Curling of Gel Scaffold Layer for Cell Culture by a Deformable Microactuator Mat Toward Biological Canal Formation
Abstract
1. Introduction
2. Materials and Methods
2.1. Deformable Actuator Mat for Assembling Gel-Based Biological Canal
2.2. Gel-Based Scaffold Formation
2.3. Gel-Based Biological Canal Formation for Evaluation of Perfusion and Permeation
3. Results and Discussion
3.1. Deformable Actuator Mat Performance for Curing Gel Scaffold Film
3.2. Self-Standing Gel-Based Canal Formation by a Deformable Actuator Mat
3.3. Perfusion and Permeation Test Through Gel-Based Canal
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamoto, T.; Fujii, T.; Nojima, T. PDMS–glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2002, 2, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Khademhosseini, A.; Langer, R.; Borenstein, J.; Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 2006, 103, 2480–2487. [Google Scholar] [CrossRef] [PubMed]
- Grosberg, A.; Alford, P.W.; McCain, M.L.; Parker, K.K. Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab Chip 2011, 11, 4165–4173. [Google Scholar] [CrossRef] [PubMed]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level lung functions on a chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Huh, D.; Hamilton, G.; Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012, 12, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Delon, L.C.; Guo, Z.; Oszmiana, A.; Chien, C.-C.; Gibson, R.; Prestidge, C.; Thierry, B. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Biomaterials 2019, 225, 119521. [Google Scholar] [CrossRef] [PubMed]
- Costello, C.M.; Phillipsen, M.B.; Hartmanis, L.M.; Kwasnica, M.A.; Chen, V.; Hackam, D.; Chang, M.W.; Bentley, W.E.; March, J.C. Microscale bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 2017, 7, 12515. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Wang, Z.A.; Zhang, C.; Deng, Q.; Wei, J.; Luo, Y.; Zhang, X.; Li, J.; Du, Y. Establishment and application of peristaltic human Gut-Vessel microsystem for studying host–microbial interaction. Front. Bioeng. Biotechnol. 2020, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, R.L.; Hunt, D.R.; Dewi, R.E.; Heilshorn, S.C. Improvement of paracellular transport in the Caco-2 drug screening model using protein-engineered substrates. Biomaterials 2017, 129, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Nikolaev, M.; Mitrofanova, O.; Broguiere, N.; Geraldo, S.; Dutta, D.; Tabata, Y.; Elci, B.; Brandenberg, N.; Kolotuev, I.; Gjorevski, N.; et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 2020, 585, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Itai, S.; Onoe, H. Flexibly deformable collagen hydrogel tube reproducing immunological tissue deformation of blood vessels as a pharmacokinetic testing model. Adv. Healthc. Mater. 2022, 11, 2101509. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Kolli, A.R.; Esch, M.B.; Abaci, H.E.; Shuler, M.L.; Hickman, J.J. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 2015, 20, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Konishi, S.; Fujita, T.; Hattori, K.; Kono, Y.; Matsushita, Y. An openable artificial intestinal tract system for the in vitro evaluation of medicines. Microsyst. Nanoeng. 2015, 1, 15015. [Google Scholar] [CrossRef]
- Kono, Y.; Konishi, S.; Fujita, T. An openable artificial intestinal tract system enables the evaluation of drug absorption in Caco-2 cells through the reduction in thickness of the unstirred water layer. Biol. Pharm. Bull. 2019, 42, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Konishi, S.; Oya, F. Morphological transformation between flat and tube Structures by coordinated Motions of Soft pneumatic Microactuators. Sci. Rep. 2019, 9, 14483. [Google Scholar] [CrossRef]
- Konishi, S.; Ishibashi, S.; Shimizu, S.; Watanabe, K.; Abdalkader, R.; Fujita, T. Openable artificial intestinal tract device integrated with a permeable filter for evaluating drug permeation through cells. Sci. Rep. 2023, 13, 11519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konishi, S.; Shimizu, S.; Sakai, K. Curling of Gel Scaffold Layer for Cell Culture by a Deformable Microactuator Mat Toward Biological Canal Formation. Micromachines 2025, 16, 1019. https://doi.org/10.3390/mi16091019
Konishi S, Shimizu S, Sakai K. Curling of Gel Scaffold Layer for Cell Culture by a Deformable Microactuator Mat Toward Biological Canal Formation. Micromachines. 2025; 16(9):1019. https://doi.org/10.3390/mi16091019
Chicago/Turabian StyleKonishi, Satoshi, Shiho Shimizu, and Katsunori Sakai. 2025. "Curling of Gel Scaffold Layer for Cell Culture by a Deformable Microactuator Mat Toward Biological Canal Formation" Micromachines 16, no. 9: 1019. https://doi.org/10.3390/mi16091019
APA StyleKonishi, S., Shimizu, S., & Sakai, K. (2025). Curling of Gel Scaffold Layer for Cell Culture by a Deformable Microactuator Mat Toward Biological Canal Formation. Micromachines, 16(9), 1019. https://doi.org/10.3390/mi16091019