Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias
Abstract
1. Introduction
2. Brief Overview of Properties of Carbon Nanotubes
3. Design and Fabrication of CNT-Based TSVs
4. Thermal Management Performance of CNT-Based TSVs
5. Performance, Reliability, and Fabrication Issues of CNT–CuComposite TSVs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, W.-W.; Chen, K.-N. Three-dimensional integrated circuit (3D IC) key technology: Through-silicon via (TSV). Nanoscale Res. Lett. 2017, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Yeboah, L.; Oppong, P.; Malik, A.A.; Acheampong, P.; Morgan, J.; Addo, R.; Henyo, B.W. Exploring Innovations, Sustainability and Future Opportunities in Semiconductor Technologies. 2024. Available online: https://www.preprints.org/frontend/manuscript/613da5a6fe97205b84ddddea9d4a353b/download_pub (accessed on 26 November 2024).
- Salvi, S.S.; Jain, A. A review of recent research on heat transfer in three-dimensional integrated circuits (3-D ICs). IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 802–821. [Google Scholar] [CrossRef]
- Pillonnet, G.; Jeanniot, N.; Vivet, P. 3D ICs: An opportunity for fully-integrated, dense and efficient power supplies. In Proceedings of the 2015 International 3D Systems Integration Conference (3DIC), Sendai, Japan, 31 August–2 September 2015; pp. TS6. 4.1–TS6. 4.8. [Google Scholar]
- Tummala, R.R.; Sundaram, V.; Chatterjee, R.; Raj, P.M.; Kumbhat, N.; Sukumaran, V.; Sridharan, V.; Choudury, A.; Chen, Q.; Bandyopadhyay, T. Trend from ICs to 3D ICs to 3D systems. In Proceedings of the 2009 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 13–16 September 2009; pp. 439–444. [Google Scholar]
- Kumari, V.; Majumder, M.K. AI-Enabled 3D Integration. In AI-Enabled Electronic Circuit and System Design: From Ideation to Utilization; Springer: Berlin/Heidelberg, Germany, 2025; pp. 257–308. [Google Scholar]
- Zheng, J.; Su, Z.-Q.; Wang, G.-Y.; Li, M.; Zhao, W.-S.; Wang, G. Circuit modeling of Cu/CNT composite through-silicon vias (TSV). In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Xu, B.; Chen, R.; Zhou, J.; Liang, J. A modeling study of stacked Cu-CNT TSV on electrical, thermal, and reliability analysis. IEEE Trans. Electron Devices 2023, 71, 184–191. [Google Scholar] [CrossRef]
- Dofe, J.; Danesh, W. AI-Based Hardware Security Methods for Internet-of-Things Applications. In Frontiers of Quality Electronic Design (QED) AI, IoT and Hardware Security; Springer: Berlin/Heidelberg, Germany, 2022; pp. 387–414. [Google Scholar]
- Saraswat, K.C. 3-D ICs: Motivation, performance analysis, technology and applications. In Proceedings of the 2010 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 5–9 July 2010; pp. 1–6. [Google Scholar]
- Souri, S.J. 3D ICs Interconnect Performance Modeling and Analysis. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2002. [Google Scholar]
- Feero, B.S.; Pande, P.P. Networks-on-chip in a three-dimensional environment: A performance evaluation. IEEE Trans. Comput. 2008, 58, 32–45. [Google Scholar] [CrossRef]
- Chang, K.; Koneru, A.; Chakrabarty, K.; Lim, S.K. Design automation and testing of monolithic 3D ICs: Opportunities, challenges, and solutions. In Proceedings of the 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 805–810. [Google Scholar]
- Xia, Q.; Zhang, X.; Ma, B.; Tao, K.; Zhang, H.; Yuan, W.; Ramakrishna, S.; Ye, T. A State-of-the-Art Review of Through-Silicon Vias: Filling Materials, Filling Processes, Performance, and Integration. Adv. Eng. Mater. 2025, 27, 2401799. [Google Scholar] [CrossRef]
- Lau, J.H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In Proceedings of the 2011 International Symposium on Advanced Packaging Materials (APM), Xiamen, China, 25–28 October 2011; pp. 462–488. [Google Scholar]
- Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 2009, 97, 43–48. [Google Scholar] [CrossRef]
- Salahuddin, S.; Ni, K.; Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 2018, 1, 442–450. [Google Scholar] [CrossRef]
- Wang, Z. 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelectromech. Syst. 2015, 24, 1211–1244. [Google Scholar] [CrossRef]
- Ganguly, A.; Ahmed, M.M.; Singh Narde, R.; Vashist, A.; Shamim, M.S.; Mansoor, N.; Shinde, T.; Subramaniam, S.; Saxena, S.; Venkataraman, J. The advances, challenges and future possibilities of millimeter-wave chip-to-chip interconnections for multi-chip systems. J. Low Power Electron. Appl. 2018, 8, 5. [Google Scholar] [CrossRef]
- Lau, J.H.; Yue, T.G. Thermal management of 3D IC integration with TSV (through silicon via). In Proceedings of the 2009 59th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 635–640. [Google Scholar]
- Zhang, Y.; Wang, J.; Yu, S. Thermal stress analysis and design guidelines for through silicon via structure in 3D IC integration. In Proceedings of the 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 883–885. [Google Scholar]
- Guo, F.; Suo, Z.-J.; Xi, X.; Bi, Y.; Li, T.; Wang, C.; Su, K.; Zou, X.; Li, R. Recent Developments in Thermal Management of 3D ICs: A Review. IEEE Access 2025, 13, 94286–94301. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, G.; Li, X.; Xue, S.; Gong, L. Thermal–mechanical performance analysis and structure optimization of the TSV in 3-D IC. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 822–831. [Google Scholar] [CrossRef]
- Selvanayagam, C.S.; Lau, J.H.; Zhang, X.; Seah, S.; Vaidyanathan, K.; Chai, T. Nonlinear thermal stress/strain analyses of copper filled TSV (through silicon via) and their flip-chip microbumps. IEEE Trans. Adv. Packag. 2009, 32, 720–728. [Google Scholar] [CrossRef]
- Kumar, P.; Dutta, I.; Huang, Z.; Conway, P. Microstructural and reliability issues of TSV. In 3D Microelectronic Packaging: From Fundamentals to Applications; Springer: Cham, Switzerland, 2017; pp. 71–99. [Google Scholar]
- Kumari, V.; Chandrakar, S.; Verma, S.; Majumder, M.K. Reliability Concerns of TSV-Based 3-D Integration: Impact of Interfacial Crack. IEEE Trans. Compon. Packag. Manuf. Technol. 2023, 13, 1734–1742. [Google Scholar] [CrossRef]
- Chu, Z.; Xu, B.; Liang, J. Direct application of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) for integrated circuits (ICs) interconnection: Challenges and developments. Nanomaterials 2023, 13, 2791. [Google Scholar] [CrossRef]
- Wang, T.; Jeppson, K.; Olofsson, N.; Campbell, E.E.; Liu, J. Through silicon vias filled with planarized carbon nanotube bundles. Nanotechnology 2009, 20, 485203. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Yap, C.; Tay, B.K.; Tan, C.S. Integration of CNT in TSV (≤ 5 μm) for 3D IC application and its process challenges. In Proceedings of the 2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2–4 October 2013; pp. 1–4. [Google Scholar]
- Chu, K.; Wu, Q.; Jia, C.; Liang, X.; Nie, J.; Tian, W.; Gai, G.; Guo, H. Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos. Sci. Technol. 2010, 70, 298–304. [Google Scholar] [CrossRef]
- Vaisband, B.; Maurice, A.; Tan, C.W.; Tay, B.K.; Friedman, E.G. Electrical and thermal models of CNT TSV and graphite interface. IEEE Trans. Electron Devices 2018, 65, 1880–1886. [Google Scholar] [CrossRef]
- Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Spalluto, G.; Prato, M.; Ballerini, L. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005, 5, 1107–1110. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Zhang, J.; Fu, S. Textile electrodes for electrocardiogram monitoring. Adv. Mater. Technol. 2025, 10, 2401279. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Q.; Xia, J.; Huang, M.; Wang, X.; Dai, W.; Zhang, G.; Yu, D.; Li, J.; Sun, R. Laser lift-off technologies for ultra-thin emerging electronics: Mechanisms, applications, and progress. Adv. Mater. Technol. 2023, 8, 2201186. [Google Scholar] [CrossRef]
- Li, N.; Mao, J.; Zhao, W.-S.; Yin, W.-Y. Electrothermal characteristics of carbon-based through-silicon via (TSV) channel. In Proceedings of the 2015 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Seoul, Republic of Korea, 14–16 December 2015; pp. 9–11. [Google Scholar]
- Wei, C.; Srivastava, D.; Cho, K. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett. 2002, 2, 647–650. [Google Scholar] [CrossRef]
- Chandrakar, S.; Gupta, D.; Majumder, M.K. Performance analysis of Cu/CNT-based TSV: Impact on crosstalk and power. J. Comput. Electron. 2022, 21, 1262–1274. [Google Scholar] [CrossRef]
- Xu, B.; Chen, R.; Zhou, J.; Liang, J. Recent progress and challenges regarding carbon nanotube on-chip interconnects. Micromachines 2022, 13, 1148. [Google Scholar] [CrossRef]
- Gangele, A.; Sharma, C.S.; Pandey, A.K. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: A review. J. Nanosci. Nanotechnol. 2017, 17, 2256–2273. [Google Scholar] [CrossRef]
- Alf, M.E.; Asatekin, A.; Barr, M.C.; Baxamusa, S.H.; Chelawat, H.; Ozaydin-Ince, G.; Petruczok, C.D.; Sreenivasan, R.; Tenhaeff, W.E.; Trujillo, N.J. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 2010, 22, 1993–2027. [Google Scholar] [CrossRef]
- Song, B.; Liu, Z.; Wang, T.; Wang, L. Grafting of CNTs onto the surface of PBO fibers at high-density for enhancing interfacial adhesion, mechanical properties and stability of composites. J. Colloid Interface Sci. 2021, 598, 113–125. [Google Scholar] [CrossRef]
- Kashfipour, M.A.; Mehra, N.; Zhu, J. A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv. Compos. Hybrid Mater. 2018, 1, 415–439. [Google Scholar] [CrossRef]
- Bregar, T.; An, D.; Gharavian, S.; Burda, M.; Durazo-Cardenas, I.; Thakur, V.K.; Ayre, D.; Słoma, M.; Hardiman, M.; McCarthy, C. Carbon nanotube embedded adhesives for real-time monitoring of adhesion failure in high performance adhesively bonded joints. Sci. Rep. 2020, 10, 16833. [Google Scholar] [CrossRef] [PubMed]
- Aqel, A.; Abou El-Nour, K.M.; Ammar, R.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 2012, 5, 1–23. [Google Scholar] [CrossRef]
- Rajkumar, K.; Reddy, G.U. Performance analysis of Cu-MWCNT bundled HCTSVs using ternary logic. E-Prime-Adv. Electr. Eng. Electron. Energy 2023, 5, 100247. [Google Scholar] [CrossRef]
- Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Thermal expansion of Cu/carbon nanotube composite wires and the effect of Cu-spatial distribution. J. Mater. Res. Technol. 2020, 9, 6944–6949. [Google Scholar] [CrossRef]
- Chen, G.; Sundaram, R.; Sekiguchi, A.; Hata, K.; Futaba, D.N. Through-silicon-via interposers with Cu-level electrical conductivity and Si-level thermal expansion based on carbon nanotube-Cu composites for microelectronic packaging applications. ACS Appl. Nano Mater. 2020, 4, 869–876. [Google Scholar] [CrossRef]
- Ohba, T.; Maeda, N.; Kitada, H.; Fujimoto, K.; Suzuki, K.; Nakamura, T.; Kawai, A.; Arai, K. Thinned wafer multi-stack 3DI technology. Microelectron. Eng. 2010, 87, 485–490. [Google Scholar] [CrossRef]
- Zhou, W.; Bai, X.; Wang, E.; Xie, S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 2009, 21, 4565–4583. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater. 2020, 32, 1902028. [Google Scholar] [CrossRef] [PubMed]
- Saifuddin, N.; Raziah, A.; Junizah, A. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2013, 2013, 676815. [Google Scholar] [CrossRef]
- Kaushik, B.K.; Majumder, M.K.; Kumar, V.R. Carbon nanotube based 3-D interconnects-a reality or a distant dream. IEEE Circuits Syst. Mag. 2014, 14, 16–35. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, X.; Su, G.; Tang, D.; Zheng, X.; Zhu, J.; Wang, Z.; Norris, P.M.; Bradford, P.D.; Zhu, Y. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Sci. Rep. 2016, 6, 21014. [Google Scholar] [CrossRef]
- Min, C.; Shen, X.; Shi, Z.; Chen, L.; Xu, Z. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym.-Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater. 2019, 31, 1800750. [Google Scholar] [CrossRef]
- Wang, S.; Nie, Y.; Zhu, H.; Xu, Y.; Cao, S.; Zhang, J.; Li, Y.; Wang, J.; Ning, X.; Kong, D. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 2022, 8, eabl5511. [Google Scholar] [CrossRef]
- Liao, B.-Z.; Chen, L.-H.; Chen, K.-C.; Lin, H.-Y.; Tsai, Y.-T.; Chen, T.-W.; Chan, Y.-C.; Lee, M.-H.; Liao, M.-H. Multi-layer chips on wafer stacking technologies with carbon nano-tubes as through-silicon vias and it’s potential applications for power-via technologies. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 1811–1817. [Google Scholar]
- Kim, J.; Pak, J.S.; Cho, J.; Song, E.; Cho, J.; Kim, H.; Song, T.; Lee, J.; Lee, H.; Park, K. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 181–195. [Google Scholar] [CrossRef]
- Shim, B.S.; Zhu, J.; Jan, E.; Critchley, K.; Ho, S.; Podsiadlo, P.; Sun, K.; Kotov, N.A. Multiparameter structural optimization of single-walled carbon nanotube composites: Toward record strength, stiffness, and toughness. ACS Nano 2009, 3, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Eun, K.Y.; Lee, J.-K.; Baik, Y.-J.; Lee, K.-R.; Park, J.W. Growth of carbon nanotubes by chemical vapor deposition. Diam. Relat. Mater. 2001, 10, 1235–1240. [Google Scholar] [CrossRef]
- Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 2003, 12, 205. [Google Scholar] [CrossRef]
- Kukovitsky, E.; L’vov, S.; Sainov, N.; Shustov, V.; Chernozatonskii, L. Correlation between metal catalyst particle size and carbon nanotube growth. Chem. Phys. Lett. 2002, 355, 497–503. [Google Scholar] [CrossRef]
- Ghosh, K.; Ranjan, N.; Verma, Y.; Tan, C. Graphene–CNT hetero-structure for next generation interconnects. RSC Adv. 2016, 6, 53054–53061. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, C.; Van der Veen, M.; Arstila, K.; Hantschel, T.; Chen, B.; Zhong, G.; Robertson, J. Carbon nanotube growth for through silicon via application. Nanotechnology 2013, 24, 125603. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Mu, W.; Chen, S.; Fu, Y.; Jeppson, K.; Liu, J. Vertically stacked carbon nanotube-based interconnects for through silicon via application. IEEE Electron Device Lett. 2015, 36, 499–501. [Google Scholar] [CrossRef]
- Abdullah, M.; Lee, H. Technology review of CNTs TSV in 3D IC and 2.5 D packaging: Progress and challenges from an electrical viewpoint. Microelectron. Eng. 2024, 290, 112189. [Google Scholar] [CrossRef]
- Ghosh, K.; Verma, Y.K.; Tan, C.S. Implementation of carbon nanotube bundles in sub-5 micron diameter through-silicon-via structures for three-dimensionally stacked integrated circuits. Mater. Today Commun. 2015, 2, e16–e25. [Google Scholar] [CrossRef]
- Sharma, R.; Iniewski, K.; Lim, S.K. Fabrication and Modeling of Copper and Carbon Nanotube-Based Through-Silicon Via. In Design of 3D Integrated Circuits and Systems; CRC Press: Boca Raton, FL, USA, 2018; pp. 203–233. [Google Scholar]
- Chang, S.-C.; Shieh, J.-M.; Dai, B.-T.; Feng, M.-S.; Li, Y.-H. The effect of plating current densities on self-annealing behaviors of electroplated copper films. J. Electrochem. Soc. 2002, 149, G535. [Google Scholar] [CrossRef]
- Osgood, H.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625. [Google Scholar] [CrossRef]
- Kaleemullah, M.; Khan, S.U.; Kim, J.-K. Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol. 2012, 72, 1968–1976. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Zhou, Y.; Nie, Y.; Ban, L.; Wu, D.; Yang, S.; Zhang, H.; Li, C.; Zhang, K. Photocatalytic and electrochemical synthesis of biofuel via efficient valorization of biomass. Adv. Energy Mater. 2025, 15, 2406098. [Google Scholar] [CrossRef]
- Ding, R.; Lu, G.; Yan, Z.; Wilson, M. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J. Nanosci. Nanotechnol. 2001, 1, 7–29. [Google Scholar] [CrossRef]
- Sanipini, V.K.; Rakesh, B.; Chamanthula, A.J.; Santoshi, N.; Gudivada, A.A.; Panigrahy, A.K. Thermal management in TSV based 3D IC Integration: A survey. Mater. Today Proc. 2021, 45, 1742–1746. [Google Scholar] [CrossRef]
- Ladani, L. Copper-CNT hybrid TSVs: Thermo-mechanical stresses and reliability analysis. Int. J. High Speed Electron. Syst. 2015, 24, 1550006. [Google Scholar] [CrossRef]
- Frank, T.; Moreau, S.; Chappaz, C.; Leduc, P.; Arnaud, L.; Thuaire, A.; Chery, E.; Lorut, F.; Anghel, L.; Poupon, G. Reliability of TSV interconnects: Electromigration, thermal cycling, and impact on above metal level dielectric. Microelectron. Reliab. 2013, 53, 17–29. [Google Scholar] [CrossRef]
- Dixit, P.; Vehmas, T.; Vähänen, S.; Monnoyer, P.; Henttinen, K. Fabrication and electrical characterization of high aspect ratio poly-silicon filled through-silicon vias. J. Micromech. Microeng. 2012, 22, 055021. [Google Scholar] [CrossRef]
- Kumar, V.R.; Kaushik, B.K.; Majumder, M.K. Graphene based on-chip interconnects and TSVs: Prospects and challenges. IEEE Nanotechnol. Mag. 2014, 8, 14–20. [Google Scholar] [CrossRef]
- Rouhi, K.; Hosseininejad, S.E.; Abadal, S.; Khalily, M.; Tafazolli, R. Multi-channel near-field terahertz communications using reprogrammable graphene-based digital metasurface. J. Light. Technol. 2021, 39, 6893–6907. [Google Scholar] [CrossRef]
- Awad, I. Mechanical Integrity and Fabrication of Carbon Nanotube/Copper-Based Through Silicon Via; University of Connecticut: Mansfield, CT, USA, 2016. [Google Scholar]
- Sinha, A.; Mihailovic, J.A.; Morris, J.E.; Lu, H.; Bailey, C. Modeling thermal conductivity and CTE for CNT-Cu composites for 3-D TSV application. In Proceedings of the 2010 IEEE Nanotechnology Materials and Devices Conference, Monterey, CA, USA, 12–15 October 2010; pp. 262–266. [Google Scholar]
- Chandrakar, S.; Gupta, D.; Majumder, M.K. Crosstalk and Power Analysis in Tapered based Composite Cu-CNT TSV in 3D IC. In Proceedings of the 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, 19–22 May 2024; pp. 1–5. [Google Scholar]
- Sun, S.; Mu, W.; Edwards, M.; Mencarelli, D.; Pierantoni, L.; Fu, Y.; Jeppson, K.; Liu, J. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects. Nanotechnology 2016, 27, 335705. [Google Scholar] [CrossRef] [PubMed]
- Sable, K.; Sahoo, M. Electrical and thermal analysis of cu-CNT composite TSV and GNR interconnects. In Proceedings of the 2020 International Symposium on Devices, Circuits and Systems (ISDCS), Howrah, India, 4–6 March 2020; pp. 1–6. [Google Scholar]
- Alosime, E.M. A review on surface functionalization of carbon nanotubes: Methods and applications. Discov. Nano 2023, 18, 12. [Google Scholar] [CrossRef]
- Liu, H.Y.; Sun, Y.; Sun, D.M.; Cheng, H.M. Carbon Nanotube 3D Integrated Circuits: From Design to Applications. Adv. Funct. Mater. 2025, 2424012. [Google Scholar] [CrossRef]
- Boppella, R.; Kim, Y.; Reddy, K.A.J.; Song, I.; Eom, Y.; Sim, E.; Kim, T.K. Synergistic electronic structure modulation in single-atomic Ni sites dispersed on Ni nanoparticles encapsulated in N-rich carbon nanotubes synthesized at low temperature for efficient CO2 electrolysis. Appl. Catal. B Environ. Energy 2024, 345, 123699. [Google Scholar] [CrossRef]
- Kartikay, P.; Sadhukhan, D.; Yella, A.; Mallick, S. Enhanced charge transport in low temperature carbon-based nip perovskite solar cells with NiOx-CNT hole transport material. Sol. Energy Mater. Sol. Cells 2021, 230, 111241. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Q.; Zhang, M.; Nakajima, H.; Okazaki, T.; Yamada, T.; Hata, K. Interface engineering for high-performance thermoelectric carbon nanotube films. ACS Appl. Mater. Interfaces 2023, 16, 4199–4211. [Google Scholar] [CrossRef]
- Chandrakar, S.; Solanki, K.; Gupta, D.; Majumder, M.K. Electrical modeling and performance analysis of Cu and CNT based TSV-Bump-RDL. IEEE Trans. Nanotechnol. 2024, 23, 448–455. [Google Scholar] [CrossRef]
CNT Content | ||
---|---|---|
0% (100% Cu) | 4.00 | 3.90 |
25% | 3.30 | 3.00 |
50% | 2.80 | 2.50 |
75% | 2.50 | 2.10 |
100% (All CNT) | 2.30 | 1.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, H.; Kim, H.; Lee, S.; Choi, S.; Choi, C.; Yusoff, W.Y.W.; Shan, A.; Lim, S.; Hwang, B. Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias. Micromachines 2025, 16, 968. https://doi.org/10.3390/mi16090968
Ha H, Kim H, Lee S, Choi S, Choi C, Yusoff WYW, Shan A, Lim S, Hwang B. Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias. Micromachines. 2025; 16(9):968. https://doi.org/10.3390/mi16090968
Chicago/Turabian StyleHa, Heebo, Hongju Kim, Sumin Lee, Sooyong Choi, Chunghyeon Choi, Wan Yusmawati Wan Yusoff, Ali Shan, Sooman Lim, and Byungil Hwang. 2025. "Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias" Micromachines 16, no. 9: 968. https://doi.org/10.3390/mi16090968
APA StyleHa, H., Kim, H., Lee, S., Choi, S., Choi, C., Yusoff, W. Y. W., Shan, A., Lim, S., & Hwang, B. (2025). Overview of Thermal Management Solution for 3D Integrated Circuits Using Carbon-Nanotube-Based Silicon Through-Vias. Micromachines, 16(9), 968. https://doi.org/10.3390/mi16090968