Editorial for the Special Issue on GaN-Based Materials and Devices: Research and Applications
Conflicts of Interest
References
- Fujita, S. Wide-bandgap semiconductor materials: For their full bloom. Jpn. J. Appl. Phys. 2015, 54, 030101. [Google Scholar] [CrossRef]
- Xiong, Y.; Sadek, M.; Chu, R. Recent advances in GaN-based power devices and integration. Semicond. Sci. Technol. 2025, 40, 033002. [Google Scholar] [CrossRef]
- Walter, F.G.; Matteo, B.; Karen, G.; Arif, K.M.; Deepthi, C.; Urmimala, C.; Stefaan, D.; Werner, K.; Seda, K.; Panagiota, A.; et al. Electrical stability of MOS structures with AlON and Al2O3 dielectrics deposited on n- and p-type GaN. IEEE Trans. Electron Devices 2024, 71, 5212–5217. [Google Scholar]
- Kong, M.; Yu, N.; Zhang, B.; Cheng, Z.; Yi, B.; Yang, H. A novel GaN superjunction FinFET power device with a P-type NiO pillar for improved performance. IEEE Trans. Electron Devices 2023, 70, 6452–6458. [Google Scholar] [CrossRef]
- Wu, N.; Xing, Z.; Li, S.; Luo, L.; Zeng, F.; Li, G. GaN-based power high-electron-mobility transistors on Si substrates: From materials to devices. Semicond. Sci. Technol. 2023, 38, 063002. [Google Scholar] [CrossRef]
- Hemaja, V.; Panda, D.K. A comprehensive review on high electron mobility transistor (HEMT) based biosensors: Recent advances and future prospects and its comparison with Si-based biosensor. Silicon 2021, 14, 1873–1886. [Google Scholar] [CrossRef]
- Song, L.; Yong, X.; Zhang, P.; Song, S.; Chen, K.; Yan, H.; Sun, T.; Lu, Q.; Shi, H.; Chen, Y.; et al. Recent progress of laser processing technology in micro-LED display manufacturing: A review. Opt. Laser Technol. 2025, 181, 111710. [Google Scholar] [CrossRef]
- Hamaguchi, T. GaN-Based VCSELs with A Monolithic Curved Mirror: Challenges and Prospects. Photonics 2023, 10, 470. [Google Scholar] [CrossRef]
- Bhat, A.M.; Periasamy, C.; Poonia, R.; Varghese, A.; Shaf, N.; Tripathy, S. AlGaN/GaN HEMT Based Ph Detection Using Atomic Layer Deposition of Al2O3 as Sensing Membrane and Passivation. IEEE Trans. Nanotechnol. 2023, 22, 466–472. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Zhang, L.; Lang, J.; Fang, X.; Zhang, Z.; Guo, X.; Ji, C.; Ji, C.; TanShow, F. Progress in efficient doping of Al-rich AlGaN. J. Semicond. 2024, 45, 021501. [Google Scholar] [CrossRef]
- Mu, Y.W.; Dong, H.L.; Jia, Z.G.; Jia, W.; Liang, J.; Wang, Z.Y.; Xu, B.S. Effect of Asymmetric InAlGaN/GaN Superlattice Barrier Structure on the Optoelectronic Performance of GaN-Based Green Laser Diode. ECS J. Solid State Sci. Technol. 2024, 13, 055002. [Google Scholar] [CrossRef]
- Sun, H.; Gu, X. Low-Pressure Chemical Vapor Deposition SiNx Process Study and Its Impact on Interface Characteristics of AlGaN/GaN MISHEMTs. Micromachines 2025, 16, 442. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X. Properties Investigation and Damage Analysis of GaN Photoconductive Semiconductor Switch Based on SiC Substrate. Micromachines 2024, 15, 1178. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lim, C.-Y.; Lee, J.-H.; Choi, J.-H.; Min, B.-G.; Kim, H.-S. Operational Characteristics of AlGaN/GaN High-Electron-Mobility Transistors with Various Dielectric Passivation Structures for High-Power and High-Frequency Operations: A Simulation Study. Micromachines 2024, 15, 1126. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Z.; Fu, C.; Bi, Z.; Que, M.; Sun, J.; Sun, Y. A Comparative Study on the Degradation Behaviors of Ferroelectric Gate GaN HEMT with PZT and PZT/Al2O3 Gate Stacks. Micromachines 2024, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, Z.; Zhao, H.; Gao, J. A Simulation Study of Carrier Capture Ability of the Last InGaN Quantum Well with Different Indium Content for Yellow-Light-Emitting InGaN/GaN Multiple Quantum Wells. Micromachines 2023, 14, 1669. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, K. Editorial for the Special Issue on GaN-Based Materials and Devices: Research and Applications. Micromachines 2025, 16, 652. https://doi.org/10.3390/mi16060652
Liu W, Wang K. Editorial for the Special Issue on GaN-Based Materials and Devices: Research and Applications. Micromachines. 2025; 16(6):652. https://doi.org/10.3390/mi16060652
Chicago/Turabian StyleLiu, Wei, and Kun Wang. 2025. "Editorial for the Special Issue on GaN-Based Materials and Devices: Research and Applications" Micromachines 16, no. 6: 652. https://doi.org/10.3390/mi16060652
APA StyleLiu, W., & Wang, K. (2025). Editorial for the Special Issue on GaN-Based Materials and Devices: Research and Applications. Micromachines, 16(6), 652. https://doi.org/10.3390/mi16060652