Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions
Abstract
1. Introduction
2. Features of CNCs
2.1. Source of CNCs
2.2. Properties of CNCs Utilized for Optics and Electronics
3. Optical and Electronic Applications of CNCs
3.1. Light Controllers
3.1.1. Control of Transmitted Lights
3.1.2. Control of Reflected Lights
3.1.3. Control of Emitted Lights
3.2. Optical Sensors
4. Concluding Remarks and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Nepal, D.; Kang, S.; Adstedt, K.M.; Kanhaiya, K.; Bockstaller, M.R.; Brinson, L.C.; Buehler, M.J.; Coveney, P.V.; Dayal, K.; El-Awady, J.A.; et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 2023, 22, 18–35. [Google Scholar] [CrossRef]
- Kim, M.; Chung, H. Photo-responsive bio-inspired adhesives: Facile control of adhesion strength via a photocleavable crosslinker. Polym. Chem. 2017, 8, 6300–6308. [Google Scholar] [CrossRef]
- Xiong, R.; Grant, A.M.; Ma, R.; Zhang, S.; Tsukruk, V.V. Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Mater. Sci. Eng. 2018, 125, 1–41. [Google Scholar] [CrossRef]
- Wu, X.; Shi, Z.; Fu, S.; Chen, J.; Berry, R.M.; Tam, K.C. Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain. Chem. Eng. 2016, 4, 5929–5935. [Google Scholar] [CrossRef]
- Walters, C.M.; Matharu, G.K.; Hamad, W.Y.; Lizundia, E.; MacLachlan, M.J. Chiral nematic cellulose nanocrystal/germania and carbon/germania composite aerogels as supercapacitor materials. Chem. Mater. 2021, 33, 5197–5209. [Google Scholar] [CrossRef]
- Walters, C.M.; Adair, K.R.; Hamad, W.Y.; MacLachlan, M.J. Synthesis of chiral nematic mesoporous metal and metal oxide nanocomposites and their use as heterogeneous catalysts. Eur. J. Inorg. Chem. 2020, 2020, 3937–3943. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wagberg, L.; et al. Developing fibrillated cellulose as a sustainable technological material. Nature 2021, 590, 47–56. [Google Scholar] [CrossRef]
- Kalashnikova, O.; Pankova, E.; Sukhikh, S.; Babich, O.; Samusev, I.; Tcibulnikova, A.; Ivanova, S.; Kriger, O. Production of bacterial cellulose using a symbiotic consortium of bacteria and yeast on soybean molasses medium. LWT-Food Sci. Technol. 2024, 205, 116480. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, Q.; An, X.; Ji, X.; Tian, Z.; Liu, S.; Yang, G. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review. Int. J. Biol. Macromol. 2023, 253, 127353. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Riccardi, C.M.; Kasi, R.M.; Kumar, C.V. Chapter Nineteen—Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers with Poly(Acrylic Acid). In Methods in Enzymology; Challa, V.K., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 590, pp. 475–500. [Google Scholar]
- Adstedt, K.; Popenov, E.A.; Pierce, K.J.; Xiong, R.; Geryak, R.; Cherpak, V.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Chiral cellulose nanocrystals with intercalated amorphous polysaccharides for controlled iridescence and enhanced mechanics. Adv. Funct. Mater. 2020, 30, 2003597. [Google Scholar] [CrossRef]
- Korolovych, V.F.; Cherpak, V.; Nepal, D.; Ng, A.; Shaikh, N.R.; Grant, A.; Xiong, R.; Bunning, T.J.; Tsukruk, V.V. Cellulose nanocrystals with different morphologies and chiral properties. Polymer 2018, 145, 334–347. [Google Scholar] [CrossRef]
- Tran, A.; Boott, C.E.; MacLachlan, M.J. Understanding the self-assembly of cellulose nanocrystals—Toward Chiral photonic materials. Adv. Mater. 2020, 32, 1905876. [Google Scholar] [CrossRef]
- Rusli, R.; Eichhorn, S.J. Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl. Phys. Lett. 2008, 93, 033111. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, R.; Kang, S.; Yang, Y.; Tsukruk, V.V. Alternating stacking of nanocrystals and nanofibers into ultrastrong chiral biocomposite laminates. ACS Nano 2020, 14, 14675–14685. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Han, J.; Kivshar, Y.; Song, Q. Chiral emission from resonant metasurfaces. Science 2022, 377, 1215–1218. [Google Scholar] [CrossRef]
- Han, M.J.; Kim, M.; Tsukruk, V.V. Multivalued logic for optical computing with photonically enabled chiral bio-organic structures. ACS Nano 2022, 16, 13684–13694. [Google Scholar] [CrossRef]
- Han, M.J.; Tsukruk, V.V. Trainable bilingual synaptic functions in bio-enabled synaptic transistors. ACS Nano 2023, 17, 18883–18892. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, J.; Pierce, K.; Bukharina, D.; Choi, W.; Choi, J.; Nepal, D.; McConney, M.E.; Bunning, T.J.; Tsukruk, V.V. Magneto-Responsive Chiral Optical Materials: Flow-Induced Twisting of Cellulose Nanocrystals in Patterned Magnetic Fields. ACS Nano 2024, 18, 25512–25521. [Google Scholar] [CrossRef]
- Bukharina, D.; Southard, L.; Dimitrov, B.; Brackenridge, J.A.; Kang, S.; Min, P.; Wang, Y.; Nepal, D.; McConney, M.E.; Bunning, T.J.; et al. Left and Right—Handed Light Reflection and Emission in Ultrathin Cellulose Nanocrystals Films with Printed Helicity. Adv. Funct. Mater. 2024, 34, 2404857. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.; Snipes, R.T.; Han, M.J.; Tsukruk, V.V. Co-Assembly of Biosynthetic Chiral Nematic Adhesive Materials with Dynamic Polarized Luminescence. Small 2022, 18, 2104340. [Google Scholar] [CrossRef]
- Li, W.; Xu, M.; Ma, C.; Liu, Y.; Zhou, J.; Chen, Z.; Wang, Y.; Yu, H.; Li, J.; Liu, S. Tunable Upconverted Circularly Polarized Luminescence in Cellulose Nanocrystal Based Chiral Photonic Films. ACS Appl. Mater. Interfaces 2019, 11, 23512. [Google Scholar] [CrossRef]
- Xiong, R.; Yu, S.; Smith, M.J.; Zhou, J.; Krecker, M.; Zhang, L.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Self-Assembly of Emissive Nanocellulose/Quantum Dot Nanostructures for Chiral Fluorescent Materials. ACS Nano 2019, 13, 9074. [Google Scholar] [CrossRef]
- Chekini, M.; Prince, E.; Zhao, L.; Mundoor, H.; Smalyukh, I.I.; Kumacheva, E. Chiral Carbon Dots Synthesized on Cellulose Nanocrystals. Adv. Opt. Mater. 2020, 8, 1901911. [Google Scholar] [CrossRef]
- He, J.; Bian, K.; Li, N.; Piao, G. Generation of full-color and switchable circularly polarized luminescence from nonchiral dyes assembled in cholesteric cellulose films. J. Mater. Chem. C 2019, 7, 9278. [Google Scholar] [CrossRef]
- Zheng, H.; Li, W.; Li, W.; Wang, X.; Tang, Z.; Zhang, S.X.A.; Xu, Y. Uncovering the Circular Polarization Potential of Chiral Photonic Cellulose Films for Photonic Applications. Adv. Mater. 2018, 30, 1705948. [Google Scholar] [CrossRef]
- Xu, M.; Wu, X.; Yang, Y.; Ma, C.; Li, W.; Yu, H.; Chen, Z.; Li, J.; Zhang, K.; Liu, S. Designing Hybrid Chiral Photonic Films with Circularly Polarized Room-Temperature Phosphorescence. ACS Nano 2020, 14, 11130. [Google Scholar] [CrossRef]
- Kang, S.; Li, Y.; Bukharina, D.; Kim, M.; Lee, H.; Buxton, M.L.; Han, M.J.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Bio-Organic Chiral Nematic Materials with Adaptive Light Emission and On-Demand Handedness. Adv. Mater. 2021, 33, 2103329. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.; Krecker, M.C.; Bukharina, D.; Nepal, D.; Bunning, T.J.; Tsukruk, V.V. Switchable photonic bio-adhesive materials. Adv. Mater. 2021, 33, 2103674. [Google Scholar] [CrossRef]
- Liang, H.L.; Bay, M.M.; Vadrucci, R.; Barty-King, C.H.; Peng, J.; Baumberg, J.J.; De Volder, M.F.L.; Vignolini, S. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 2018, 9, 4632. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y. Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc. Natl. Acad. Sci. USA 2020, 117, 18310–18316. [Google Scholar] [CrossRef]
- Giese, M.; Blusch, L.K.; Khan, M.K.; Hamad, W.Y.; MacLachlan, M.J. Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew. Chem. Int. Ed. 2014, 53, 8880–8884. [Google Scholar] [CrossRef]
- O’Keeffe, O.; Wang, P.X.; Hamad, W.Y.; MacLachlan, M.J. Boundary Geometry Effects on the Coalescence of Liquid Crystalline Tactoids and Formation of Topological Defects. J. Phys. Chem. Lett. 2019, 10, 278–282. [Google Scholar] [CrossRef]
- Dumanli, A.G.; van der Kooij, H.M.; Kamita, G.; Reisner, E.; Baumberg, J.J.; Steiner, U.; Vignolini, S. Digital color in cellulose nanocrystal films. ACS Appl. Mater. Interfaces 2014, 6, 12302–12306. [Google Scholar] [CrossRef]
- Parker, R.M.; Frka-Petesic, B.; Guidetti, G.; Kamita, G.; Consani, G.; Abell, C.; Vignolini, S. Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 2016, 10, 8443. [Google Scholar] [CrossRef]
- Yao, K.; Meng, Q.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 2017, 29, 1701323. [Google Scholar] [CrossRef]
- Lee, C.C.; Grenier, C.; Meijer, E.; Schenning, A.P. Preparation and characterization of helical self-assembled nanofibers. Chem. Soc. Rev. 2009, 38, 671. [Google Scholar] [CrossRef]
- Zhao, T.H.; Parker, R.M.; Williams, C.A.; Lim, K.T.P.; Frka-Petesic, B.; Vignolini, S. Printing of Responsive Photonic Cellulose Nanocrystal Microfilm Arrays. Adv. Funct. Mater. 2018, 29, 1804531. [Google Scholar] [CrossRef]
- Natarajan, B.; Emiroglu, C.; Obrzut, J.; Fox, D.M.; Pazmino, B.; Douglas, J.F.; Gilman, J.W. Dielectric characterization of confined water in chiral cellulose nanocrystal films. ACS Appl. Mater. Interfaces 2017, 9, 14222–14231. [Google Scholar] [CrossRef]
- Frka-Petesic, B.; Guidetti, G.; Kamita, G.; Vignolini, S. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. Adv. Mater. 2017, 29, 1701469. [Google Scholar] [CrossRef]
- Paajanen, A.; Ceccherini, S.; Maloney, T.; Ketoja, J.A. Chirality and Bound Water in the Hierarchical Cellulose Structure. Cellulose 2019, 26, 5877–5892. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Ma, Z.; Tian, D.; Gu, M.; Lin, F. Structure–color mechanism of iridescent cellulose nanocrystal films. RSC Adv. 2014, 4, 39322–39331. [Google Scholar] [CrossRef]
- Bardet, R.; Belgacem, N.; Bras, J. Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl. Mater. Interfaces 2015, 7, 4010–4018. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef]
- Zhong, B.; Qin, X.; Xu, H.; Liu, L.; Li, L.; Li, Z.; Cao, L.; Lou, Z.; Jackman, J.A.; Cho, N.-J. Interindividual-and blood-correlated sweat phenylalanine multimodal analytical biochips for tracking exercise metabolism. Nat. Commun. 2024, 15, 624. [Google Scholar] [CrossRef]
- Yang, X.L.; Yang, Z.Y.; Shao, R.; Guan, R.F.; Dong, S.L.; Xie, M.H. Chiral MOF derived wearable logic sensor for intuitive discrimination of physiologically active enantiomer. Adv. Mater. 2023, 35, 2304046. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Gao, S.; Wang, R.; Ma, C.; Tang, Z.; Bao, N.; Wu, W.; Fan, F.; Wu, W. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 2019, 56, 693–699. [Google Scholar] [CrossRef]
- Hu, T.; Pan, T.; Guo, D.; Xiao, Y.; Li, F.; Gao, M.; Huang, Z.; Zhu, J.; Cheng, T.; Lin, Y. Omnidirectional configuration of stretchable strain sensor enabled by the strain engineering with chiral auxetic metamaterial. ACS Nano 2023, 17, 22035–22045. [Google Scholar] [CrossRef]
- Paul, S.; Barman, S.; Pal, A.; Mukherjee, A.; Ghosh, S.; Datta, A. Piezoelectric Micropower Harvester from Supramolecular Assembly of Chiral Ambipolar Chromophores. Chem. Mater. 2023, 35, 6463–6471. [Google Scholar] [CrossRef]
- An, L.-C.; Zhao, C.; Zhao, Y.; Zhang, Y.; Li, K.; Stroppa, A.; Li, W.; Bu, X.-H. Chiral 1D hybrid metal halides with piezoelectric energy harvesting and sensing properties. Small Struct. 2023, 4, 2300135. [Google Scholar] [CrossRef]
- Dai, H.; Hong, R.; Ma, Y.; Cheng, X.; Zhang, W. A Subtle Change in the Flexible Achiral Spacer Does Matter in Supramolecular Chirality: Two-Fold Odd-Even Effect in Polymer Assemblies. Angew. Chem. Int. Ed. 2023, 62, e202314848. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Y.; Cui, M.; Huang, Y.; Xu, H.; Qin, C.; Yang, J.; Dai, H.; Yuan, M. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. 2020, 132, 6504–6512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, H.; Oh, K.K.; Kim, M. Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions. Micromachines 2025, 16, 860. https://doi.org/10.3390/mi16080860
Jeon H, Oh KK, Kim M. Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions. Micromachines. 2025; 16(8):860. https://doi.org/10.3390/mi16080860
Chicago/Turabian StyleJeon, Hyeongbae, Kyeong Keun Oh, and Minkyu Kim. 2025. "Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions" Micromachines 16, no. 8: 860. https://doi.org/10.3390/mi16080860
APA StyleJeon, H., Oh, K. K., & Kim, M. (2025). Cellulose Nanocrystals for Advanced Optics and Electronics: Current Status and Future Directions. Micromachines, 16(8), 860. https://doi.org/10.3390/mi16080860