Editorial for Special Issue on Ultra-Precision Machining of Difficult-to-Machine Materials
1. Introduction for Special Issue of Ultra-Precision Machining of Difficult-to-Machine Materials
2. Overview of Published Articles
2.1. Material Removal Mechanism Induced by Machining of Difficult-to-Machine Materials
2.2. Abrasive Machining Technology of Difficult-to-Machine Materials
2.3. Composite Energy Field Machining Technology of Difficult-to-Machine Materials
2.4. Development of High-Performance Cutting Tools
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Li, C.; Piao, Y.; Meng, B.; Hu, Y.; Li, L.; Zhang, F. Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals. Int. J. Mach. Tools Manuf. 2022, 172, 103827. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Wei, Z.; Wu, C.; Peng, Y.; Zhang, F.; Geng, Y. Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding. Int. J. Extreme Manuf. 2024, 6, 025103. [Google Scholar] [CrossRef]
- Wu, Y.; Mu, D.; Huang, H. Deformation and removal of semiconductor and laser single crystals at extremely small scales. Int. J. Extreme Manuf. 2020, 2, 012006. [Google Scholar] [CrossRef]
- Gao, S.; Song, W.; Huang, J.; Yang, X.; Kang, R. Effect of abrasives interference on deformation and material removal mechanism of single crystal YAG in abrasive machining. Mater. Charact. 2025, 222, 114804. [Google Scholar] [CrossRef]
- Xu, D.; Wang, C.; Du, C.; Ding, F.; Hu, X. Physical and chemical characterization of the surface and removal process of silicon carbide ceramics by femtosecond laser processing. Diam. Abras. Eng. 2024, 44, 508–517. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Zakharov, O.; Cui, H.; Wu, M.; Zhao, T.; Yan, Y.; Geng, Y. Damage evolution mechanism and low-damage grinding technology of silicon carbide ceramics. Int. J. Extreme Manuf. 2025, 7, 022015. [Google Scholar] [CrossRef]
- Xing, Y.; Xue, C.; Liu, Y.; Du, H.; Yip, W.S.; To, S. Freeform surfaces manufacturing of optical glass by ultrasonic vibration-assisted slow tool servo turning. J. Mech. Work. Technol. 2024, 324, 118271. [Google Scholar] [CrossRef]
- Xu, P.; Sun, Y.; Zhang, G.; Kang, S.; Lu, W.; Sun, Y.; Zuo, D. Comparison of erosion resistance of hard and brittle materials processed by low-temperature micro-abrasive gas jet. Diam. Abras. Eng. 2024, 44, 665–674. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, K.; Shi, Y.; Li, H.; Lu, D.; Kuang, Y.; Liu, J. Evolution mechanisms of the scratch-induced elastoplastic stress fields and crack damage in γ-TiAl alloys. J. Mater. Res. Technol. 2025, 34, 932–945. [Google Scholar] [CrossRef]
- Song, Y.; Shi, K.; He, Z.; Wang, S.; Zhang, Z.; Shi, Y.; Huai, W. Wear characteristics evolution of corundum wheel and its influence on performance in creep feed grinding of nickel-based superalloy. Wear 2025, 562, 205649. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, Z.; Zhou, K.; He, Y.; Li, X. Significant improvement of machinability of Cf/SiC composites through matching laser scanning spacing and abrasive belt grain size. Chin. J. Aeronaut. 2025, 38, 103017. [Google Scholar] [CrossRef]
- Qu, S.; Yao, P.; Gong, Y.; Yang, Y.; Chu, D.; Zhu, Q. Modelling and grinding characteristics of unidirectional C–SiCs. Ceram. Int. 2022, 48, 8314–8324. [Google Scholar] [CrossRef]
- Wen, J.; Wang, Q.; Yu, A.; Wu, C. Removal mechanism of unidirectional Cf/SiC composites based on single diamond grit scratching. Diam. Abras. Eng. 2024, 44, 327–334. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Piao, Y.; Cui, H.; Zakharov, O.; Duan, Z.; Zhang, F.; Yan, Y.; Geng, Y. Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects. Int. J. Mach. Tools Manuf. 2024, 201, 104197. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Wu, Y.; Zhang, F.; Huang, H. Deformation mechanism and force modelling of the grinding of YAG single crystals. Int. J. Mach. Tools Manuf. 2019, 143, 23–37. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Meng, B.; Liu, L.; Rao, X. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram. Int. 2017, 43, 2981–2993. [Google Scholar] [CrossRef]
- Qu, S.; Yang, Y.; Yao, P.; Li, L.; Sun, Y.; Chu, D. Fiber reinforced ceramic matrix composites: From the controlled fabrication to precision machining. Int. J. Extrem. Manuf. 2025, 7, 062004. [Google Scholar] [CrossRef]
- Li, C.; Liu, G.; Gao, C.; Yang, R.; Zakharov, O.; Hu, Y.; Yan, Y.; Geng, Y. Atomic-scale understanding of graphene oxide lubrication-assisted grinding of GaN crystals. Int. J. Mech. Sci. 2025, 286, 109934. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y.; Wang, Z. The wear behavior and lapping performance of fixed abrasive pad for acidity and alkalinity of lapping fluid in lapping quartz glass. Tribol. Int. 2024, 195, 109615. [Google Scholar] [CrossRef]
- Chen, H.; Wan, H.; Hong, B.; Hang, W.; Zhu, T.; Zhang, P.; Cao, X.; Xu, Q.; Wang, R.; Han, X.; et al. A novel liquid film shearing polishing technique for silicon carbide and its processing damage mechanisms. Appl. Surf. Sci. 2025, 688, 162317. [Google Scholar] [CrossRef]
- Wang, L.; Hong, B.; Chen, H.; Qi, H.; Zhang, J.; Hang, W.; Han, Y.; Wang, J.; Ren, K.; Lyu, B. Enhancing tungsten machinability via laser pretreatment for abrasive particles-based shear rheological polishing. Powder Technol. 2025, 455, 120758. [Google Scholar] [CrossRef]
- Guo, D. High-performance manufacturing. Int. J. Extrem. Manuf. 2024, 6, 060201. [Google Scholar]
- Lv, B.; Lin, B.; Zhang, J.; Liu, C.; Wang, L.; Sui, T. Micro- and nano-scale spindle perpendicularity modulation method to enhance the quality of milled surfaces. Int. J. Extreme Manuf. 2024, 6, 065101. [Google Scholar] [CrossRef]
- Xu, J.; Geier, N.; Shen, J.; Krishnaraj, V.; Samsudeensadham, S. A review on CFRP drilling: Fundamental mechanisms, damage issues, and approaches toward high-quality drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Zhang, F.; Geng, Y.; Meng, B. Molecular dynamics simulation of laser assisted grinding of GaN crystals. Int. J. Mech. Sci. 2023, 239, 107856. [Google Scholar] [CrossRef]
- Wang, J.; Fang, F.; Wang, P.; An, H.; Wu, S.; Qi, Y.; Cai, Y.; Guo, G. Laser machining fundamentals: Micro, nano, atomic and close-to-atomic scales. Int. J. Extrem. Manuf. 2023, 5, 012005. [Google Scholar] [CrossRef]
- Xu, N.; Kang, R.; Zhang, B.; Zhang, Y.; Wang, C.; Bao, Y.; Dong, Z. Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity. Int. J. Extreme Manuf. 2024, 6, 035101. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, F.; Jiang, Z.; Tian, Z.; Qiu, T.; Zhang, T.; Wen, Q.; Lu, X.; Lu, J.; Huang, H. Energy beam-based direct and assisted polishing techniques for diamond: A review. Int. J. Extreme Manuf. 2024, 6, 012004. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Z.; Huang, K.; Lin, C.; Huang, W.; Chen, X.; Xiao, J.; Xu, J. Field-assisted machining of difficult-to-machine materials. Int. J. Extreme Manuf. 2024, 6, 032002. [Google Scholar] [CrossRef]
- Desbiolles, B.X.E.; Bertsch, A.; Renaud, P. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing. Microsyst. Nanoeng. 2019, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Piao, Y.; Meng, B.; Zhang, Y.; Li, L.; Zhang, F. Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (0001) plane. Appl. Surf. Sci. 2022, 578, 152028. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Gao, S.; Yan, X.; Chen, T. Effect of Shot-peening Residual Stress on Fatigue Life and Relaxation of TC4. China Surf. Eng. 2024, 37, 171–178. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Huang, H.; Dong, Z.; Kang, R. Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding. Int. J. Extreme Manuf. 2025, 7, 035103. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Li, C.; Piao, Y.; Hou, N.; Hu, K. Characterization of surface and subsurface defects induced by abrasive machining of optical crystals using grazing incidence X-ray diffraction and molecular dynamics. J. Adv. Res. 2022, 36, 51–61. [Google Scholar] [CrossRef]
- Qiang, B.; Shi, K.; Liu, N.; Ren, J.; Shi, Y. Integrating physics-informed recurrent Gaussian process regression into instance transfer for predicting tool wear in milling process. J. Manuf. Syst. 2023, 68, 42–55. [Google Scholar] [CrossRef]
- Rossi, E.; Wheeler, J.M.; Sebastiani, M. High-speed nanoindentation mapping: A review of recent advances and applications. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101107. [Google Scholar] [CrossRef]
- Piao, Y.; Li, C.; Hu, Y.; Cui, H.; Luo, X.; Geng, Y.; Zhang, F. Nanoindentation induced anisotropy of deformation and damage behaviors of MgF2 crystals. J. Mater. Res. Technol. 2024, 28, 4615–4625. [Google Scholar] [CrossRef]
- Li, C.; Piao, Y.; Zhang, F.; Zhang, Y.; Hu, Y.; Wang, Y. Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals. Int. J. Extreme Manuf. 2023, 5, 015101. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Y.; Cui, H.; Liu, S.; Li, C.; Geng, Y. Towards understanding the mechanisms of material removal and deformation in GaAs during nanomilling. J. Mech. Work. Technol. 2025, 337, 118712. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, B.; Ding, W.; Xin, L.; Nian, Z.; Peng, J.; He, N.; Xu, J. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: A comparative analysis. Int. J. Extreme Manuf. 2024, 6, 022007. [Google Scholar] [CrossRef]
- Lin, J.; Wu, M.; Liu, S.; Zhou, Y.; Gu, Y.; Zhou, X. Processing Mechanism and Experiment of Ultrasonic Vibration Assisted Cutting of SiCp/Al Composites. China Surf. Eng. 2024, 37l, 182–198. [Google Scholar] [CrossRef]
- Malayath, G.; Mote, R.G. A review of cutting tools for ultra-precision machining. Mach. Sci. Technol. 2022, 26, 923–976. [Google Scholar] [CrossRef]
- Hatefi, S.; Smith, F. Design and analysis of ultra-precision smart cutting tool for in-process force measurement and tool nanopositioning in ultra-high-precision single-point diamond turning. Micromachines 2023, 14, 1857. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Peng, J.; Wang, X.; Ding, W.; Lei, X.; Wu, B.; Zhang, M.; Xu, J.; Zhang, L.; et al. Overcoming challenges: Advancements in cutting techniques for high strength-toughness alloys in aero-engines. Int. J. Extrem. Manuf. 2024, 6, 062012. [Google Scholar] [CrossRef]
- Wang, K.; Li, C.; Wu, Y.; Liu, Y.; Zakharov, O.; Geng, Y.; Zhang, F. Nanoscale insight into brittle-to-ductile transition mechanism of 4H-SiC in single-grit nanogrinding. Int. J. Mech. Sci. 2025, 302, 110579. [Google Scholar] [CrossRef]
- Jahnel, K.; Michels, R.; Wilhelm, D.P.; Grunwald, T.; Bergs, T. Investigation of Surface Integrity Induced by Ultra-Precision Grinding and Scratching of Glassy Carbon. Micromachines 2023, 14, 2240. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, L.; Gao, Q.; Wang, X.; Lyu, B.; Li, C. Modeling and Validation of Material Removal Based on Rheological Behavior Under Dynamic-Viscosity Nonlinear Coupling Effects. Micromachines 2025, 16, 572. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, Y.; Zhang, X.; Guo, Y. Influence of Diamond Wire Saw Processing Parameters on the Sawn Surface Characteristics of Silicon Nitride Ceramics. Micromachines 2023, 14, 1660. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, Y.; Jia, X.; Chu, S.; Niu, J. Longitudinal–Torsional Ultrasonic Grinding of GCr15: Development of Longitudinal–Torsional Ultrasonic System and Prediction of Surface Topography. Micromachines 2023, 14, 1626. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhou, M.; Wang, H.; Bai, S. Investigation of cutting force and the material removal mechanism in the ultrasonic vibration-assisted scratching of 2D-SiCf/SiC Composites. Micromachines 2023, 14, 1350. [Google Scholar] [CrossRef]
- Yang, T.; Xiao, Y.; Hang, Y.; Wu, X.; Kong, W. Research on helical electrode electrochemical drilling assisted by anode vibration for jet micro-hole arrays on tube walls. Micromachines 2025, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Cui, Z.; Chen, J.; Wang, Y.; Yang, L. Understanding the Processing Quality Problem for Cutting Ceramic Materials Using the Thermal-Controlled Fracture Method Induced by a Single-Surface Heat Source. Micromachines 2024, 15, 957. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yu, A.; Wu, C.; Liang, S.Y. Process analysis and topography evaluation for monocrystalline silicon laser cutting-off. Micromachines 2023, 14, 1542. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Pan, J.; Guo, L.; Zhang, C.; Chen, W.; Hu, Z.; Mao, M. Experimental Study on Chemical–Mechanical Synergistic Preparation for Cemented Carbide Insert Cutting Edge. Micromachines 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C. Editorial for Special Issue on Ultra-Precision Machining of Difficult-to-Machine Materials. Micromachines 2025, 16, 1004. https://doi.org/10.3390/mi16091004
Li C. Editorial for Special Issue on Ultra-Precision Machining of Difficult-to-Machine Materials. Micromachines. 2025; 16(9):1004. https://doi.org/10.3390/mi16091004
Chicago/Turabian StyleLi, Chen. 2025. "Editorial for Special Issue on Ultra-Precision Machining of Difficult-to-Machine Materials" Micromachines 16, no. 9: 1004. https://doi.org/10.3390/mi16091004
APA StyleLi, C. (2025). Editorial for Special Issue on Ultra-Precision Machining of Difficult-to-Machine Materials. Micromachines, 16(9), 1004. https://doi.org/10.3390/mi16091004