Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region
Abstract
1. Introduction
2. Sample Structure and Simulation Parameters
3. Results and Discussion
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, I.M.; Alexandre, M.; Vicente, A.T.; Teixeira, C.; Almeida, E.; Fortunato, E.; Mendes, M.J. Next-Generation Solar-Powering: Photonic Strategies for Earth and Space Systems. Sol. RRL 2025, 9, 2400666. [Google Scholar] [CrossRef]
- Wei, Z.; Al-Nuaimi, N.; Gemming, S. Optimization of InGaN-based solar cells by numerical simulation: Enhanced efficiency and performance analysis. Next Mater. 2025, 6, 100325. [Google Scholar] [CrossRef]
- Manzoor, H.U.; Shiong, N.S.; Manzoor, M.N.; Manzoor, T. Enhancing InGaN Solar Cell Performance Under Concentrated Sunlight: A SCAPS-1D Simulation Approach. Nano Sel. 2025, e70018. [Google Scholar] [CrossRef]
- Yusof, A.S.; Hamady, S.O.S.; Hassan, Z.; Ahmad, M.A.; Ng, S.S.; Lim, W.F. InGaN based Schottky barrier solar cell: Study of the temperature dependence of electrical characteristics. Mater. Sci. Semicond. Process. 2024, 172, 108082. [Google Scholar] [CrossRef]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar] [CrossRef]
- Manzoor, H.U.; Manzoor, S.; Jamshed, M.A.; Manzoor, T. Leveraging InGaN solar cells for visible light communication reception. IET Netw. 2024, 13, 271–279. [Google Scholar] [CrossRef]
- Marouf, Y.; Dehimi, L.; Bencherif, H.; Pezzimenti, F.; Younsi, Z.; Albaqami, M.D.; Hossain, M.K. Deep insights on the performance of different structures of InGaN-based tandem photovoltaic cells: Path towards the design of high efficiency PV modules. J. Opt. 2024, 1–16. [Google Scholar] [CrossRef]
- Ammar, S.; Belghouthi, R.; Aoun, N.; Rhouma, M.B.E.H.; Aillerie, M. Numerical Investigation of Piezoelectric Potential of Nanowire for Solar Energy Harvesting Using InGaN. J. Electron. Mater. 2025, 54, 5299–5311. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Lai, M.H.; Ying, L.Y.; Zhang, B.P. Efficiency improvement for InGaN/GaN multiple-quantum-well solar cells with vertical configuration. Appl. Phys. A—Mater. Sci. Process. 2016, 122, 932. [Google Scholar] [CrossRef]
- Bai, J.; Yang, C.C.; Athanasiou, M.; Wang, T. Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Appl. Phys. Lett. 2014, 104, 051129. [Google Scholar] [CrossRef]
- Bi, Z.; Bacon-Brown, D.; Du, F.Y.; Zhang, J.F.; Xu, S.R.; Li, P.X.; Zhang, J.C.; Zhan, Y.P.; Hao, Y. An InGaN/GaN MQWs Solar Cell Improved by a Surficial GaN Nanostructure as Light Traps. IEEE Photonics Technol. Lett. 2018, 30, 83–86. [Google Scholar] [CrossRef]
- Shan, H.S.; Li, M.H.; Li, X.Y.; Li, C.K.; Liu, S.W.; Song, Y.F.; Mei, Y.J.; Hao, X.D.; Ma, S.F.; Xu, B.S. Evaluation of Photoconversion Efficiency in InGaN/GaN MQW Solar Cells at High Temperatures. ACS Appl. Energy Mater. 2023, 6, 8503–8510. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Lai, M.H.; Ying, L.Y.; Zhang, B.P. High-Efficiency Vertical-Type InGaN/GaN Multiple Quantum Well Solar Cells Using Aluminum Reflectors. In Proceedings of the 16th IEEE International Conference on Nanotechnology (IEEE-NANO), IEEE Nanotechnol Council, Sendai, Japan, 22–25 August 2016; pp. 91–93. [Google Scholar]
- Tsai, Y.L.; Wang, S.W.; Huang, J.K.; Hsu, L.H.; Chiu, C.H.; Lee, P.T.; Yu, P.C.; Lin, C.C.; Kuo, H.C. Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells. Opt. Express 2015, 23, A1434–A1441. [Google Scholar] [CrossRef] [PubMed]
- Siddharth, G.; Garg, V.; Sengar, B.S.; Bhardwaj, R.; Kumar, P.; Mukherjee, S. Analytical Study of Performance Parameters of InGaN/GaN Multiple Quantum Well Solar Cell. IEEE Trans. Electron Devices 2019, 66, 3399–3404. [Google Scholar] [CrossRef]
- Cai, X.M.M.; Lv, X.Q.Q.; Huang, X.J.J.; Wang, X.L.L.; Wang, M.S.S.; Yang, L.; Zhu, H.L.L.; Zhang, B.P.P. Study of InGaN/GaN Multiple Quantum Well Solar Cells With Different Barrier Thicknesses. Phys. Status Solidi A—Appl. Mater. Sci. 2018, 215, 1700581. [Google Scholar] [CrossRef]
- Ali, G.; Omar, M.; Khan, M.F.N.; Iqbal, M. Development of InxGai-xN alloys based multi-quantum well solar cells: An overview. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–5. [Google Scholar]
- Hu, Y.L.; Farrell, R.M.; Neufeld, C.J.; Iza, M.; Cruz, S.C.; Pfaff, N.; Simeonov, D.; Keller, S.; Nakamura, S.; DenBaars, S.P.; et al. Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells. Appl. Phys. Lett. 2012, 100, 161101. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Shi, D.P.; Liu, Z.S.; Zhu, J.J.; Yang, J.; Li, X.; Liang, F.; et al. Influence of Indium Content on the Unintentional Background Doping and Device Performance of InGaN/GaN Multiple-Quantum-Well Solar Cells. IEEE J. Photovolt. 2017, 7, 1017–1023. [Google Scholar] [CrossRef]
- Shan, H.S.; Li, X.Y.; Chen, B.; Ma, S.F.; Li, L.; Xu, B.S. Effect of Indium Composition on the Microstructural Properties and Performance of InGaN/GaN MQWs Solar Cells. IEEE Access 2019, 7, 182573–182579. [Google Scholar] [CrossRef]
- Kuo, Y.-K.; Chang, J.-Y.; Shih, Y.-H. Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN pin solar cell. IEEE J. Quantum Electron. 2011, 48, 367–374. [Google Scholar] [CrossRef]
- Lu, L.; Li, M.C.; Lv, C.; Gao, W.G.; Jiang, M.; Xu, F.J.; Chen, Q.G. Comparision between Ga- and N-polarity InGaN solar cells with gradient-In-composition intrinsic layers. Chin. Phys. B 2016, 25, 108801. [Google Scholar] [CrossRef]
- Pal, D.; Das, S.J.O. Numerical simulation of GaN/InGaN pin solar cells: Role of interlayers in promoting photovoltaic response. Optik 2020, 221, 165403. [Google Scholar] [CrossRef]
- Warepam, D.; Singh, K.J.; Dhar, R.S. High efficient step graded InxGa1−xN/GaN superlattice solar cell. J. Nanophotonics 2024, 18, 026002. [Google Scholar] [CrossRef]
- Li, K.; Haque, S.; Martins, A.; Fortunato, E.; Martins, R.; Mendes, M.J.; Schuster, C.S. Light trapping in solar cells: Simple design rules to maximize absorption. Optica 2020, 7, 1377–1384. [Google Scholar] [CrossRef]
- Cho, H.K.; Kim, K.S.; Hong, C.H.; Lee, H.J. Electron traps and growth rate of buffer layers in unintentionally doped GaN. J. Cryst. Growth 2001, 223, 38–42. [Google Scholar] [CrossRef]
- Shan, H.S.; Song, Y.F.; Li, X.Y.; Li, C.K.; Li, M.H.; Jiang, H.T. Enhancement of Short-Circuit Current Density in Superlattice-Based InGaN/GaN Solar Cells. ECS J. Solid State Sci. Technol. 2023, 12, 095004. [Google Scholar] [CrossRef]
- Shan, H.S.; Mei, Y.J.; Wang, N. Degradation in Efficiency of InGaN/GaN Multiquantum Well Solar Cells With Rising Temperature. IEEE Trans. Electron Devices 2022, 69, 6195–6200. [Google Scholar] [CrossRef]
- Chouchen, B.; Ducroquet, F.; Nasr, S.; Alzahrani, A.Y.A.; Hajjiah, A.T.; Gazzah, M.H. InxGa1−xN/GaN double heterojunction solar cell optimization for high temperature operation. Sol. Energy Mater. Sol. Cells 2022, 234, 111446. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Liou, B.-T.; Lin, H.-W.; Shih, Y.-H.; Chang, S.-H.; Kuo, Y.-K. Numerical investigation on the enhanced carrier collection efficiency of Ga-face GaN/InGaN pin solar cells with polarization compensation interlayers. Opt. Lett. 2011, 36, 3500–3502. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, A.G.; Sugita, K.; Hashimoto, A.; Yamamoto, A. InGaN Solar Cells: Present State of the Art and Important Challenges. IEEE J. Photovolt. 2012, 2, 276–293. [Google Scholar] [CrossRef]
Sample (10 × 10 μm2) | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
Sample Ref | 1.79 | 0.05 | 81.57 | 0.08 |
Sample A | 1.16 | 10.35 | 85.64 | 10.29 |
Sample B | 1.14 | 9.60 | 83.37 | 9.18 |
Sample C | 1.82 | 0.06 | 90.06 | 0.10 |
Sample | VOC (V) | JSC (mA/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|
Sample New | 1.40 | 7.58 | 77.89 | 8.30 |
Sample Ref | 1.79 | 0.05 | 81.57 | 0.08 |
Sample A | 1.16 | 10.35 | 85.64 | 10.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Liu, W.; Gao, J.; Wang, D.; Yan, C.; Shi, B.; Zhang, L.; Zhao, X.; Liu, Z. Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region. Micromachines 2025, 16, 833. https://doi.org/10.3390/mi16070833
Song Y, Liu W, Gao J, Wang D, Yan C, Shi B, Zhang L, Zhao X, Liu Z. Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region. Micromachines. 2025; 16(7):833. https://doi.org/10.3390/mi16070833
Chicago/Turabian StyleSong, Yifan, Wei Liu, Junjie Gao, Di Wang, Chengrui Yan, Bohan Shi, Linyuan Zhang, Xinnan Zhao, and Zeyu Liu. 2025. "Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region" Micromachines 16, no. 7: 833. https://doi.org/10.3390/mi16070833
APA StyleSong, Y., Liu, W., Gao, J., Wang, D., Yan, C., Shi, B., Zhang, L., Zhao, X., & Liu, Z. (2025). Investigation on the Carrier Dynamics in P-I-N Type Photovoltaic Devices with Different Step-Gradient Distribution of Indium Content in the Intrinsic Region. Micromachines, 16(7), 833. https://doi.org/10.3390/mi16070833