Recent Progress of Powering IoT Based on Thermoelectric Technology
Abstract
1. Introduction
2. Fabrication Method of TEG
2.1. Sintering
2.2. Screen Printing
2.3. Chemical Vapor Deposition
2.4. 3D Printing
2.5. Electrospray Technology
2.6. Sol-Gel Method
3. Performance Improvement
3.1. Material Selection
3.2. Mechanism Hybridization
4. Application of TEG in IoT
4.1. Wearable Applications
4.2. Daily Environment Applications
4.3. Aerospace Application
5. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dange, S.; Nitnaware, P. Secure Share: Optimal Blockchain Integration in IoT Systems. J. Comput. Inf. Syst. 2024, 64, 265–277. [Google Scholar] [CrossRef]
- Gvozdenovic, S.; Becker, J.K.; Mikulskis, J.; Starobinski, D. IoT-Scan: Network Reconnaissance for Internet of Things. IEEE Internet Things J. 2024, 11, 13091–13107. [Google Scholar] [CrossRef]
- Fayos-Jordan, R.; Felici-Castell, S.; Segura-Garcia, J.; Alcaraz-Calero, J.M. Cervello-Duato Exploiting Multihoming Capabilities in 5G-Enabled IoT Nodes. IEEE Access 2023, 11, 134940–134950. [Google Scholar] [CrossRef]
- Gharib, A.; Ibnkahla, M. Ibnkahla User Security-Oriented Information-Centric IoT Nodes Clustering With Graph Convolution Networks. IEEE Internet Things J. 2024, 11, 8311–8326. [Google Scholar] [CrossRef]
- Xiao, H.; Qi, N.; Yin, Y.; Yu, S.; Sun, X.; Xuan, G.; Liu, J.; Xiao, S.; Li, Y.; Li, Y. Investigation of Self-Powered IoT Sensor Nodes for Harvesting Hybrid Indoor Ambient Light and Heat Energy. Sensors 2023, 23, 3796. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Gutiérrez, C.A.; Delgado-del-Carpio, M.; Zebadúa-Chavarría, L.A.; Hernández-de-León, H.R.; Escobar-Gómez, E.N.; Quevedo-López, M. IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics 2023, 12, 3042. [Google Scholar] [CrossRef]
- Bhau, G.V.; Deshmukh, R.G.; kumar, T.R.; Chowdhury, S.; Sesharao, Y.; Abilmazhinov, Y. IoT Based Solar Energy Monitoring System. Mater. Today Proc. 2023, 80, 3697–3701. [Google Scholar] [CrossRef]
- Jang, K.B.; Baek, C.H.; Woo, T.H. Climate Resilience Analysis of Nuclear Energy by Big Data Associated with Internet of Things (IoT). Ann. Nucl. Energy 2024, 205, 110608. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, J.; Li, F.; Chu, Y.; Du, H.; Sun, M.; Xi, Z.; Du, T.; Xu, M. High-Performance Coaxial Counter-Rotating Triboelectric Nanogenerator with Lift–Drag Hybrid Blades for Wind Energy Harvesting. Nanomaterials 2024, 14, 598. [Google Scholar] [CrossRef]
- Maio, M.; Marrasso, E.; Roselli, C.; Sasso, M.; Fontana, N.; Marini, G. An Innovative Approach for Optimal Selection of Pumped Hydro Energy Storage Systems to Foster Sustainable Energy Integration. Renew. Energy 2024, 227, 120533. [Google Scholar] [CrossRef]
- Krishna Rao, C.; Sahoo, S.K.; Yanine, F.F. An IoT-Based Intelligent Smart Energy Monitoring System for Solar PV Power Generation. Energy Harvest. Syst. 2024, 11, 20230015. [Google Scholar] [CrossRef]
- Teimourian, H.; Teimourian, A.; Dimililer, K.; Al-Turjman, F. The Potential of Wind Energy via an Intelligent IoT-Oriented Assessment. J. Supercomput. 2022, 78, 5221–5240. [Google Scholar] [CrossRef]
- Alzahrani, A.I.A.; Chauhdary, S.H.; Alshdadi, A.A. Internet of Things (IoT)-Based Wastewater Management in Smart Cities. Electronics 2023, 12, 2590. [Google Scholar] [CrossRef]
- Gabriel, A.; Cruz, F. Open Source IoT-Based Collection Bin Applied to Local Plastic Recycling. HardwareX 2023, 13, e00389. [Google Scholar] [CrossRef]
- Tabaghchi Milan, S.; Darbandi, M.; Jafari Navimipour, N.; Yalcın, S. An Energy-Aware Load Balancing Method for IoT-Based Smart Recycling Machines Using an Artificial Chemical Reaction Optimization Algorithm. Algorithms 2023, 16, 115. [Google Scholar] [CrossRef]
- Di Persio, F.; Blecua, M.; Chaine, A.C.; Daue, T.; Mateo-Mateo, C.; Ezpeleta, I.; Pötschke, P.; Krause, B.; Inci, E.; Pionteck, J.; et al. Recyclability of Novel Energy Harvesting and Storage Technologies for IoT and Wireless Sensor Networks. J. Clean. Prod. 2024, 435, 140525. [Google Scholar] [CrossRef]
- López, O.L.; Rosabal, O.M.; Ruiz-Guirola, D.E.; Raghuwanshi, P.; Mikhaylov, K.; Lovén, L.; Iyer, S. Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions. IEEE Open J. Commun. Soc. 2023, 4, 2609–2666. [Google Scholar] [CrossRef]
- Tuoi, T.T.K.; Van Toan, N.; Ono, T. Heat Storage Thermoelectric Generator as an Electrical Power Source for Wireless Iot Sensing Systems. Int. J. Energy Res. 2021, 45, 15557–15568. [Google Scholar] [CrossRef]
- Markiewicz, M.; Dziurdzia, P.; Skotnicki, T. Randomly Moving Thermoelectric Energy Harvester for Wearables and Industrial Internet of Things. Nano Energy 2024, 126, 109565. [Google Scholar] [CrossRef]
- Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G.J. Stretchable Fabric Generates Electric Power from Woven Thermoelectric Fibers. Nat. Commun. 2020, 11, 572. [Google Scholar] [CrossRef]
- Choo, S.; Lee, J.; Şişik, B.; Jung, S.-J.; Kim, K.; Yang, S.E.; Jo, S.; Nam, C.; Ahn, S.; Lee, H.S.; et al. Geometric Design of Cu2Se-Based Thermoelectric Materials for Enhancing Power Generation. Nat. Energy 2024, 9, 1105–1116. [Google Scholar] [CrossRef]
- Gharapetian, D.; Alian Fini, M.; Asgari, M.; Shabani, B. A Nanofluid-Based Hybrid Photovoltaic-Thermal -Thermoelectric Generator System for Combined Heat and Power Applications. Energy Convers. Manag. 2024, 301, 118066. [Google Scholar] [CrossRef]
- Wu, B.; Lin, Y.; Tian, Y.; Wei, W.; Xu, Y.; Hu, Y.; Li, J.; Li, K.; Hou, C.; Zhang, Q.; et al. Bioinspired Wearable Thermoelectric Device Constructed with Soft-Rigid Assembly for Personal Thermal Management. Adv. Funct. Mater. 2024, 34, 2402319. [Google Scholar] [CrossRef]
- Li, F.; Sun, P.; Wu, J.; Zhang, Y.; Wu, J.; Liu, G.; Hu, H.; Hu, J.; Tan, X.; He, S.; et al. GA−BP Prediction Model for Automobile Exhaust Waste Heat Recovery Using Thermoelectric Generator. Processes 2023, 11, 1498. [Google Scholar] [CrossRef]
- Sarris, A.; Bhatti, B.; Ciampa, F. Thermoelectric Energy Harvesting Using Vapour Chamber Coolers for Aerospace Applications. J. Intell. Mater. Syst. Struct. 2022, 33, 1602–1612. [Google Scholar] [CrossRef]
- Saleemi, M.; Toprak, M.S.; Li, S.; Johnsson, M.; Muhammed, M. Synthesis, Processing, and Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3). J. Mater. Chem. 2011, 22, 725–730. [Google Scholar] [CrossRef]
- Kuang, N.; Zuo, Z.; Wang, W.; Liu, R. High Performance Flexible Thin-Film Thermoelectric Generator Heated by Methanol Catalytic Combustion. Appl. Therm. Eng. 2023, 219, 119346. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Gao, P. Thermoelectric-Powered Sensors for Internet of Things. Micromachines 2023, 14, 31. [Google Scholar] [CrossRef]
- Shang, Z.; Zhao, Y.; Gou, W.; Geng, L.; Lian, Y. 83.9% Efficiency 100-mV Self-Startup Boost Converter for Thermoelectric Energy Harvester in IoT Applications. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1654–1658. [Google Scholar] [CrossRef]
- He, X.; Cai, J.; Liu, M.; Ni, X.; Liu, W.; Guo, H.; Yu, J.; Wang, L.; Qin, X. Multifunctional, Wearable, and Wireless Sensing System via Thermoelectric Fabrics. Engineering 2024, 35, 158–167. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, R. A Fully Self-Powered Wearable Monitoring System with Systematically Optimized Flexible Thermoelectric Generator. Appl. Energy 2020, 271, 115250. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y.; Shahzad, S. A Comprehensive Review on the Output Voltage/Power of Wearable Thermoelectric Generators Concerning Their Geometry and Thermoelectric Materials. Nano Energy 2021, 89, 106325. [Google Scholar] [CrossRef]
- Ding, T.; Chan, K.H.; Zhou, Y.; Wang, X.-Q.; Cheng, Y.; Li, T.; Ho, G.W. Scalable Thermoelectric Fibers for Multifunctional Textile-Electronics. Nat. Commun. 2020, 11, 6006. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yan, M.; Jiang, E.; Zheng, Z.; Wang, H.; Duan, B.; Li, G.; Zhai, P. Thermoelectric Properties of Ag2Te Prepared by One-Step Hot-Pressing Method. Mater. Lett. 2023, 339, 134100. [Google Scholar] [CrossRef]
- Grebennikov, A.; Bocharov, A.; Makagonov, V.; Kalyadin, O.; Yur’yev, V.; Korolev, K. Improving the Characteristics of Thermoelectric Generator Batteries Based on Bismuth Telluride by Optimizing the Parameters of Hot Pressing N-Bi 2 Te 2.4 Se 0.6. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1035, 012008. [Google Scholar] [CrossRef]
- Madavali, B.; Nguyen, V.D.; Jo, S.J.; Lee, C.; Hong, S.-J. Investigation of Anisotropy in Microstructure and Thermoelectric Properties of Large-Scaled p-Type Bi–Sb–Te Sintered Body Made by Hot Pressing. J. Mater. Sci. 2022, 57, 18168–18177. [Google Scholar] [CrossRef]
- Giovannelli, F.; Sabarthes, E.; Delorme, F. Thermoelectric Properties of La7Mo7O30 Sintered by Reactive Spark Plasma Sintering. Ceram. Int. 2023, 49, 11921–11925. [Google Scholar] [CrossRef]
- Piyasin, P.; Palaporn, D.; Kurosaki, K.; Pinitsoontorn, S. High-Performance Thermoelectric Properties of Cu2Se Fabricated via Cold Sintering Process. Solid State Sci. 2024, 149, 107448. [Google Scholar] [CrossRef]
- Chen, C.; Ran, C.; Yao, Q.; Wang, J.; Guo, C.; Gu, L.; Han, H.; Wang, X.; Chao, L.; Xia, Y.; et al. Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Adv. Sci. 2023, 10, 2303992. [Google Scholar] [CrossRef]
- Gorjanc, M.; Gerl, A.; Kert, M. Screen Printing of pH-Responsive Dye to Textile. Polymers 2022, 14, 447. [Google Scholar] [CrossRef]
- Zhang, Q.; Ge, W.; Xie, X.; He, P.; Yin, H. Poly(Vinyl Alcohol)-Modified Colloidal Silicon Nanoparticles for Flexible Screen Printing Inks and Anticounterfeiting Applications. ACS Appl. Nano Mater. 2024, 7, 3129–3137. [Google Scholar] [CrossRef]
- Wen, D.-L.; Deng, H.-T.; Liu, X.; Li, G.-K.; Zhang, X.-R.; Zhang, X.-S. Wearable Multi-Sensing Double-Chain Thermoelectric Generator. Microsyst. Nanoeng. 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Li, J.; Wu, C.; Wang, Z.; Liu, Y.; Wei, P.; Zhao, W.; Cai, K. Scalable Printing High-Performance and Self-Healable Ag2Se/Terpineol Nanocomposite Film for Flexible Thermoelectric Device. Energy 2024, 296, 131232. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, B.; Zhang, B.; Zhang, Z.; Liu, J.; Zhao, L.; Shi, P.; Lin, Q.; Jiang, Z. High-Performance Temperature Sensor by Employing Screen Printing Technology. Micromachines 2021, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Kihm, K.D.; Kim, H.G.; Lee, W.; Lee, W.; Pyun, K.R.; Cheon, S.; Lee, P.; Min, J.Y.; Ko, S.H. Enhanced Thermoelectric Conversion Efficiency of CVD Graphene with Reduced Grain Sizes. Nanomaterials 2018, 8, 557. [Google Scholar] [CrossRef]
- Daigo, Y.; Kurashima, K.; Ishii, S.; Mizushima, I. Observation and Suppression of Growth Pits Formed on 4H-SiC Epitaxial Films Grown Using Halide Chemical Vapor Deposition Process. IEEE Trans. Semicond. Manuf. 2024, 37, 402–404. [Google Scholar] [CrossRef]
- Kwok, F.M.; Du, X.; Sun, Z.; Ng, M.C.; Liu, Q.; Fan, L.L.; Yip, W.S.; Kwok, D.K.Y.; To, S. Fabrication of Diamond Film under Low Methane Concentration by Hot Filament Chemical Vapor Deposition with Magnetic Field Assistance. Surf. Coat. Technol. 2024, 483, 130802. [Google Scholar] [CrossRef]
- Kim, J. Parametric Dependence of CsPbI2Br Perovskite Film Growth Using a Mist Chemical Vapor Deposition Method. Curr. Appl. Phys. 2024, 60, 1–8. [Google Scholar] [CrossRef]
- Rositawati, D.N.; Widianto, E.; Suprapto; Sujitno, T.; Absor, M.A.U.; Sholihun; Triyana, K.; Santoso, I. Enhancing Thermoelectric Properties of Multilayer Graphene with Au Deposition. Mater. Chem. Phys. 2024, 319, 129295. [Google Scholar] [CrossRef]
- Cao, Z.; Li, P.; Deng, T.; Jia, K.; Shen, K.; Xi, K. 3D Printing Interdigital Lithium-Sulfur Micro-Batteries with High Areal Energy Density. Chem. Eng. J. 2024, 489, 151292. [Google Scholar] [CrossRef]
- Bian, M.; Xu, Z.; Tang, X.; Jia, H.; Wang, Y.; Cabot, A. Solution-Based 3D Printed Thermoelectric Composite for Custom-Shaped Thermoelectric Generator Applications. J. Alloys Compd. 2024, 976, 173202. [Google Scholar] [CrossRef]
- Meng, Q.; Yang, Y.; Han, S.; Meng, F.; Liu, T. Preparation of High-Performance Bismuthene Thermoelectric Composites Doped with Graphene Using UV-Curing 3D Printing Technology. Polym. Compos. 2024, 45, 8176–8186. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Qi, Y.; Lu, X.; Sun, M.; Wei, W.; Ma, D.; Wu, F.; Wang, T. The Growth Mechanism and Properties of Bi2212 Thin Films on Miscut Substrates by Sol-Gel Method. Colloids Surf. Physicochem. Eng. Asp. 2024, 684, 133134. [Google Scholar] [CrossRef]
- Rafiq, F.; Govindsamy, P.; Periyasamy, S. Synthesis of a Novel Nanoparticle BaCoO2.6 through Sol-Gel Method and Elucidation of Its Structure and Electrical Properties. J. Nanomater. 2022, 2022, 3877879. [Google Scholar] [CrossRef]
- Rasmi, T.; Malini, K.A. Synthesis of Thermoelectric Bismuth Telluride Alloys by Sol-Gel Auto-Combustion Method. AIP Conf. Proc. 2023, 2783, 020003. [Google Scholar] [CrossRef]
- Sulaiman, S.; Tuan Zahrin, T.M.; Md Yatim, N.; Mohd Sabri, M.F.; Mohamad Sharif, M.F. Effects of pH on Grain Size and Structure of ZnO Nanoparticle Synthesized via Sol–Gel Method for Enhanced Thermoelectric Materials. In Proceedings of the Intelligent Manufacturing and Mechatronics; Aziz, A.R., Ismail, Z., Iqbal, A.K.M.A., Ahmed, I., Eds.; Springer Nature: Singapore, 2024; pp. 233–242. [Google Scholar]
- Kumar, A.; Rawat, P.; Kim, J.H.; Thoravat, S.; Park, J.; Jin, H.; Rhyee, J.-S. Enhancement of Thermoelectric Performance by Stacking Fault Control in (GeTe)1-x(Bi2Te3)x Compounds, Synthesized by Hot Press Sintering Method. Mater. Chem. Phys. 2024, 322, 129532. [Google Scholar] [CrossRef]
- Vinoth, S.; Karthikeyan, V.; Roy, V.A.L.; Thilakan, P. Growth of High Carrier Mobility 2-Dimensional Hexagonal Bi2Te3-xSex Nanoplatelets and Its Thermoelectric Performance Studies. J. Cryst. Growth 2024, 625, 127442. [Google Scholar] [CrossRef]
- Wang, X.; Shang, H.; Gu, H.; Chen, Y.; Zhang, Z.; Zou, Q.; Zhang, L.; Feng, C.; Li, G.; Ding, F. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials Enabled via Regulating Bi–Te Ratio. ACS Appl. Mater. Interfaces 2024, 16, 11678–11685. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Tan, S.; Li, L.; Zhou, H.; Zhao, L.; Li, H.; Han, Z. Fabrication and Thermoelectric Property of the Nano Fe2O3/Carbon Fiber/Cement-Based Composites for Potential Energy Harvesting Application. Constr. Build. Mater. 2023, 365, 130021. [Google Scholar] [CrossRef]
- Klochko, N.P.; Klepikova, K.S.; Kopach, V.R.; Tyukhov, I.I.; Starikov, V.V.; Sofronov, D.S.; Khrypunova, I.V.; Zhadan, D.O.; Petrushenko, S.I.; Dukarov, S.V.; et al. Development of Semi-Transparent ZnO/FTO Solar Thermoelectric Nanogenerator for Energy Efficient Glazing. Sol. Energy 2019, 184, 230–239. [Google Scholar] [CrossRef]
- Planar Micro-Thermoelectric Generators Based on Cu55Ni45 and Ni90Cr10 Thermocouples for IoT Applications | SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-3-031-21216-1_10#Sec5 (accessed on 12 June 2024).
- Duan, S.; Wang, Y.; Wu, X.; Wu, M.; Wang, L.; Fang, M.; Huang, Z.; Luo, R. Printable Graphite-Based Thermoelectric Foam for Flexible Thermoelectric Devices. Appl. Phys. Lett. 2023, 123, 063904. [Google Scholar] [CrossRef]
- Wei, T.; Li, H.; Fu, Y.; Zheng, X.; Huang, L.; Song, A. A Graphene-Nanoribbon-Based Thermoelectric Generator. Carbon 2023, 210, 118053. [Google Scholar] [CrossRef]
- Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S.; Hu, G.; Albrow-Owen, T.; Ng, L.W.T.; Howe, R.C.T.; Hasan, T.; Sun, Z.; et al. Inkjet Printed Large-Area Flexible Few-Layer Graphene Thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480. [Google Scholar] [CrossRef]
- Zhang, C.; de la Mata, M.; Li, Z.; Belarre, F.J.; Arbiol, J.; Khor, K.A.; Poletti, D.; Zhu, B.; Yan, Q.; Xiong, Q. Enhanced Thermoelectric Performance of Solution-Derived Bismuth Telluride Based Nanocomposites via Liquid-Phase Sintering. Nano Energy 2016, 30, 630–638. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Li, K.; Li, G.; Wang, J.; Sun, X.; Zhang, L.; Wang, H. Joint-Free Single-Piece Flexible Thermoelectric Devices with Ultrahigh Resolution p–n Patterns toward Energy Harvesting and Solid-State Cooling. ACS Energy Lett. 2021, 6, 4355–4364. [Google Scholar] [CrossRef]
- Jiang, C.; Wei, P.; Ding, Y.; Cai, K.; Tong, L.; Gao, Q.; Lu, Y.; Zhao, W.; Chen, S. Ultrahigh Performance Polyvinylpyrrolidone/Ag2Se Composite Thermoelectric Film for Flexible Energy Harvesting. Nano Energy 2021, 80, 105488. [Google Scholar] [CrossRef]
- Ju, H.; Kim, J. Fabrication of Conductive Polymer/Inorganic Nanoparticles Composite Films: PEDOT:PSS with Exfoliated Tin Selenide Nanosheets for Polymer-Based Thermoelectric Devices. Chem. Eng. J. 2016, 297, 66–73. [Google Scholar] [CrossRef]
- Rogl, G.; Rogl, P. Skutterudites, a Most Promising Group of Thermoelectric Materials. Curr. Opin. Green Sustain. Chem. 2017, 4, 50–57. [Google Scholar] [CrossRef]
- Wang, M.; Ruan, J.; Zhang, J.; Jiang, Y.; Gao, F.; Zhang, X.; Rahman, E.; Guo, J. Modeling, Thermodynamic Performance Analysis, and Parameter Optimization of a Hybrid Power Generation System Coupling Thermogalvanic Cells with Alkaline Fuel Cells. Energy 2024, 292, 130557. [Google Scholar] [CrossRef]
- Wen, D.-L.; Liu, X.; Bao, J.-F.; Li, G.-K.; Feng, T.; Zhang, F.; Liu, D.; Zhang, X.-S. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies. ACS Appl. Mater. Interfaces 2021, 13, 21401–21410. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Park, J.Y.; Kim, D.-H.; Song, H.-C.; Park, H.; Baik, J.M. Enhanced Output Voltage of Thermoelectric Generators Driven by Alternate Triboelectric Charges. Mater. Today Energy 2023, 37, 101394. [Google Scholar] [CrossRef]
- Kim, S.; Hyeon, D.Y.; Lee, D.; Bae, J.H.; Park, K.-I. Fully Flexible Thermoelectric and Piezoelectric Hybrid Generator Based on a Self-Assembled Multifunctional Single Composite Film. Mater. Today Phys. 2023, 35, 101103. [Google Scholar] [CrossRef]
- Karthikeyan, V.; Surjadi, J.U.; Wong, J.C.K.; Kannan, V.; Lam, K.-H.; Chen, X.; Lu, Y.; Roy, V.A.L. Wearable and Flexible Thin Film Thermoelectric Module for Multi-Scale Energy Harvesting. J. Power Sources 2020, 455, 227983. [Google Scholar] [CrossRef]
- Proto, A.; Penhaker, M.; Conforto, S.; Schmid, M. Nanogenerators for Human Body Energy Harvesting. Trends Biotechnol. 2017, 35, 610–624. [Google Scholar] [CrossRef]
- Tian, R.; Liu, Y.; Koumoto, K.; Chen, J. Body Heat Powers Future Electronic Skins. Joule 2019, 3, 1399–1403. [Google Scholar] [CrossRef]
- He, X.; Shi, X.-L.; Wu, X.; Li, C.; Liu, W.-D.; Zhang, H.; Yu, X.; Wang, L.; Qin, X.; Chen, Z.-G. Three-Dimensional Flexible Thermoelectric Fabrics for Smart Wearables. Nat. Commun. 2025, 16, 2523. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Mohamad, A.J.; Rifai, D.; Besar, M.B.; Ikhmal, M.A.; Mamat, N.H.; Raja Aris, R.S.N.A.; Siaw Paw, J.K.; Abdalla, A.N. IoT System Design of Thermoelectric Generator for Harvesting Motorcycle Exhaust Heat Energy. In Proceedings of the Control, Instrumentation and Mechatronics: Theory and Practice; Wahab; Wahab, N.A., Mohamed, Z., Eds.; Springer Nature: Singapore, 2022; pp. 213–226. [Google Scholar]
- Dipon, W.H. Self-Sustaining Multi-Sensing and Wireless Communication System Powered by Efficient Energy Harvesting From Road Traffic and Heat. Ph.D. Thesis, The University of Texas at San Antonio, San Antonio, TX, USA, 2023. [Google Scholar]
- Li, Y.; de León, F.; Zhao, Y.; Yue, L.; Hu, Z.; Wang, R. Influence and Comprehensive Evaluation of Porous Metal Foam Filled Fins on the Performance of Power Cable Surface Waste Heat Recovery Thermoelectric Power Generation Device. Therm. Sci. Eng. Prog. 2024, 47, 102278. [Google Scholar] [CrossRef]
- Xie, Z.; Shi, K.; Song, L.; Hou, X. Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect. J. Electron. Mater. 2023, 52, 209–218. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manage. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Yuan, H.; Chen, G.; Mei, N. Performance Improvement of the Electric Water Heater by a Waste Heat Recovery Method with the Thermoelectric Effect. Appl. Therm. Eng. 2023, 222, 119914. [Google Scholar] [CrossRef]
- Mona, Y.; Do, T.A.; Sekine, C.; Suttakul, P.; Chaichana, C. Geothermal Electricity Generator Using Thermoelectric Module for IoT Monitoring. Energy Rep. 2022, 8, 347–352. [Google Scholar] [CrossRef]
- Doraghi, Q.; Żabnieńska-Góra, A.; Voto, G.; Krause, B.; Pötschke, P.; Ezpeleta, I.; Mateo-Mateo, C.; Jouhara, H. Experimental and Computational Thermoelectric Generator for Waste Heat Recovery for Aeronautic Application. Energy 2024, 297, 131286. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Zabrocki, K.; Müller, E. TEG Design for Waste Heat Recovery at an Aviation Jet Engine Nozzle. Appl. Sci. 2018, 8, 2637. [Google Scholar] [CrossRef]
- Whiting, C.E. Empirical Analysis of the Multi-Mission Radioisotope Thermoelectric Generator Qualification Unit Operated at a Low Thermal Inventory with Potential for Improved End-of-Life Power. Nucl. Technol. 2021, 207, 782–789. [Google Scholar] [CrossRef]
- Hussain, W.; Algarni, S.; Rasool, G.; Shahzad, H.; Abbas, M.; Alqahtani, T.; Irshad, K. Advances in Nanoparticle-Enhanced Thermoelectric Materials from Synthesis to Energy Harvesting: A Review. ACS Omega 2024, 9, 11081–11109. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; He, Z.; Yang, M.; Xu, J.; Li, N.; Wang, Z.; Li, J.; Ma, T.; Lu, X.; Zhang, H.; et al. A Review on Flexible Thermoelectric Technology: Material, Device, and Applications. Int. J. Thermophys. 2021, 42, 111. [Google Scholar] [CrossRef]
- Zadan, M.; Wertz, A.; Shah, D.; Patel, D.K.; Zu, W.; Han, Y.; Gelorme, J.; Mea, H.J.; Yao, L.; Malakooti, M.H.; et al. Stretchable Thermoelectric Generators for Self-Powered Wearable Health Monitoring. Adv. Funct. Mater. 2024, 34, 2404861. [Google Scholar] [CrossRef]
- Xu, Q.; Deng, B.; Zhang, L.; Lin, S.; Han, Z.; Zhou, Q.; Li, J.; Zhu, Y.; Jiang, F.; Li, Q.; et al. High-Performance, Flexible Thermoelectric Generator Based on Bulk Materials. Cell Rep. Phys. Sci. 2022, 3, 100780. [Google Scholar] [CrossRef]
- Hong, M.; Sun, S.; Lyu, W.; Li, M.; Liu, W.; Shi, X.-L.; Chen, Z.-G. Advances in Printing Techniques for Thermoelectric Materials and Devices. Soft Sci. 2023, 3, 29. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, B.; Sun, W.; Zheng, Z.; Liu, W. Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines 2021, 12, 869. [Google Scholar] [CrossRef]
- Zhu, S.; Fan, Z.; Feng, B.; Shi, R.; Jiang, Z.; Peng, Y.; Gao, J.; Miao, L.; Koumoto, K. Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies 2022, 15, 3375. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, B.; Li, Y.; Guo, Z.; Zhang, Z.; Luo, Z.; Zhao, L.; Lin, Q.; Lee, C.; Jiang, Z. Evolution of Thermoelectric Generators: From Application to Hybridization. Small 2023, 19, 2304599. [Google Scholar] [CrossRef]
- Park, H.; Lee, D.; Park, G.; Park, S.; Khan, S.; Kim, J.; Kim, W. Energy Harvesting Using Thermoelectricity for IoT (Internet of Things) and E-Skin Sensors. J. Phys. Energy 2019, 1, 042001. [Google Scholar] [CrossRef]
- Kucova, T.; Prauzek, M.; Konecny, J.; Andriukaitis, D.; Zilys, M.; Martinek, R. Thermoelectric Energy Harvesting for Internet of Things Devices Using Machine Learning: A Review. CAAI Trans. Intell. Technol. 2023, 8, 680–700. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, J.; Deng, H.; Huang, J.; Zhang, X. Recent Progress of Powering IoT Based on Thermoelectric Technology. Micromachines 2025, 16, 1017. https://doi.org/10.3390/mi16091017
Dai J, Deng H, Huang J, Zhang X. Recent Progress of Powering IoT Based on Thermoelectric Technology. Micromachines. 2025; 16(9):1017. https://doi.org/10.3390/mi16091017
Chicago/Turabian StyleDai, Jinhong, Haitao Deng, Jingwen Huang, and Xiaosheng Zhang. 2025. "Recent Progress of Powering IoT Based on Thermoelectric Technology" Micromachines 16, no. 9: 1017. https://doi.org/10.3390/mi16091017
APA StyleDai, J., Deng, H., Huang, J., & Zhang, X. (2025). Recent Progress of Powering IoT Based on Thermoelectric Technology. Micromachines, 16(9), 1017. https://doi.org/10.3390/mi16091017