Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
Abstract
1. Introduction
- Cost inefficiency: Single-use substrates (e.g., lithium niobate) are prohibitively expensive, hindering applications in contamination-sensitive analyses [20];
- Design constraints: Direct bonding of microchannels to piezoelectric substrates risks cross-contamination, cell loss, and structural deformation [34].
2. Overview of Acoustic Coupling Agents
2.1. Physical Principles of Acoustic Coupling Agents
2.1.1. Acoustic Impedance Matching: Minimizing Interface Reflection
2.1.2. Attenuation Mitigation: Reducing Propagation Losses
2.1.3. Interfacial Contact Optimization
2.2. Physical Characteristics and Classification of Acoustic Coupling Agents
2.2.1. Liquid-Based Couplants (Aqueous/Oil)
- Physical Characteristics:
- Advantages and Disadvantages:
2.2.2. Gel-Based Coupling Agents
- Physical Characteristics:
- Advantages and Limitations:
2.2.3. Polymer-Based Coupling Agents
- Physical Characteristics:
- UV–Curable Epoxy Resin:
- Polydimethylsiloxane (PDMS):
- Advantages and Disadvantages:
3. Basic Applications of Acoustic Coupling Agents in Acoustic Microfluidics
3.1. Efficient Acoustic Signal Transmission and Mode Conversion
3.2. Stable Interfacial Connection and Device Reusability
3.3. Acoustic Field Modulation
4. Key Applications of Acoustic Coupling Agents in Acoustic Flow Control
4.1. High Biocompatibility and Biomedical Analysis
4.2. Biochemical Analysis and Detection
4.3. Cell/Particle Manipulation
4.4. Atomization
4.5. Droplet Manipulation
4.6. Fluid-Driven Micromotors
5. Technical Challenges and Optimization Strategies
5.1. Stability of the Coupling Agent
5.1.1. Evaporation and Degradation of the Liquid Coupling Agent
5.1.2. Thickness Control of Liquid Couplants
5.2. The Influence of Coupling Agents on Acoustic Energy Transmission
5.2.1. Thermal Management
5.2.2. Acoustic Coupling Multilayer Synthesis
5.3. Compatibility Between the Target Layer, SAW Devices, and Coupling Agents
5.4. Future Perspectives and Optimization Strategies
- Smart Responsive Couplers:
- Multilayer Coupling Architectures:
- Integration with Advanced Acoustofluidic Systems:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Neuzil, P.; Giselbrecht, S.; Länge, K.; Huang, T.J.; Manz, A. Revisiting Lab-on-a-Chip Technology for Drug Discovery. Nat. Rev. Drug Discov. 2012, 11, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Huang, T.J. Microfluidic Diagnostics for the Developing World. Lab Chip 2012, 12, 1412–1416. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, M.L.; Ornoff, D.M.; Melvin, A.T.; Dobes, N.C.; Wang, Y.; Dickinson, A.J.; Gach, P.C.; Shah, P.K.; Allbritton, N.L. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal. Chem. 2013, 85, 451–472. [Google Scholar] [CrossRef] [PubMed]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid Physics at the Nanoliter Scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef]
- Manz, A.; Graber, N.; Widmer, H.M. Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing. Sens. Actuators B 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Arora, A.; Simone, G.; Salieb-Beugelaar, G.; Kim, J.T.; Manz, A. Latest Developments in Micro Total Analysis Systems. Anal. Chem. 2010, 82, 4830–4847. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, P.S.; Manz, A. Lab-on-a-Chip: Microfluidics in Drug Discovery. Nat. Rev. Drug Discov. 2006, 5, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Begum, H.; Lee, J.E.-Y. Acoustofluidic Localization of Sparse Particles on a Piezoelectric Resonant Sensor for Nanogram-Scale Mass Measurements. Microsyst. Nanoeng. 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Stueber, D.D.; Villanova, J.; Aponte, I.; Xiao, Z.; Colvin, V.L. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 2021, 13, 943. [Google Scholar] [CrossRef] [PubMed]
- Zwi-Dantsis, L.; Wang, B.; Marijon, C.; Zonetti, S.; Ferrini, A.; Massi, L.; Stuckey, D.J.; Terracciano, C.M.; Stevens, M.M. Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues. Adv. Mater. 2020, 32, 1904598. [Google Scholar] [CrossRef] [PubMed]
- Lenton, I.C.D.; Armstrong, D.J.; Stilgoe, A.B.; Nieminen, T.A.; Rubinsztein-Dunlop, H. Orientation of Swimming Cells with Annular Beam Optical Tweezers. Opt. Commun. 2020, 459, 124864. [Google Scholar] [CrossRef]
- Huang, L.; Wang, G.; Zhan, G.; Pei, P. A Microfluidic Chip Integrated with 3D Sidewall Electrodes and Wavy Microchannel for Cell Focusing and Separation. J. Micromech. Microeng. 2021, 31, 125011. [Google Scholar] [CrossRef]
- Sui, M.; Dong, H.; Mu, G.; Xia, J.; Zhao, J.; Yang, Z.; Li, T.; Sun, T.; Grattan, K.T.V. Droplet Transportation by Adjusting the Temporal Phase Shift of Surface Acoustic Waves in the Exciter–Exciter Mode. Lab Chip 2022, 22, 3402–3411. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.Y.; Chen, C.Y.; Mao, Z.M.; Bachman, H.; Becker, R.; Rufo, J.; Wang, Z.; Zhang, P.; Mai, J.; Yang, S.; et al. Acoustofluidic Centrifuge for Nanoparticle Enrichment and Separation. Sci. Adv. 2021, 7, eabf0457. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Collins, D.J.; Ai, Y. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Anal. Chem. 2016, 88, 5316–5323. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Huang, W.; Yang, R.; Lam, R.H.W.; Lee, J.E. Low-Cost Laser-Cut Patterned Chips for Acoustic Concentration of Micro- to Nanoparticles and Cells by Operating over a Wide Frequency Range. Analyst 2021, 146, 3280–3288. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Yang, S.; Ugolini, G.S.; Naquin, T.; Zhang, J.; Yang, K.; Xia, J.; Konry, T.; Huang, T.J. Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. Small 2021, 17, 2103848. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ren, J.; Liu, Y.; Lam, R.H.W.; Lee, J.E.-Y. A Two-Chip Acoustofluidic Particle Manipulation Platform with a Detachable and Reusable Surface Acoustic Wave Device. Analyst 2020, 145, 7752–7758. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Tian, Z.; Hao, N.; Bachman, H.; Zhang, P.; Hu, J.; Huang, T.J. Acoustofluidic Multi-Well Plates for Enrichment of Micro/Nano Particles and Cells. Lab Chip 2020, 20, 3399–3409. [Google Scholar] [CrossRef] [PubMed]
- Yiannacou, K.; Sariola, V. Controlled Manipulation and Active Sorting of Particles Inside Microfluidic Chips Using Bulk Acoustic Waves and Machine Learning. Langmuir 2021, 37, 4192–4199. [Google Scholar] [CrossRef] [PubMed]
- Tung, K.W.; Chung, P.S.; Wu, C.; Man, T.; Tiwari, S.; Wu, B.; Chou, Y.-F.; Yang, F.-L.; Chiou, P.-Y. Deep, Sub-Wavelength Acoustic Patterning of Complex and Non-Periodic Shapes on Soft Membranes Supported by Air Cavities. Lab Chip 2019, 19, 3714–3725. [Google Scholar] [CrossRef] [PubMed]
- Samarasekera, C.; Sun, J.G.W.; Zheng, Z.; Yeow, J.T.W. Trapping, Separating, and Palpating Microbead Clusters in Droplets and Flows Using Capacitive Micromachined Ultrasonic Transducers (CMUTs). Sens. Actuators B 2018, 276, 481–488. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Dangi, A.; Ren, L.; Tiwari, S.; Benoit, R.R.; Qiu, Y.; Lay, H.S.; Agrawal, S.; Pratap, R.; Kothapalli, S.-R.; et al. Thin Film PZT Based PMUT Arrays for Deterministic Particle Manipulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Devendran, C.; Carthew, J.; Frith, J.E.; Neild, A. Cell Adhesion, Morphology, and Metabolism Variation via Acoustic Exposure within Microfluidic Cell Handling Systems. Adv. Sci. 2019, 6, 1902326. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, X.; Ren, J.; Lin, F.; Wu, J. Recent Advances in Acoustofluidic Separation Technology in Biology. Microsyst. Nanoeng. 2022, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Meng, H.; Tao, R.; Qian, J.; Fu, C.; Luo, J.; Xie, J.; Fu, Y. Acoustofluidic Diversity Achieved by Multiple Modes of Acoustic Waves Generated on Piezoelectric-Film-Coated Aluminum Sheets. ACS Appl. Mater. Interfaces 2024, 16, 45119–45130. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tang, D.; Qian, J.; Xia, H. An Octagonal Acoustofluidic Device for Multimode Cell and Particle Patterning and Dynamical Manipulation. IEEE Sens. J. 2023, 23, 6589–6595. [Google Scholar] [CrossRef]
- Collins, D.J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-Dimensional Single-Cell Patterning with One Cell per Well Driven by Surface Acoustic Waves. Nat. Commun. 2015, 6, 8686. [Google Scholar] [CrossRef] [PubMed]
- Reboud, J.; Wilson, R.; Zhang, Y.; Ismail, M.H.; Bourquin, Y.; Cooper, J.M. Nebulisation on a Disposable Array Structured with Phononic Lattices. Lab Chip 2012, 12, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Bourquin, Y.; Reboud, J.; Wilson, R.; Zhang, Y.; Cooper, J.M. Integrated Immunoassay Using Tuneable Surface Acoustic Waves and Lensfree Detection. Lab Chip 2011, 11, 2725. [Google Scholar] [CrossRef] [PubMed]
- Dombrovsky, L.A. Differential Models for Radiative Heat Transfer in Scattering Media: Applications in Aerospace Engineering. Acad. Eng. 2024, 1. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Tran, V.-T.; Pudasaini, S.; Gautam, A.; Lee, J.M.; Fu, Y.Q.; Du, H. Large-Scale Fabrication of 3D Scaffold-Based Patterns of Microparticles and Breast Cancer Cells Using Reusable Acoustofluidic Device. Adv. Eng. Mater. 2021, 23, 2001377. [Google Scholar] [CrossRef]
- Hodgson, R.P.; Tan, M.; Yeo, L.; Friend, J. Transmitting High Power RF Acoustic Radiation via Fluid Couplants into Superstrates for Microfluidics. Appl. Phys. Lett. 2009, 94, 024102. [Google Scholar] [CrossRef]
- Wong, K.S.; Lee, L.; Hung, Y.M.; Yeo, L.Y.; Tan, M.K. Lamb to Rayleigh Wave Conversion on Superstrates as a Means to Facilitate Disposable Acousto-microfluidic Applications. Anal. Chem. 2019, 91, 12358–12368. [Google Scholar] [CrossRef] [PubMed]
- O’Rorke, R.D.; Wood, C.D.; Wälti, C.; Evans, S.D.; Davies, A.G.; Cunningham, J.E. Acousto-microfluidics: Transporting Microbubble and Microparticle Arrays in Acoustic Traps Using Surface Acoustic Waves. J. Appl. Phys. 2012, 111, 094911. [Google Scholar] [CrossRef]
- Guo, F.; Xie, Y.; Li, S.; Lata, J.; Ren, L.; Mao, Z.; Ren, B.; Wu, M.; Ozcelik, A.; Huang, T.J. Reusable Acoustic Tweezers for Disposable Devices. Lab Chip 2015, 15, 4517–4523. [Google Scholar] [CrossRef] [PubMed]
- Manwar, R.; Saint-Martin, L.; Avanaki, K. Couplants in Acoustic Biosensing Systems. Chemosensors 2022, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, K.C.; Yeom, E. Microfluidic Method for Measuring Viscosity Using Images from Smartphone. Opt. Lasers Eng. 2018, 104, 237–243. [Google Scholar] [CrossRef]
- Haj-Kacem, R.B.; Ouerfelli, N.; Herráez, J.V.; Guettari, M.; Hamda, H.; Dallel, M. Contribution to Modeling the Viscosity Arrhenius-Type Equation for Some Solvents by Statistical Correlations Analysis. Fluid Phase Equilibria 2014, 383, 11–20. [Google Scholar] [CrossRef]
- Onda Corporation. *Acoustic Properties of Liquids* [Acoustic Tables]. Onda Corporation. 2003. Available online: https://www.ondacorp.com/wp-content/uploads/2020/09/Liquids.pdf (accessed on 16 June 2025).
- Genovés, V.; Maini, L.; Roman, C.; Hierold, C.; Cesarovic, N. Variation in the Viscoelastic Properties of Polydimethylsiloxane (PDMS) with the Temperature at Ultrasonic Frequencies. Polym. Test. 2023, 124, 108067. [Google Scholar] [CrossRef]
- Jo, M.C.; Guldiken, R. Effects of Polydimethylsiloxane (PDMS) Microchannels on Surface Acoustic Wave-Based Microfluidic Devices. Microelectron. Eng. 2014, 113, 98–104. [Google Scholar] [CrossRef]
- Zeng, Q.; Chan, H.W.L.; Zhao, X.Z.; Chen, Y. Enhanced Particle Focusing in Microfluidic Channels with Standing Surface Acoustic Waves. Microelectron. Eng. 2010, 87, 1204–1206. [Google Scholar] [CrossRef]
- Onda Corporation. *Acoustic Properties of Solids* [Acoustic Tables]. Onda Corporation. 2003. Available online: https://www.ondacorp.com/wp-content/uploads/2020/09/Solids.pdf (accessed on 16 June 2025).
- Kolesnik, K.; Rajagopal, V.; Collins, D.J. Optimizing Coupling Layer and Superstrate Thickness in Attachable Acoustofluidic Devices. Ultrasonics 2024, 137, 107202. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Begum, H.; Song, Y.; Lee, J.E.-Y. Plug-and-Play Acoustic Tweezer Enables Droplet Centrifugation on Silicon Superstrate with Surface Multi-Layered Microstructures. Sens. Actuators A Phys. 2021, 321, 112432. [Google Scholar] [CrossRef]
- Park, J.; Jung, J.H.; Destgeer, G.; Ahmed, H.; Park, K.; Sung, H.J. Acoustothermal Tweezer for Droplet Sorting in a Disposable Microfluidic Chip. Lab Chip 2017, 17, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zheng, T.; Liu, Y.; Wang, C. Acoustomicrofluidic Synthesis of Hierarchically Porous Metal-Organic Frameworks. Mater. Lett. 2021, 285, 129052. [Google Scholar] [CrossRef]
- Li, X.; Zhang, B.; Zhang, J.; Huang, L.; Hu, X.; Qian, J.; Zhang, W. Detachable Artificial Micro-Structured Silicon Chip for Reconfigurable Acoustofluidic Particle Manipulation. Sens. Actuators B Chem. 2024, 402, 135104. [Google Scholar] [CrossRef]
- Kolesnik, K.; Xu, M.; Lee, P.V.S.; Rajagopal, V.; Collins, D.J. Unconventional Acoustic Approaches for Localized and Designed Micromanipulation. Lab Chip 2021, 21, 2837–2856. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; Reboud, J.; Bourquin, Y.; Neale, S.L.; Zhang, Y.; Cooper, J.M. Phononic Crystal Structures for Acoustically Driven Microfluidic Manipulations. Lab Chip 2011, 11, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Rambach, R.W.; Skowronek, V.; Franke, T. Localization and Shaping of Surface Acoustic Waves Using PDMS Posts: Application for Particle Filtering and Washing. RSC Adv. 2014, 4, 60534–60542. [Google Scholar] [CrossRef]
- Destgeer, G.; Sung, H.J. Recent Advances in Microfluidic Actuation and Micro-Object Manipulation via Surface Acoustic Waves. Lab Chip 2015, 15, 2722–2738. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wu, M.; Yang, S.; Wu, Y.; Gu, Y.; Chen, C.; Ye, J.; Xie, Z.; Tian, Z.; Bachman, H.; et al. A Disposable Acoustofluidic Chip for Nano/Microparticle Separation Using Unidirectional Acoustic Transducers. Lab Chip 2020, 20, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.M.; Manbachi, A.; Samandari, M.; Walch, P.; Gao, Y.; Zhang, Y.S.; Davoudi, F.; Wang, W.; Abrinia, K.; Cooper, J.M.; et al. Surface Acoustic Waves Induced Micropatterning of Cells in Gelatin Methacryloyl (GelMA) Hydrogels. Biofabrication 2017, 9, 015020. [Google Scholar] [CrossRef] [PubMed]
- Bourquin, Y.; Syed, A.; Reboud, J.; Ranford-Cartwright, L.C.; Barrett, M.P.; Cooper, J.M. Rare-Cell Enrichment by a Rapid, Label-Free, Ultrasonic Isopycnic Technique for Medical Diagnostics. Angew. Chem. Int. Ed. 2014, 53, 5587–5590. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, M.; Watanabe, T.; Futami, A.; Higuchi, T. Surface Acoustic Wave Atomizer. Sens. Actuators A Phys. 1995, 50, 69–74. [Google Scholar] [CrossRef]
- Qi, A.; Yeo, L.; Friend, J.; Ho, J. The Extraction of Liquid, Protein Molecules and Yeast Cells from Paper through Surface Acoustic Wave Atomization. Lab Chip 2010, 10, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Qi, A.; Friend, J.R.; Yeo, L.Y.; Morton, D.A.V.; McIntosh, M.P.; Spiccia, L. Miniature Inhalation Therapy Platform Using Surface Acoustic Wave Microfluidic Atomization. Lab Chip 2009, 9, 2184. [Google Scholar] [CrossRef] [PubMed]
- Bourquin, Y.; Reboud, J.; Wilson, R.; Cooper, J.M. Tuneable Surface Acoustic Waves for Fluid and Particle Manipulations on Disposable Chips. Lab Chip 2010, 10, 1898. [Google Scholar] [CrossRef] [PubMed]
- Shilton, R.J.; Glass, N.R.; Chan, P.; Yeo, L.Y.; Friend, J.R. Rotational Microfluidic Motor for On-Chip Microcentrifugation. Appl. Phys. Lett. 2011, 98, 254103. [Google Scholar] [CrossRef]
- Takei, A.; Matsumoto, K.; Shomoyama, I. Capillary Motor Driven by Electrowetting. Lab Chip 2010, 10, 1781. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Destgeer, G.; Kim, H.; Cho, Y.; Sung, H.J. In-Droplet Microparticle Washing and Enrichment Using Surface Acoustic Wave-Driven Acoustic Radiation Force. Lab Chip 2018, 18, 2936–2945. [Google Scholar] [CrossRef] [PubMed]
- Guleria, S.; Chopra, L.; Manikanika. Temperature Responsive Hydrogels for Biomedical Applications. Mater. Today Proc. 2023, 92, 356–363. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Hou, Z.; Pei, Y. Magnetic-Control Multifunctional Acoustic Metasurface for Reflected Wave Manipulation at Deep Subwavelength Scale. Sci. Rep. 2017, 7, 9050. [Google Scholar] [CrossRef] [PubMed]
- Galan, E.A.; Zhao, H.; Wang, X.; Dai, Q.; Huck, W.T.S.; Ma, S. Intelligent Microfluidics: The Convergence of Machine Learning and Microfluidics in Materials Science and Biomedicine. Matter 2020, 3, 1893–1922. [Google Scholar] [CrossRef]
Parameter | Aqueous (Water) | Oil-Based (Silicone Oil 100 cSt) |
---|---|---|
Acoustic Impedance | 1.483 MRayl (20 °C) | 0.95 MRayl |
Sound Velocity | 1.48 mm/μs (20 °C) | 0.98 mm/μs |
Density | 1.00 g/m3 | 0.968 g/m3 |
Temp. Sensitivity | High (γ = +2.4) | Low |
Material | Type | VL (mm/μs) | VS (mm/μs) | Density (g/cm3) | ZL (MRayl) | F | Loss (dB/cm) |
---|---|---|---|---|---|---|---|
DER317 Epoxy (9phr DEH20, 110phr W) | Epoxy resin | 2.18 | 0.96 | 2.04 | 4.45 | – | 6.6 @ 2 MHz |
Stycast 1264 (45phr, 600phr W) | Epoxy resin | 1.65 | – | 4.71 | 7.77 | – | 29.7 @ 5 MHz |
Silver Epoxy (E-Solder 3022) | Conductive adhesive | 1.90 | 0.98 | 2.71 | 5.14 | – | 16 @ 2 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, S.; Yang, Y.; Huang, M.; Wang, C.; Guo, E.; Qian, J.; Lee, J.E.-Y. Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications. Micromachines 2025, 16, 823. https://doi.org/10.3390/mi16070823
Deng S, Yang Y, Huang M, Wang C, Guo E, Qian J, Lee JE-Y. Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications. Micromachines. 2025; 16(7):823. https://doi.org/10.3390/mi16070823
Chicago/Turabian StyleDeng, Shenhao, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian, and Joshua E.-Y. Lee. 2025. "Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications" Micromachines 16, no. 7: 823. https://doi.org/10.3390/mi16070823
APA StyleDeng, S., Yang, Y., Huang, M., Wang, C., Guo, E., Qian, J., & Lee, J. E.-Y. (2025). Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications. Micromachines, 16(7), 823. https://doi.org/10.3390/mi16070823