Editorial for This Special Issue on Energy Conversion Materials and Devices and Their Applications
1. Introduction
Conflicts of Interest
References
- Green, M.A.; Bremner, S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023. [Google Scholar] [CrossRef]
- Gu, C.; Jia, A.-B.; Zhang, Y.-M.; Zhang, S.X.-A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Z.; Chen, J.; Li, C.; Zhang, Z.; Yan, X.; Liu, X.; Yang, S. Recent development and progress of structural energy devices. Chin. Chem. Lett. 2022, 33, 1817. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984. [Google Scholar] [CrossRef]
- Fratzl, P. Introduction: Sustainable materials. Chem. Rev. 2023, 123, 1841. [Google Scholar] [CrossRef]
- Li, X.; Aftab, S.; Mukhtar, M.; Kabir, F.; Khan, M.F.; Hegazy, H.H.; Akman, E. Exploring nanoscale perovskite materials for next-generation photodetectors: A comprehensive review and future directions. Nano-Micro Lett. 2024, 17, 28. [Google Scholar] [CrossRef]
- Osman, A.I.; Chen, Z.; Elgarahy, A.M.; Farghali, M.; Mohamed, I.M.A.; Priya, A.K.; Hawash, H.B.; Yap, P.-S. Membrane technology for energy saving: Principles, techniques, applications, challenges, and prospects. Adv. Energy Sustain. Res. 2024, 5, 2400011. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A.; Oyejobi, D.O.; Avudaiappan, S.; Flores, E.S. Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions. Results Eng. 2024, 24, 103521. [Google Scholar] [CrossRef]
- Elezz, M.A.; Aboeleneen, N.M.; Abd-ElMonem, N.M.; Sorour, F.H. A comprehensive review: Functional nanomaterials for renewable energy: Innovations, applications, and sustainable strategies. Next Mater. 2025, 9, 101001. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, H.; Yu, J.; Yang, Y.; Li, G. Materials and device engineering perspective: Recent advances in organic photovoltaics. Adv. Mater. 2025, 2504063. [Google Scholar] [CrossRef]
- Gu, Y.; Qiu, Z.; Müllen, K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J. Am. Chem. Soc. 2022, 144, 11499. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xue, D.; Bai, Y.; Wang, W.Y.; Liu, J.; Yang, M.; Su, Y. AI4Materials: Transforming the landscape of materials science and enigneering. Rev. Mater. Res. 2025, 1, 100010. [Google Scholar] [CrossRef]
- Yuan, Q.; Gao, W.; Liu, J.L. Achievements in elevating the chemistry enterprise: Advancing energy transition and smart materials. ACS Energy Lett. 2025, 10, 1366–1373. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2021, 3, e135. [Google Scholar] [CrossRef]
- Kittner, N.; Lill, F.; Kammen, D.M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125. [Google Scholar] [CrossRef]
- Feng, S.; Lazkano, I. Energy storage and clean energy transitions. Energy Policy 2025, 198, 114447. [Google Scholar] [CrossRef]
- Jafarizadeh, H.; Yamini, E.; Zolfaghari, S.M.; Esmaeilion, F.; Assad, M.E.H.; Soltani, M. Navigating challenges in large-scale renewable energy storage: Barriers, solutions, and innovations. Energy Rep. 2024, 12, 2179–2192. [Google Scholar] [CrossRef]
- Khan, A.; Al Rashid, H.; Roy, P.K.; Chowdhury, S.I.; Sathi, S.A. Challenges and the way to improve lithium-ion battery technology for next-generation energy storage. Energy Environ. Mater. 2025, e70088. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Pei, X.; Zhou, C.; Zhao, Q.; Lu, M.; Han, W.; Wang, L. ZnMn2O4/V2CTx composites prepared as an anode material via high-temperature calcination method for optimized Li-ion batteries. Micromachines 2024, 15, 828. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, T.; Chae, O.B. Strategies for enhancing the stability of lithium metal anodes in solid-state electrolytes. Micromachines 2024, 15, 453. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yang, X.; Guo, R.; Zhai, L.; Wang, X.; Wu, F.; Wu, C.; Bai, Y. Protecting lithium metal anodes in solid-state batteries. Electrochem. Energy Rev. 2024, 7, 30. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Y.; Liao, C.; Duan, S.; Liu, X.; Chen, G.; Dong, L.; Dong, J.; Ma, C.; Yin, B.; et al. Advanced polymer materials for protecting lithium metal anodes of liquid-state and solid-state lithium batteries. Adv. Funct. Mater. 2024, 34, 2404427. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, X.; Cui, C.; Zhang, X.; Lou, S.; Ma, Y.; Huo, H.; Gao, Y.; Zuo, P.; Yin, G. Molecular bridges stabilize lithium metal anode and solid-state electrolyte interface. Chem. Eng. J. 2022, 432, 134271. [Google Scholar] [CrossRef]
- Ahangari, M.; Xia, F.; Szalai, B.; Zhou, M.; Luo, H. Advancing lithium-ion batteries’ electrochemical performance: Ultrathin alumina coating on Li(Ni0.8Co0.1Mn0.1)O2 cathode materials. Micromachines 2024, 15, 894. [Google Scholar] [CrossRef]
- Yin, X.; Liu, T.; Yin, X.; Feng, X.; Liu, Y.; Shi, Q.; Zou, X.; Zhao, Y. Free-standing SnNb2O6@CSN film as flexible anode for high performance sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107840. [Google Scholar] [CrossRef]
- Dong, X.; Wang, X.; Lu, Z.; Shi, Q.; Yang, Z.; Yu, X.; Feng, W.; Zou, X.; Liu, Y.; Zhao, Y. Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chin. Chem. Lett. 2024, 35, 108605. [Google Scholar] [CrossRef]
- Ahangari, M.; Zhou, M.; Luo, H. Review of layered transition metal oxide materials for cathodes in sodium-ion batteries. Micromachines 2025, 16, 137. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Zhang, M.; Huo, X.; Guo, M. Toward next-generation smart windows: An in-depth analysis of dual-band electrochromic materials and devices. Adv. Opt. Mater. 2024, 12, 2302344. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, Y.; Pan, J.; Malik, H.A.; Zhang, H.; Jia, C.; Weng, X.; Xie, J.; Deng, L. Toward easy-to-assemble, large-area smart windows: All-in-one cross-linked electrochromic material and device. ACS Appl. Mater. Interfaces 2020, 12, 27526–27536. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, H.; Duan, M.; Mao, H.; Wu, Y.; Zhao, H.; Lin, B. Applications of thermochromic and electrochromic smart windows: Materials to buildings. Cell Rep. Phys. Sci. 2023, 4, 101370. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Jiang, S.; Yuan, M.; Chen, X. Full spectrum electrochromic WO3 mechanism and optical modulation via ex situ spectroscopic ellipsometry: Effect of Li+ surface permeation. Micromachines 2024, 15, 1473. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wang, M.; Wu, W.; Tian, M.; Zhu, T. Preparation and performance study of MXene-regulated ethylene glycol-induced WO3 Film. Micromachines 2024, 15, 1486. [Google Scholar] [CrossRef] [PubMed]
- Torrence, C.E.; Libby, C.S.; Nie, W.; Stein, J.S. Environmental and health risks of perovskite solar modules: Case for better test standards and risk mitigation solutions. iScience 2023, 26, 105807. [Google Scholar] [CrossRef]
- Suo, J.; Pettersson, H.; Yang, B. Sustainable approaches to address lead toxicity in halide perovskite solar cells: A review of lead encapsulation and recycling solutions. EcoMat 2025, 7, e12511. [Google Scholar] [CrossRef]
- Aktas, E.; Rajamanickam, N.; Pascual, J.; Hu, S.; Aldamasy, M.H.; Di Girolamo, D.; Li, W.; Nasti, G.; Martínez-Ferrero, E.; Wakamiya, A.; et al. Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Commun. Mater. 2022, 3, 104. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Sun, Z.; Song, P.; Feng, X.; Jin, Z. Vapor-assisted method to deposit compact (CH3NH3)3Bi2I9 thin films for bismuth-based planar perovskite solar cells. Micromachines 2025, 16, 218. [Google Scholar] [CrossRef]
- Chen, W.; Song, F. Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chin. Chem. Lett. 2019, 30, 1717–1730. [Google Scholar] [CrossRef]
- Jung, S.; Cheung, W.-L.; Li, S.-J.; Wang, M.; Li, W.; Wang, C.; Song, X.; Wei, G.; Song, Q.; Chen, S.S.; et al. Enhancing operational stability of OLEDs based on subatomic modified thermally activated delayed fluorescence compounds. Nat. Commun. 2023, 14, 6481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Y.; Zhang, G.; Yang, X.; Chang, X.; Xing, G.; Dong, H.; Wang, J.; Wang, D.; Mai, Z.; et al. Advances in host-free white organic light-emitting diodes utilizing thermally activated delayed fluorescence: A comprehensive review. Micromachines 2024, 15, 703. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, M.; López, P. The world’s technological capacity to store, communicate, and compute information. Science 2011, 332, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Diddams, S.A.; Hollberg, L.; Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 2007, 445, 627–630. [Google Scholar] [CrossRef]
- Jetschke, S.; Unger, S.; Schwuchow, A.; Leich, M.; Kirchhof, J. Efficient Yb laser fibers with low photodarkening by optimization of the core composition. Opt. Express 2008, 16, 15540–15545. [Google Scholar] [CrossRef]
- Song, S.; Zhang, M. Broadband near-infrared emission from Bi/Cr Co-doped aluminosilicate glasses. Micromachines 2024, 15, 1093. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, Y.; Liu, L. Editorial for This Special Issue on Energy Conversion Materials and Devices and Their Applications. Micromachines 2025, 16, 943. https://doi.org/10.3390/mi16080943
Liu B, Wang Y, Liu L. Editorial for This Special Issue on Energy Conversion Materials and Devices and Their Applications. Micromachines. 2025; 16(8):943. https://doi.org/10.3390/mi16080943
Chicago/Turabian StyleLiu, Bin, Yaling Wang, and Lei Liu. 2025. "Editorial for This Special Issue on Energy Conversion Materials and Devices and Their Applications" Micromachines 16, no. 8: 943. https://doi.org/10.3390/mi16080943
APA StyleLiu, B., Wang, Y., & Liu, L. (2025). Editorial for This Special Issue on Energy Conversion Materials and Devices and Their Applications. Micromachines, 16(8), 943. https://doi.org/10.3390/mi16080943