contacts in AlGaN/GaN HEMTs by ion implantation with reduced activation annealing temperature. IEEE Electron Device Lett. 2006, 27, 205–207. [Google Scholar] [CrossRef]
- Rajabi, S.; Mandal, S.; Ercan, B.; Li, H.R.; Lanrent, M.A.; Keller, S.; Chowdhury, S. A demonstration of nitrogen polar gallium nitride current aperture vertical electron transistor. IEEE Electron Device Lett. 2019, 40, 885–888. [Google Scholar] [CrossRef]
- Yu, H.; Putcha, V.; Peralagu, U.; Zhao, M.; Yadav, S.; Alian, A.; Parvais, B.; Collaert, N. Leakage mechanism in ion implantation isolated AlGaN/GaN heterostructures. J. Appl. Phys. 2022, 131, 035701. [Google Scholar] [CrossRef]
- Wang, Z.M.; Yu, G.H.; Yuan, X.; Deng, X.G.; Zhang, L.; Dai, S.G.; Yang, G.; Zhang, L.G.; Ji, R.K.; Kan, X.; et al. Low leakage current in isolated AlGaN/GaN heterostructure on Si substrate by N ion implantation performed at an elevated temperature. Appl. Phys. Lett. 2023, 122, 062105. [Google Scholar] [CrossRef]
- Shi, C.Z.; Yang, L.; Zhang, M.; Wu, M.; Hou, B.; Lu, H.; Jia, F.C.; Guo, F.; Liu, W.L.; Ma, X.H.; et al. High-Efficiency AlGaN/GaN/Graded-AlGaN/GaN Double-Channel HEMTs for Sub-6G Power Amplifier Applications. IEEE Trans. Electron Devices 2023, 70, 2241–2246. [Google Scholar] [CrossRef]
- Cho, M.; Xu, Z.Y.; Marzieh, B.N.; Jeong, H.; Tsou, C.W.; Detchprohm, T.; Dupuis, R.D.; Shen, S.C. Effective leakage current reduction in GaN ultraviolet avalanche photodiodes with an ion-implantation isolation method. IEEE Trans. Electron Devices 2021, 68, 2759–2763. [Google Scholar] [CrossRef]
- Yu, H.; Peralagu, U.; Alian, A.; Zhao, M.; Parvais, B.; Collaert, N. Parasitic side channel formation due to ion implantation isolation of GaN HEMT. MRS Adv. 2022, 7, 1274–1278. [Google Scholar] [CrossRef]
- Zolper, J.C.; Tan, H.H.; Williams, J.S.; Zou, J.; Cockayne, D.J.H.; Pearton, S.J.; Crawford, M.H.; Karlicek, R.F. Electrical and structural analysis of high-dose Si implantation in GaN. Appl. Phys. Lett. 1997, 70, 2729–2731. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, L.G.; Ji, R.K.; Kan, X.; Zhang, X.; Cai, Y.; Zhang, B.S. Structural and electrical characterizations of Si-implanted GaN with a high dose at elevated temperatures. Mater. Sci. Semicond. Process. 2022, 150, 106945. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, F.Z.; He, J.Q.; Qiao, Z.P.; Tang, C.Y.; Tang, X.Y.; Wang, Z.R.; Wang, Q.; Yu, H.Y. Microscopic formation mechanism of Si/Tl5Al1/TiN ohmic contact on non-recessed i-InAlN/GaN heterostructures with ultra-low resistance. Appl. Phys. Lett. 2022, 121, 212105. [Google Scholar] [CrossRef]
- Nomoto, K.; Tajima, T.; Mishima, T.; Satoh, M.; Nakamura, T. Remarkable reduction of on-resistance by ion implantation in GaN/AlGaN/GaN HEMTs with low gate leakage current. IEEE Electron Device Lett. 2007, 28, 939–941. [Google Scholar] [CrossRef]
- Nomoto, K.; Toyoda, Y.; Satoh, M.; Inada, T.; Nakamura, T. Characterization of silicon ion-implanted GaN and AlGaN. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 272, 125–127. [Google Scholar] [CrossRef]
- Coig, M.; Lardeau-Falcy, A.; Sacher, N.; Kanyandekwe, J.; Huvelin, A.; Biscarrat, J.; Vilain, E.; Milési, F.; Mazen, F. Si and Mg ion implantation for doping of GaN grown on silicon. In Proceedings of the 2018 22nd International Conference on Ion Implantation Technology (IIT), Würzburg, Germany, 16–21 September 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Wang, Z.M.; Zhang, L.G.; Ji, R.K.; Zhang, X.; Cai, Y.; Zhang, B.S. Si Implantation in GaN at Elevated Temperatures. In Proceedings of the 2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 6–8 December 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Qiao, D.; Guan, Z.F.; Carlton, J.; Carlton, J.; Lau, S.S.; Sullivan, G.J. Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the “advancing” Al/Ti metallization. Appl. Phys. Lett. 1999, 74, 2652–2654. [Google Scholar] [CrossRef]
- Yu, H.J.; McCarthy, L.; Xing, H.; Waltereit, H.; Shen, L.; Keller, S.; Denbaars, S.P.; Speck, J.S.; Mishra, U.K. Dopant activation and ultralow resistance ohmic contacts to Si-ion-implanted GaN using pressurized rapid thermal annealing. Appl. Phys. Lett. 2004, 85, 5254–5256. [Google Scholar] [CrossRef]
- Yu, H.J.; McCarthy, L.; Rajan, S.; Keller, S.; Denbaars, S.; Speck, J.; Mishra, U. Ion implanted AlGaN-GaN HEMTs with nonalloyed ohmic contacts. IEEE Electron Device Lett. 2005, 26, 283–285. [Google Scholar]
- Placidi, M.; Perez-Tomas, A.; Constant, A.; Rius, G.; Mestres, N.; Millan, J.; Godignon, P. Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN. Appl. Surf. Sci. 2009, 255, 6057–6060. [Google Scholar] [CrossRef]
- Shiino, T.; Saitoh, T.; Nakamura, T.; Inada, T. Ohmic contacts on n-type layers formed in GaN/AlGaN/GaN by dual-energy Si ion implantation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 1571–1574. [Google Scholar] [CrossRef]
- Nguyen, C.; Shah, P.; Leong, E.; Derenge, M.; Jones, K. Si implant-assisted Ohmic contacts to GaN. Solid-State Electron. 2010, 54, 1227–1231. [Google Scholar] [CrossRef]
- Fedorov, D.G.; Seleznev, B.I.; Zhelannov, A.V. Distributions of silicon implanted in GaN epitaxial layers. J. Phys. Conf. Ser. 2020, 1658, 012012. [Google Scholar] [CrossRef]
- Gallagher, J.C.; Anderson, T.J.; Koehler, A.D.; Foster, G.M.; Jacobs, A.G.; Feigelson, B.N.; Mastro, M.A.; Hite, J.K.; Hobar, K.D.; Kub, F.J. Reduced contact resistance in GaN using selective area Si ion implantation. IEEE Trans. Semicond. Manuf. 2019, 32, 478–482. [Google Scholar] [CrossRef]
- Shurrab, M.; Siddiqui, A.; Singh, S. Counter-doped multizone junction termination extension structures in vertical GaN diodes. IEEE J. Electron Devices Soc. 2019, 7, 287–294. [Google Scholar] [CrossRef]
- Kozubal, K.; Karolina, P.; Andrzej, T.; Renata, K.; Iwona, S.; Eliana, K. Ohmic contact formation to GaN by Si+ implantation doping: Retarding layer, implantation fluence, encapsulation, and activation annealing temperature studies. Mater. Sci. Semicond. Process. 2021, 122, 105491. [Google Scholar] [CrossRef]
- Chanuel, A.; Gobi, Y.; Hsu, C.L.; Charles, M.; Coig, M.; Biscarrat, J.; Aussenac, F.; Defrance, N.; Gaquière, C.; Gaillard, F.; et al. Breakdown mechanism of AlGaN/GaN HEMT on 200-mm silicon substrate with silicon implant-assisted contacts. IEEE Trans. Electron Devices 2022, 69, 5530–5535. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Greco, G. Ion implantation doping in silicon carbide and gallium nitride electronic devices. Micro 2022, 2, 23–53. [Google Scholar] [CrossRef]
- Jones, E.A.; Wang, F.F.; Costinett, D. Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 707–719. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mishra, U.K. Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure. IEEE Trans. Electron Devices 2013, 60, 3060–3066. [Google Scholar] [CrossRef]
- Takahashi, M.; Tanaka, A.; Ando, Y.; Watanabe, H.; Deki, M.; Kushimoto, M.; Nitta, S.; Honda, Y.; Shima, K.; Kojima, K.; et al. Suppression of Green Luminescence of Mg-Ion-Implanted GaN by Subsequent Implantation of Fluorine Ions at High Temperature. Phys. Status Solidi B 2020, 257, 1900554. [Google Scholar] [CrossRef]
- Kachi, T.; Narita, T.; Sakurai, H.; Matys, M.; Kataoka, K.; Hirukawa, K.; Sumida, K.; Horita, M.; Ikarashi, N.; Sierakowski, K.; et al. Process engineering of GaN power devices via selective-area p-type doping with ion implantation and ultra-high-pressure annealing. J. Appl. Phys. 2022, 132, 130901. [Google Scholar] [CrossRef]
- Han, S.W.; Yang, S.; Sheng, K. Fluorine-implanted termination for vertical GaN Schottky rectifier with high blocking voltage and low forward voltage drop. IEEE Electron Device Lett. 2019, 40, 1040–1043. [Google Scholar] [CrossRef]
- Yang, C.; Luo, X.R.; Sun, T.; Zhang, A.B.; Ouyang, D.F.; Deng, S.Y.; Wei, J.; Zhang, B. High breakdown voltage and low dynamic on-resistance algan/gan hemt with fluorine ion implantation in sinx passivation layer. Nanoscale Res. Lett. 2019, 14, 191. [Google Scholar] [CrossRef]
- Liu, Y.X.; Yang, S.; Sheng, K. Design and optimization of vertical GaN PiN diodes with fluorine-implanted termination. IEEE J. Electron Devices Soc. 2020, 8, 241–250. [Google Scholar] [CrossRef]
- Zheng, X.F.; Chen, A.S.; Zhang, H.; Wang, X.H.; Wang, Y.Z.; Hua, N.; Chen, K.; Wang, M.S.; Zhang, Q.Y.; Ma, X.H.; et al. Degradation mechanism of fluorine treated enhancement-mode AlGaN/GaN HEMTs under high reverse gate bias. In Proceedings of the 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, 20–23 July 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Chen, J.B.; Song, X.F.; Liu, Z.H.; Duan, X.L.; Wang, H.Y.; Bian, Z.K.; Zhao, S.L.; Zhang, J.C.; Hao, Y. A GaN-on-Si quasi-vertical Schottky barrier diode with enhanced performance using fluorine ion-implanted field rings. Appl. Phys. Express 2021, 11, 14. [Google Scholar] [CrossRef]
- Deng, S.Y.; Luo, X.R.; Wei, J.; Jia, Y.J.; Sun, T.; Xi, L.F.; Jiang, Z.L.; Yang, K.M.; Jiang, Q.F.; Zhang, B. High Breakdown Voltage AlGaN/GaN HEMT with Graded Fluorine Ion Implantation Terminal in Thick Passivation Layer. In Proceedings of the 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Wuhan, China, 25–27 August 2021; IEEE: New York, NY, USA, 2021. [Google Scholar]
- Jia, F.C.; Ma, X.H.; Yang, L.; Zhang, X.C.; Hou, B.; Zhang, M.; Wu, M.; Niu, X.R.; Du, J.L.; Liu, S.Y.; et al. 930V and Low-Leakage Current GaN-on-Si Quasi-Vertical PiN Diode With Beveled-Sidewall Treated by Self-Aligned Fluorine Plasma. IEEE Electron Device Lett. 2022, 43, 1400–1403. [Google Scholar] [CrossRef]
- Lu, H.; Hou, B.; Yang, L.; Zhang, M.; Deng, L.G.; Wu, M.; Si, Z.Y.; Huang, S.; Ma, X.H.; Hao, Y. High RF performance GaN-on-Si HEMTs with passivation implanted termination. IEEE Electron Device Lett. 2021, 43, 188–191. [Google Scholar] [CrossRef]
- Zhou, K.N.; Shan, L.Q.; Zhang, Y.L.; Lu, D.; Ma, Y.M.; Chen, X.; Luo, L.B.; Wu, C.Y. Fluorine Plasma Treatment for AlGaN/GaN HEMT-Based Ultraviolet Photodetector with High Responsivity and High Detectivity. IEEE Electron Device Lett. 2023, 44, 781–784. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhong, Y.Z.; Zhou, Y.; Su, S.; Chen, X.; Yan, S.M.; Liu, J.X.; Sun, X.J.; Sun, Q.; Yang, H. Nitrogen-implanted guard rings for 600-V quasi-vertical GaN-on-Si Schottky barrier diodes with a BFOM of 0.26 GW/cm2. IEEE Trans. Electron Devices 2021, 68, 5682–5686. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhong, Y.Z.; Zhou, Y.; Chen, X.; Yan, S.M.; Liu, J.X.; Sun, X.J.; Sun, Q.; Yang, H. 1200-V GaN-on-Si quasi-vertical pn diodes. IEEE Electron Device Lett. 2022, 43, 2057–2060. [Google Scholar] [CrossRef]
- Wang, Y.F.; Porter, M.; Xiao, M.; Lu, A.; Yee, N.; Kravchenko, I.; Srijanto, B.; Cheng, K.; Wong, H.Y.; Zhang, Y.H. Implanted Guard Ring Edge Termination with Avalanche Capability for Vertical GaN Devices. IEEE Trans. Electron Devices 2023, 71, 1481–1487. [Google Scholar] [CrossRef]
- Nelson, T.; Pandey, P.; Georgiev, D.G.; Hontz, M.R.; Koehler, A.D.; Hobart, K.D.; Anderson, T.J.; Ildefonso, A.; Khanna, R. Hybrid edge termination in vertical GaN: Approximating beveled edge termination via Discrete Implantations. IEEE Trans. Electron Devices 2022, 69, 6940–6947. [Google Scholar] [CrossRef]
- Priesol, J.; Šatka, A.; Borga, M.; Minj, A.; Bakeroot, B.; Geens, K. Cross-sectional SEM-EBIC analysis of semi-vertical GaN power diodes. In Proceedings of the 2022 14th International Conference on Advanced Semiconductor Devices and Microsystems (ASDAM), Smolenice, Slovakia, 23–26 October 2022; IEEE: New York, NY, USA, 2022. [Google Scholar]
- Duan, Y.; Xie, A.; Fay, P. 1.7-kV Vertical GaN pn Diodes with Step-Graded Ion-Implanted Edge Termination. In Proceedings of the 2023 Device Research Conference (DRC), Santa Barbara, CA, USA, 25–28 June 2023; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Zhang, Y.H.; Sun, M.; Piedra, D.; Azize, M.; Zhang, X.; Fujishima, T.; Palacios, T. GaN-on-Si Vertical Schottky and p-n Diodes. IEEE Electron Device Lett. 2014, 35, 618–620. [Google Scholar] [CrossRef]
- Usov, I.; Parikh, N.; Thomson, D.; Reitmeier, Z.; Davis, R.; Kudriavtsev, Y.; Asomoza, R. Dose and implantation temperature influence on disorder produced by Ar+ ion implantation into GaN. In Proceedings of the Ion Implantation Technology. 2002. Proceedings of the 14th International Conference on, Taos, NM, USA, 22–27 September 2002; pp. 605–609. [Google Scholar] [CrossRef]
- Ozbek, A.M.; Baliga, B.J. Finite-Zone Argon Implant Edge Termination for High-Voltage GaN Schottky Rectifiers. IEEE Electron Device Lett. 2011, 32, 1361–1363. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhong, Y.Z.; He, J.L.; Zhou, Y.; Su, S.; Chen, X.; Liu, J.X.; Gao, H.W.; Sun, X.J.; Zhou, Q.; et al. High-voltage and high-ION/IOFF quasi-vertical GaN-on-Si Schottky barrier diode with argon-implanted termination. IEEE Electron Device Lett. 2021, 42, 473–476. [Google Scholar] [CrossRef]
- Guo, X.L.; Zhong, Y.Z.; Chen, X.; Zhou, Y.; Su, S.; Yan, S.M.; Liu, J.X.; Sun, X.J.; Sun, Q.; Yang, H. Reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes with and without implanted termination. Appl. Phys. Lett. 2021, 118, 243501. [Google Scholar] [CrossRef]
Ion | Effects | Performance | Properties |
---|---|---|---|
N ions | Form high-resistance regions for electrical isolation; High-dose implantation enhances leakage suppression and voltage withstand | Lower leakage current; Enhance breakdown voltage; Improve high-temperature stability; Provide isolation without extra layers/roughness | High electronegativity, reactivity; Low post-implantation annealing temperature; Maintain low defect density; Enhance thermal/electrical stability |
F ions | Introduce defects that affect threshold voltage under high electric fields; Mitigate electric field crowding at junction edges and gate edges; Reduce interface state density; | Enhance breakdown voltage; Low forward voltage drop and turn-on voltage; Decrease dynamic on-resistance; Improve ON/OFF ratio; Reduce dark current | High electronegativity leads to negative charging; Reduce 2DEG perturbation; Engineer the electric field distribution |
Si ions | Increase carrier concentration; Improve crystal quality; Higher fluence increases defects | Lower on-state resistance; Reduce contact resistance; Enhance saturation drain current; Boost transconductance | Atomic radius of Si is closer to that of Ga; Excellent chemical compatibility with GaN |
Ar ions | Form high-resistance regions; Induce damage-induced traps; Weaken the electric field near the Schottky junction | Increase the breakdown voltage; Alleviate electric field crowding; Capture injected electrons; Reduce tunneling current; Improve leakage characteristics | Inactive chemical properties; Preventing introduction of additional impurities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Hao, X.; Zhang, Y.; Yang, L.; Hou, B.; Zhang, M.; Wu, M.; Ma, X.; Hao, Y. Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices. Micromachines 2025, 16, 999. https://doi.org/10.3390/mi16090999
Lu H, Hao X, Zhang Y, Yang L, Hou B, Zhang M, Wu M, Ma X, Hao Y. Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices. Micromachines. 2025; 16(9):999. https://doi.org/10.3390/mi16090999
Chicago/Turabian StyleLu, Hao, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma, and Yue Hao. 2025. "Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices" Micromachines 16, no. 9: 999. https://doi.org/10.3390/mi16090999
APA StyleLu, H., Hao, X., Zhang, Y., Yang, L., Hou, B., Zhang, M., Wu, M., Ma, X., & Hao, Y. (2025). Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices. Micromachines, 16(9), 999. https://doi.org/10.3390/mi16090999