Memristor Emulator Circuits: Recent Advances in Design Methodologies, Healthcare Applications, and Future Prospects
Abstract
1. Introduction
2. Fundamentals of Memristor Emulation
2.1. Memristor Theory
2.2. Key Emulator Characteristics
2.2.1. Pinched Hysteresis Loop
2.2.2. Frequency Dependence
2.2.3. Nonvolatility Characteristics
3. Memristor Emulator Circuit Design Approaches
- CMOS-based emulators: These designs utilize standard CMOS technology to replicate memristive behavior through carefully configured transistor networks, offering the advantages of scalability and compatibility with existing integrated circuit processes.
- Analog active emulators: This class employs active circuit elements such as operational amplifiers, multipliers, and analog computational blocks to dynamically generate the characteristic pinched hysteresis loops of memristors.
- Nonlinear passive emulators: Implemented using only passive components with inherent nonlinear characteristics, these emulators achieve memristive-like responses through combinations of resistors, capacitors, and diodes.
- Digital emulators: Use microcontroller units or FPGAs to numerically model memristive dynamics
- Hybrid emulators: Combining digital signal processing with analog interfaces while maintaining electrical compatibility with analog systems.
Type | Subclass | Key Characteristics | References Example |
---|---|---|---|
CMOS-Based | CMOS–Transistor-Based | Uses MOSFETs to emulate memristance; compact, low-power, compatible with IC processes | [13,21,23,37,38,39,40,41,42,43,44,45,46,47,48] |
DTMOS-Based | Dynamic threshold MOSFETs for better nonlinearity, improved tunability, low-voltage operation | [11,12,20,22,24,25] | |
Active analog | OTA/Op-Amp-Based | Precise hysteresis control | [13,14,49,50,51,52,53,54] |
Current-Mode (CFOA/CCII) | High-frequency operation and reduced parasitics | [15,16,55,56,57,58,59,60,61] | |
Differential (DVCC/DXCCII) | Floating/grounded designs, symmetric hysteresis, and better noise immunity | [62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] | |
Mixed | Combines voltage/current-mode techniques for wider dynamic range | [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92] | |
Nonlinear/Passive | Passive Networks | Diode/RLC-based designs for no-power applications | [79,93,94,95,96,97,98,99,100,101,102,103,104] |
Digital | FPGA-Based | Programmable logic for real-time parameter adjustment and high flexibility | [18,19,105,106,107,108] |
Microcontroller-Based | Arduino/Raspberry Pi-driven emulators | [109,110,111,112,113,114] | |
Hybrid | Analog Core + Digital Tuning | Analog emulator with digital calibration for stability | [17,115,116] |
3.1. CMOS-Based Emulators
3.2. Active Analog Emulators
- Current-mode active block-based emulators: Utilizing components such as second-generation current conveyor (CCII), current conveying transconductance amplifier (CCTA), current backward transconductance amplifier (CBTA), current follower transconductance amplifier (CFTA), current controlled current differencing transconductance amplifier (CCCDTA), these circuits leverage current-mode signal processing for high-frequency operation and compact designs.
- OTA-based emulators: Employing operational transconductance amplifiers (OTAs), these designs offer tunable memristance but often face trade-offs between frequency response and power consumption.
- Voltage differencing-based emulators: Built around voltage differencing transconductance amplifiers (VDTAs), voltage differencing current conveyors (VDCCs), and transconductance amplifiers (DVCCTAs), these circuits provide enhanced flexibility and high-frequency performance, making them suitable for reconfigurable applications.
- Mixed active element-based emulators: Combining multiple building blocks (e.g., CCIIs, OTAs, multipliers), these topologies enable complex memristive behaviors but at the cost of increased circuit complexity.
3.2.1. Current-Mode Active Block-Based Emulators
3.2.2. OTA-Based Emulators
3.2.3. Voltage Differencing Based Emulators
3.2.4. Mixed Active Element-Based Emulators
3.2.5. Comparative Analysis of Analog Memristor Emulators: Performance Metrics and Design Trade-Offs
3.3. Nonlinear Passive Emulators
3.4. Digital Emulators
3.5. Hybrid Emulators
4. Applications of Memristor Emulators in Healthcare Systems
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chua, L.O. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Indiveri, G.; Liu, S.-C. Memory and information processing in neuromorphic systems. Proc. IEEE 2015, 103, 1379–1397. [Google Scholar] [CrossRef]
- Barraj, I.; Mestiri, H.; Masmoudi, M. Overview of Memristor-Based Design for Analog Applications. Micromachines 2024, 15, 505. [Google Scholar] [CrossRef] [PubMed]
- Niu, W.; Ding, G.; Jia, Z.; Ma, X.-Q.; Zhao, J.; Zhou, K.; Han, S.-T.; Kuo, C.-C.; Zhou, Y. Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys. 2024, 19, 13402. [Google Scholar] [CrossRef]
- Zhou, H.; Li, S.; Ang, K.-W.; Zhang, Y.-W. Recent Advances in In-Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials. Nano-Micro Lett. 2024, 16, 121. [Google Scholar] [CrossRef] [PubMed]
- Zidan, M.A.; Strachan, J.P.; Lu, W.D. Memristor for Computing: Myth or Reality? Front. Neurosci. 2017, 11, 663. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.; Song, W.; Midya, R.; Li, Y.; Rao, M.; Yan, P.; Jiang, H.; Lin, P.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 2018, 1, 137–145. [Google Scholar] [CrossRef]
- Ielmini, D.; Wong, H.S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, M.; Kumar, M.; Pandey, N. Two MOS Transistor-Based Floating Memristor Circuit and Its Application as Oscillator. AEU—Int. J. Electron. Commun. 2023, 171, 154916. [Google Scholar] [CrossRef]
- Srivastava, P.; Sharma, R.K.; Gupta, R.K.; Kacar, F.; Ranjan, R.K. New DTMOS-Based High-Frequency Memristor Emulator and Its Nonlinear Applications. IEEE Access 2024, 12, 9195–9205. [Google Scholar] [CrossRef]
- Barraj, I.; Neifar, A.; Mestiri, H.; Masmoudi, M. Zero-Power, High-Frequency Floating Memristor Emulator Circuit and Its Applications. Micromachines 2025, 16, 269. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, R.K.; Sharma, P.K.; Sagar, N.; Raj, B.K.; Khateb, F. Memristor Emulator Circuit Using Multiple-Output OTA and Its Experimental Results. J. Circuits Syst. Comput. 2018, 28, 1950166. [Google Scholar] [CrossRef]
- Duan, Z.; Chen, J.; He, S.; Yu, X.; Wang, Q.; Zhang, X.; Xiong, P. A Fully Integrated Memristive Chaotic Circuit Based on Memristor Emulator with Voltage-Controlled Oscillator. Micromachines 2025, 16, 246. [Google Scholar] [CrossRef] [PubMed]
- Yesil, A.; Babacan, Y. Design of Memristor with Hard-Switching Behavior Employing Only One CCCII and One Capacitor. J. Circuits Syst. Comput. 2021, 30, 2150151. [Google Scholar] [CrossRef]
- Kumar, P.; Kaushik, B.K.; Ranjan, R.K. A Novel Second Generation Current Conveyor (CCII)-Based High-Frequency Memristor Model. Microelectron. Eng. 2023, 271, 111938. [Google Scholar] [CrossRef]
- Svetoslavov, G.; Camps, O.; Stavrinides, S.G.; Picos, R. A Switched Capacitor Memristive Emulator. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1463–1466. [Google Scholar] [CrossRef]
- Xu, B.; Geng, H.; Jiang, L.; Zou, S.; Chen, K.; Liu, Z. FPGA Implementation of Memristor Emulators Using Fractional Order Calculus: A High-Precision Reconfigurable Approach. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 1615–1627. [Google Scholar] [CrossRef]
- Tolba, M.F.; Halawani, Y.; Saleh, H.; Mohammad, B.; Al-Qutayri, M. FPGA-Based Memristor Emulator Circuit for Binary Convolutional Neural Networks. IEEE Access 2020, 8, 117736–117745. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Chen, X. A GHz-Level Memristor Emulator with Only MOSFET. Int. J. Circuit Theory Appl. 2024, 52, 1450–1464. [Google Scholar] [CrossRef]
- Gul, F. Circuit Implementation of Nano-Scale TiO2 Memristor Using Only Metal-Oxide-Semiconductor Transistors. IEEE Electron Device Lett. 2019, 40, 643–646. [Google Scholar] [CrossRef]
- Srivastava, P.; Gupta, R.K.; Sharma, R.K.; Ranjan, R.K. MOS-Only Memristor Emulator. Circuits Syst. Signal Process. 2020, 39, 5848–5861. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Qin, H.; Wang, Q. A 300 MHz MOS-Only Memristor Emulator. AEU-Int. J. Electron. Commun. 2023, 162, 154593. [Google Scholar] [CrossRef]
- Ananda, Y.R.; Raj, N.; Trivedi, G. A MOS-DTMOS Implementation of Floating Memristor Emulator for High-Frequency Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 355–368. [Google Scholar] [CrossRef]
- Gupta, R.K.; Choudhry, M.S.; Saxena, V.; Taran, S. A Single MOS-Memristor Emulator Circuit. Circuits Syst. Signal Process. 2024, 43, 54–73. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X.; Ye, C. A Review of Memristor: Material and Structure Design, Device Performance, Applications and Prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Naqi, M.; Lee, N.; Park, S.; Hong, S.; Lee, B.H. Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing. Micromachines 2024, 15, 1451. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, K.A.; Kumbhar, D.D.; Kesavan, A.V.; Dongale, T.D.; Kim, T.G. Advancements in 2D Layered Material Memristors: Unleashing Their Potential Beyond Memory. npj 2D Mater. Appl. 2024, 8, 83. [Google Scholar] [CrossRef]
- Lin, R.; Shi, G.; Qiao, F.; Wang, C.; Wu, S. Research Progress and Applications of Memristor Emulator Circuits. Microelectron. J. 2023, 133, 105702. [Google Scholar] [CrossRef]
- Mayacela, M.; Rentería, L.; Contreras, L.; Medina, S. Comparative Analysis of Reconfigurable Platforms for Memristor Emulation. Materials 2022, 15, 4487. [Google Scholar] [CrossRef] [PubMed]
- Biolek, D.; Biolek, Z.; Biolková, V. SPICE Modeling of Memristive, Memcapacitative and Meminductive Systems. In Proceedings of the 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 249–252. [Google Scholar] [CrossRef]
- Chua, L.O.; Kang, S.M. Memristive Devices and Systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Simmons, J.G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793–1803. [Google Scholar] [CrossRef]
- Biolek, Z.; Biolek, D.; Biolkova, V. SPICE Model of Memristor with Nonlinear Dopant Drift. Radioengineering 2009, 18, 210–214. [Google Scholar]
- Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 211–221. [Google Scholar] [CrossRef]
- Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 786–790. [Google Scholar] [CrossRef]
- Kumar, P.; Srivastava, P.; Ranjan, R.K.; Kumngern, M. New Zero Power Memristor Emulator Model and Its Application in Memristive Neural Computation. IEEE Access 2023, 11, 5609–5616. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, A.; Borah, S.S.; Vista, J.; Ranjan, A.; Kumar, S. MOSFET-Based Memristor for High-Frequency Signal Processing. IEEE Trans. Electron Devices 2022, 69, 2248–2255. [Google Scholar] [CrossRef]
- Babacan, Y.; Yesil, A.; Gul, F. The Fabrication and MOSFET-Only Circuit Implementation of Semiconductor Memristor. IEEE Trans. Electron Devices 2018, 65, 1625–1632. [Google Scholar] [CrossRef]
- Paul, S.; Bhole, D.L.; Kavitha, R.K. A Compact 2T1C and Cryo-2T1C CMOS Memristor Emulator for Neuromorphic and Quantum Computing. AEU-Int. J. Electron. Commun. 2025, 191, 155683. [Google Scholar] [CrossRef]
- Makkar, L.; Khushdil. A Simple Memristor Emulator Using Only MOSFETs and a Grounded Capacitor. In Proceedings of the 2025 3rd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India; 2025; pp. 310–315. [Google Scholar] [CrossRef]
- Vista, J.; Ranjan, A. A Simple Floating MOS-Memristor for High-Frequency Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1186–1195. [Google Scholar] [CrossRef]
- Babacan, Y. Memristor: Three MOS Transistors and One Capacitor. In Proceedings of the 2017 International Conference on Intelligent Engineering Systems (INES), Antalya, Turkey, 20–23 June 2017; p. 1. [Google Scholar]
- Yesil, A. A New Grounded Memristor Emulator Based on MOSFET-C. AEU-Int. J. Electron. Commun. 2018, 91, 143–149. [Google Scholar] [CrossRef]
- Babacan, Y.; Kacar, F. FCS Based Memristor Emulator with Associative Learning Circuit Application. Istanb. Univ.-J. Electr. Electron. Eng. 2017, 17, 3433–3437. [Google Scholar]
- Saxena, V. A Compact CMOS Memristor Emulator Circuit and Its Applications. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 190–193. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Riam, S.Z.; Ahmed, M.S.; Sundaravadivel, P. CMOS-Based Memristor Emulator Circuits for Low-Power Edge-Computing Applications. Electronics 2023, 12, 1654. [Google Scholar] [CrossRef]
- Petrović, P.B. Charge-Controlled Grounded Memristor Emulator Circuits Based on Arbel-Goldminz Cell with Variable Switching Behavior. Analog Integr. Circuits Signal Process. 2022, 113, 373–381. [Google Scholar] [CrossRef]
- Kumngern, M.; Moungnoul, P. A memristor emulator circuit based on operational transconductance amplifiers. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Hua Hin, Thailand, 24–27 June 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Kumngern, M. A floating memristor emulator circuit using operational transconductance amplifiers. In Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 1–4 June 2015; pp. 679–682. [Google Scholar] [CrossRef]
- Kanyal, G.; Kumar, P.; Paul, S.K.; Kumar, A. OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. Commun. 2018, 92, 124–145. [Google Scholar] [CrossRef]
- Yesil, A. Floating memristor employing single MO-OTA with hard-switching behavior. J. Circuits Syst. Comput. 2018, 28, 1950026. [Google Scholar] [CrossRef]
- Gozukucuk, M.; Menekay, S.; Ozenli, D. A flux-controlled electronically tunable fully floating OTA-based memristor emulator. Analog Integr. Circuits Signal Process. 2022, 113, 171–184. [Google Scholar] [CrossRef]
- Babacan, Y.; Kaçar, F. Floating Memristor Emulator with Subthreshold Region. Analog Integr. Circuits Signal Process. 2017, 90, 471–475. [Google Scholar] [CrossRef]
- Ranjan, R.K.; Rani, N.; Pal, R.; Paul, S.K.; Kanyal, G. Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 2017, 60, 119–128. [Google Scholar] [CrossRef]
- Ranjan, R.K.; Sagar, S.; Roushan, S.; Kumari, B.; Rani, N.; Khateb, F. High-frequency floating memristor emulator and its experimental results. IET Circuits Devices Syst. 2019, 13, 292–302. [Google Scholar] [CrossRef]
- Sagar; Verma, J.S.; Joshi, M.; Ranjan, R.K.; Kang, S.-M. A compact memristor emulator for novel IC applications: Its design and experimental validation. Chaos Solitons Fractals 2024, 183, 114824. [Google Scholar] [CrossRef]
- Kumar, P.; Makhdoomi, B.S.; Verma, J.S.; Sonwania, S.; Ranjan, R.; Ranjan, R.K. Experimental validation of a high-frequency memristor emulator based on CCCCTA framework and its application in chaos circuit. Int. J. Electron. Commun. (AEU) 2025, 190, 155624. [Google Scholar] [CrossRef]
- Ozenli, D. A Compact Fully Electronically Tunable Memristive Circuit Based on CCCDTA with Experimental Results. Micromachines 2023, 14, 1484. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Pandey, N. Realization of Single CCCDTA Based Incremental/Decremental Type Memconductance Emulator. In Proceedings of the 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rome, Italy, 27–29 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Sharma, V.K.; Parveen, T.; Ansari, M.S. Four Quadrant Analog Multiplier Based Memristor Emulator Using Single Active Element. AEU-Int. J. Electron. Commun. 2021, 130, 153575. [Google Scholar] [CrossRef]
- Prasad, S.S.; Kumar, P.; Ranjan, R.K. Resistorless Memristor Emulator Using CFTA and Its Experimental Verification. IEEE Access 2021, 9, 64065–64075. [Google Scholar] [CrossRef]
- Prasad, S.S.; Kumar, P.; Raj, N.; Sharma, P.K.; Priyadarshini, B.; Ranjan, R.K.; Prommee, P. A compact floating and grounded memristor model using single active element. AEU-Int. J. Electron. Commun. 2022, 157, 154426. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Srivastava, M. New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectron. J. 2021, 114, 105126. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Srivastava, M. New electronically/resistively tunable floating emulators to realize memristor and inverse memristor. Preprints 2021. [Google Scholar] [CrossRef]
- Yadav, N.; Rai, S.K.; Pandey, R. Novel Memristor Emulators Using Fully Balanced VDBA and Grounded Capacitor. Iran. J. Sci. Technol. Trans. Electr. Eng. 2021, 45, 229–245. [Google Scholar] [CrossRef]
- Yadav, N.; Rai, S.K.; Pandey, R. High Frequency Electronically Tunable Floating Memristor Emulators Employing VDGA and Grounded Capacitor. Wirel. Pers. Commun. 2021, 121, 3185–3211. [Google Scholar] [CrossRef]
- Yesil, A.; Babacan, Y.; Kacar, F. Electronically tunable memristor based on VDCC. AEU-Int. J. Electron. Commun. 2019, 107, 282–290. [Google Scholar] [CrossRef]
- Tasneem, S.; Sharma, P.K.; Ranjan, R.K.; Khateb, F. Electronically Tunable Memristor Emulator Implemented Using a Single Active Element and Its Application in Adaptive Learning. Sensors 2023, 23, 1620. [Google Scholar] [CrossRef] [PubMed]
- Sagar; Raj, N.; Verma, V.K.; Ranjan, R.K. Electronically Tunable Flux-Controlled Resistorless Memristor Emulator. IEEE Can. J. Electr. Comput. Eng. 2022, 45, 311–317. [Google Scholar] [CrossRef]
- Yeşil, A.; Babacan, Y.; Kaçar, F. Design and Experimental Evolution of Memristor With Only One VDTA and One Capacitor. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 1123–1132. [Google Scholar] [CrossRef]
- Vista, J.; Ranjan, A. Flux Controlled Floating Memristor Employing VDTA: Incremental or Decremental Operation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 364–372. [Google Scholar] [CrossRef]
- Sharma, P.K.; Prasad, S.S.; Tasneem, S.; Priyadarshini, B.; Ranjan, R.K. Resistive Tunable Memristor Emulator Model and Its Application. Int. J. Electron. Commun. (AEU) 2023, 160, 154500. [Google Scholar] [CrossRef]
- Bhuwal, N.; Majumder, M.K.; Gupta, D. Floating/Grounded Charged Controlled Memristor Emulator Using DVCCTA. J. Comput. Electron. 2024, 23, 899–909. [Google Scholar] [CrossRef]
- Jain, H.; Aggarwal, B.; Rai, S.K. New Modified Voltage Differencing Voltage Transconductance Amplifier (MVDVTA) Based Meminductor Emulator and Its Applications. Indian J. Pure Appl. Phys. (IJPAP) 2023, 61, 239–246. [Google Scholar] [CrossRef]
- Petrović, P.B. A Universal Electronically Controllable Memelement Emulator Based on VDCC with Variable Configuration. Electronics 2022, 11, 3957. [Google Scholar] [CrossRef]
- Ayten, U.E.; Minaei, S.; Sağbaş, M. Memristor emulator circuits using single CBTA. AEU-Int. J. Electron. Commun. 2017, 82, 109–118. [Google Scholar] [CrossRef]
- Petrović, P.B. Floating Incremental/Decremental Flux-Controlled Memristor Emulator Circuit Based on Single VDTA. Analog Integr. Circuits Signal Process. 2018, 96, 417–433. [Google Scholar] [CrossRef]
- Abuelma’atti, M.T.; Khalifa, Z.J. A New Memristor Emulator and Its Application in Digital Modulation. Analog Integr. Circuits Signal Process. 2014, 80, 577–584. [Google Scholar] [CrossRef]
- Raj, N.; Ranjan, R.K.; Khateb, F. Flux-Controlled Memristor Emulator and Its Experimental Results. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1050–1061. [Google Scholar] [CrossRef]
- Saydam, F.; Ersoy, D.; Kaçar, F. A Novel Resistorless Memristor Emulator Circuit and Its Implementation of Chaotic Jerk System. AEU-Int. J. Electron. Commun. 2024, 184, 155424. [Google Scholar] [CrossRef]
- Yadav, N.; Rai, S.K.; Pandey, R. New Grounded and Floating Memristor Emulators Using OTA and CDBA. Int. J. Circuit Theor. Appl. 2020, 48, 1154–1179. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Semenov, D.; Sotner, R.; Chen, J.; Carrara, S.; Srivastava, M. Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations. IEEE Sens. J. 2024, 24, 8036–8044. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Srivastava, M. New Multiplier-Less Compact Tunable Charge-Controlled Memelement Emulator Using Grounded Passive Elements. Circuits Syst. Signal Process. 2022, 41, 2429–2465. [Google Scholar] [CrossRef]
- Pan, J.; Pan, C.; Sun, Y.; Shi, M.; Jia, S.; Shi, G. A New Tunable Floating Memristor Emulator Circuit with Long-Term Memory. Microelectron. Eng. 2025, 299, 112355. [Google Scholar] [CrossRef]
- Yesil, A.; Babacan, Y.; Kacar, F. An Electronically Controllable, Fully Floating Memristor Based on Active Elements: DO-OTA and DVCC. AEU-Int. J. Electron. Commun. 2020, 123, 153315. [Google Scholar] [CrossRef]
- Ghosh, M.; Mondal, P.; Borah, S.S.; Kumar, S. Resistorless Memristor Emulators: Floating and Grounded Using OTA and VDBA for High-Frequency Applications. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 978–986. [Google Scholar] [CrossRef]
- Gupta, S.; Rai, S.K. New Grounded and Floating Decremental/Incremental Memristor Emulators Based on CDTA and Its Application. Wirel. Pers. Commun. 2020, 113, 773–798. [Google Scholar] [CrossRef]
- Yu, D.; Iu, H.H.-C.; Fitch, A.L.; Liang, Y. A Floating Memristor Emulator Based Relaxation Oscillator. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2888–2896. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Fouda, M.E.; Radwan, A.G. A Simple Model of Double-Loop Hysteresis Behavior in Memristive Elements. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 487–491. [Google Scholar] [CrossRef]
- Sánchez-López, C.; Aguila-Cuapio, L.E. A 860 KHz Grounded Memristor Emulator Circuit. AEU-Int. J. Electron. Commun. 2017, 73, 23–33. [Google Scholar] [CrossRef]
- Babacan, Y.; Yesil, A.; Kaçar, F. Memristor Emulator with Tunable Characteristic and Its Experimental Results. AEU-Int. J. Electron. Commun. 2017, 81, 99–104. [Google Scholar] [CrossRef]
- Biolek, D.; Bajer, J.; Biolková, V.; Kolka, Z. Mutators for Transforming Nonlinear Resistor into Memristor. In Proceedings of the 2011 20th European Conference on Circuit Theory and Design (ECCTD), Linköping, Sweden, 29–31 August 2011; pp. 488–491. [Google Scholar] [CrossRef]
- Biolková, V.; Biolek, D.; Kolka, Z. Unified approach to synthesis of mutators employing operational transimpedance amplifiers for memristor emulation. In Proceedings of the 11th WSEAS International Conference on Instrumentation, Measurement, Circuits And Systems, Rovaniemi, Finland, 18–22 April 2012. [Google Scholar]
- Abuelma’atti, M.T.; Khalifa, Z.J. A New Floating Memristor Emulator and Its Application in Frequency-to-Voltage Conversion. Analog Integr. Circuits Signal Process. 2016, 86, 141–147. [Google Scholar] [CrossRef]
- Kalomiros, J.; Stavrinides, S.G.; Corinto, F. A Two-Transistor Non-Ideal Memristor Emulator. In Proceedings of the 2016 5th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Bao, B.-C.; Wu, P.; Bao, H.; Chen, M.; Xu, Q. Chaotic Bursting in Memristive Diode Bridge-Coupled Sallen-Key Lowpass Filter. Electron. Lett. 2017, 53, 1104–1105. [Google Scholar] [CrossRef]
- Corinto, F.; Ascoli, A. Memristive Diode Bridge with LCR Filter. Electron. Lett. 2012, 48, 824–825. [Google Scholar] [CrossRef]
- Bao, B.; Yu, J.; Hu, F.; Liu, Z. Generalized Memristor Consisting of Diode Bridge with First Order Parallel RC Filter. Int. J. Bifurcat. Chaos 2014, 24, 1450143. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, G.; Bao, H. Bursting Oscillations and Coexisting Attractors in a Simple Memristor-Capacitor-Based Chaotic Circuit. Nonlinear Dyn. 2019, 97, 1477–1494. [Google Scholar] [CrossRef]
- Wu, C.; Yang, N.; Xu, C.; Jia, R.; Liu, C. A Novel Generalized Memristor Based on Three-Phase Diode Bridge Rectifier. Complexity 2019, 2019, 1084312. [Google Scholar] [CrossRef]
- Barboni, L. A Novel Passive Circuit Emulator for a Current-Controlled Memristor. Act. Passiv. Electron. Compon. 2021, 2021, 5582774. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, N.; Zhang, G. A Novel Current-Controlled Memristor-Based Chaotic Circuit. Integration 2021, 80, 101–110. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, N.; Zhang, G. A Novel Four-Element RCLM Hyperchaotic Circuit Based on Current-Controlled Extended Memristor. AEU-Int. J. Electron. Commun. 2022, 156, 154391. [Google Scholar] [CrossRef]
- Tolba, M.F.; Sayed, W.S.; Fouda, M.E.; Saleh, H.; Al-Qutayri, M.; Mohammad, B.; Radwan, A.G. Digital Emulation of a Versatile Memristor With Speech Encryption Application. IEEE Access 2019, 7, 174280–174297. [Google Scholar] [CrossRef]
- Vourkas, I.; Abusleme, A.; Ntinas, V.; Sirakoulis, G.C.; Rubio, A. A Digital Memristor Emulator for FPGA-Based Artificial Neural Networks. In Proceedings of the 2016 1st IEEE International Verification and Security Workshop (IVSW), Sant Feliu de Guixols, Spain, 4–6 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Xu, B.; Zou, S.; Bai, L.; Chen, K.; Zhao, J. A General Discrete Memristor Emulator Based on Taylor Expansion for the Reconfigurable FPGA Implementation and Its Application. Nonlinear Dyn. 2024, 112, 1395–1414. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, A.; Ren, H.T.; Liu, G.; Cheng, X. Reconfigurable Multivalued Memristor FPGA Model for Digital Recognition. Int. J. Circuit Theor. Appl. 2022, 50, 3846–3860. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Di Ventra, M. Practical Approach to Programmable Analog Circuits with Memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 1857–1864. [Google Scholar] [CrossRef]
- Olumodeji, O.A.; Gottardi, M. Arduino-Controlled HP Memristor Emulator for Memristor Circuit Applications. Integration 2017, 58, 438–445. [Google Scholar] [CrossRef]
- Arapi, M.; Karakulak, E.; Mutlu, R. A Microcontroller-Controlled Optocoupler-Based Memristor Emulator and Its Usage in a Low-Pass Filter. Iran. J. Sci. Technol. Trans. Electr. Eng. 2024, 48, 509–521. [Google Scholar] [CrossRef]
- Olumodeji, O.A.; Gottardi, M. Emulating the Physical Properties of HP Memristor Using an Arduino and a Digital Potentiometer. In Proceedings of the 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, 27–30 June 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Bouraoui, M.; Barraj, I.; Abbes, K.; Masmoudi, M. Digital Memristor Emulator Based on Threshold Adaptive Model. In Proceedings of the 2020 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Hammamet, Tunisia, 7–10 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Abarna Ermini, M. Memristor Emulator Using MCP3208 and Digital Potentiometer. ICTACT J. Microelectron. 2018, 3, 473–476. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, A.; Li, C.; Wei, Y.; Ge, Z.; Cheng, X.; Liu, G. Gate-Controlled Memristor FPGA Model for Quantified Neural Network. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4583–4587. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Shi, G.; Li, C.; Liu, G. A Gate-Tunable Memristor Emulator for Motion Detection. Int. J. Circuit Theor. Appl. 2024, 52, 2205–2217. [Google Scholar] [CrossRef]
- Ranjan, R.K.; Raj, N.; Bhuwal, N.; Khateb, F. Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU-Int. J. Electron. Commun. 2017, 82, 177–190. [Google Scholar] [CrossRef]
- Kumar, D.; Li, H.; Kumbhar, D.D.; Rajbhar, M.K.; Das, U.K.; Syed, A.M.; Melinte, G.; El-Atab, N. Highly Efficient Back-End-of-Line Compatible Flexible Si-Based Optical Memristive Crossbar Array for Edge Neuromorphic Physiological Signal Processing and Bionic Machine Vision. Nano-Micro Lett. 2024, 16, 238. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Banerjee, S.; Ghosh, M.; Singh, A.; Kumar, S. Design of a VDBA-Based Memristor Emulator and Its Application for Bio-Sensing Through Instrument Amplifier. IEEE Open J. Nanotechnol. 2025, 6, 35–43. [Google Scholar] [CrossRef]
- Preethi, E.; Abbas, A.M.; Kumar, S.P.; Kuppusamy, P.G. Biomedical Signal Processing Using Memristor Emulator CT FIR Filter. Int. J. Control Theory Appl. 2016, 9, 3589–3597. [Google Scholar]
- Jurj, S.L. PySpice-Simulated In Situ Learning with Memristor Emulation for Single-Layer Spiking Neural Networks. Electronics 2024, 13, 4665. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, S.; Jin, Q.; Xia, J.; Liu, Y.; Yu, K.; Zheng, J.; Xu, X.; Fan, X.; Li, K.; et al. A Fully Digital SRAM-Based Four-Layer In-Memory Computing Unit Achieving Multiplication Operations and Results Store. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 776–788. [Google Scholar] [CrossRef]
- Antolini, A.; Lico, A.; Scarselli, E.F.; Carissimi, M.; Pasotti, M. Phase-Change Memory Cells Characterization in an Analog In-Memory Computing Perspective. In Proceedings of the 2022 17th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Villasimius, Italy, 12–15 June 2022; pp. 233–236. [Google Scholar] [CrossRef]
- Bankman, D.; Messner, J.; Gural, A.; Murmann, B. RRAM-Based In-Memory Computing for Embedded Deep Neural Networks. In Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 1511–1515. [Google Scholar] [CrossRef]
- Vohra, S.K.; Thomas, S.A.; Sakare, M.; Das, D.M. Circuit Implementation of On-Chip Trainable Spiking Neural Network Using CMOS Based Memristive STDP Synapses and LIF Neurons. Integration 2024, 95, 102122. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, L.; Duan, S. Memristive Pulse Coupled Neural Network with Applications in Medical Image Processing. Neurocomputing 2017, 227, 149–157. [Google Scholar] [CrossRef]
- Roy, S. Memristor Based Crossbar Array Using CNN for Image Processing Applications. In Proceedings of the 2025 5th International Conference on Trends in Material Science and Inventive Materials (ICTMIM), Kanyakumari, India, 7–9 April 2025; pp. 1697–1701. [Google Scholar] [CrossRef]
- Cai, L.; Yu, L.; Yue, W.; Zhu, Y.; Yang, Z.; Li, Y.; Tao, Y.; Yang, Y. Integrated Memristor Network for Physiological Signal Processing. Adv. Electron. Mater. 2023, 9, 2300021. [Google Scholar] [CrossRef]
- Wang, S.; Song, L.; Chen, W.; Wang, G.; Hao, E.; Li, C.; Hu, Y.; Pan, Y.; Nathan, A.; Hu, G.; et al. Memristor-Based Intelligent Human-Like Neural Computing. Adv. Electron. Mater. 2023, 9, 2200877. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Q.; Wang, H.; Jiang, J.; Wan, X.; Liu, X.; Lian, X.; Cai, Z. Digital Image Processing Realized by Memristor-Based Technologies. Discov. Nano 2023, 18, 120. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, W.; Zhang, B.; Yang, R.; Miao, X. Emerging Memristive Neurons for Neuromorphic Computing and Sensing. Sci. Technol. Adv. Mater. 2023, 24, 2188878. [Google Scholar] [CrossRef] [PubMed]
Model | Device Type | State Variable | Control Variable | Captures Threshold | Frequency Range | Main Advantage | Limitation |
---|---|---|---|---|---|---|---|
Chua Model | Generic | Charge/Flux linkage | Current | No | <10 KHz | Fundamental, general theory | Abstract, not device-specific |
HP Model (linear Drift) | Bipolar | 0 ≤ w ≤ D (Doped region Width) | Current | No | 10 KHz | Simple, physically intuitive | Ignores nonlinearities, boundary effects |
Nonlinear Drift | Bipolar | 0 ≤ w ≤ 1 (Normalized width) | voltage | No | 100 KHz | More accurate than linear drift | Empirical window function, not universal |
Simmons tunneling barrier | Bipolar | aoff ≤ w ≤ aon (Barrier width) | Current | No | 1 MHz | Quantum-mechanically rigorous for tunneling | Computationally intensive, less general |
Yakopcic | Bipolar | 0 ≤ w ≤ 1 (Empirical) | Voltage | Yes | 10 MHz | Highly accurate, fits many devices | Requires extensive parameter extraction |
TEAM | Bipolar | xon ≤ x ≤ xoff (Threshold-based) | Current | Yes | 50 MHz | Flexible, efficient for digital circuits | Needs tuning for different devices |
VTEAM | Bipolar | xon ≤ x ≤ xoff (Threshold-based) | Voltage | Yes | 100 MHz | Voltage-controlled, better for analog/ReRAM | Complex parameter calibration |
Ref | Year | Type | MOSFET Count | Passive Component Count | Grounded/Floating | Technology Used | Power Consumption | Frequency | Experiment Completed |
---|---|---|---|---|---|---|---|---|---|
[11] | 2024 | DTMOS | 5 | 0 | Both | 0.18 µm | 0 | 500 MHz | Yes |
[12] | 2025 | DTMOS | 4 | 0 | Floating | 0.18 µm | 0 | 250 MHz | No |
[13] | 2023 | CMOS-based | 2, 1 CS | 0 | Floating | 180 µm | 4 μW | 1 GHz | No |
[20] | 2023 | DTMOS | 4 | 0 | Both | 65 nm | 0 | 5 GHz | Yes |
[21] | 2019 | CMOS-based | 4 | 0 | Grounded | 0.18 µm | 40 µW | 100 KHz | Yes |
[22] | 2020 | DTMOS | 3 | 0 | Both | 0.18 µm | 0 | 20/30 MHz | Yes |
[23] | 2023 | CMOS-based | 2 | 0 | Grounded | 65 nm | 963 µW | 300 MHz | Yes |
[24] | 2023 | DTMOS | 4 | 1 | Floating | 180 µm | 8.24 µW | 3 MHz | Yes |
[25] | 2024 | DTMOS | 1 | R-1, C-1 | Both | 45 nm | 7.75 pW | 80 MHz | Yes |
[37] | 2023 | CMOS-based | 3 | 1 | Grounded | 90 nm | 175 nW (dynamic) | 24 MHz | Yes |
[38] | 2022 | CMOS-based | 4 | 0 | Floating | 90 nm | 2.6 µW | 50 MHz | Yes |
[39] | 2018 | CMOS-based | 4 | 0 | Grounded | 0.18 µm | 128.7 µW | 100 MHz | Yes |
[40] | 2025 | CMOS-based | 2 | C-1 | Both | 65 nm | 47 µW | 150 MHz | No |
[41] | 2025 | CMOS-based | 6 | C-1 | Grounded | 0.18 µm | NA | NA | No |
[42] | 2019 | CMOS-based | 3, 1 CS | C-1 | Floating | 0.18 µm | 6.725 nW | 13 MHz | Yes |
[43] | 2017 | CMOS-based | 3 | C-1 | Grounded | 0.18 µm | 0 | 100 KHz | No |
[44] | 2018 | CMOS-based | 7 | C-1 | Grounded | 0.18 µm | NA | 50 MHz | Yes |
[45] | 2017 | CMOS-based | 6 | C-1 | Floating | 0.18 µm | NA | 10 Hz | No |
[46] | 2018 | CMOS-based | 7 | 0 | Floating | 0.13 µm | NA | 1 MHz | No |
[47] | 2023 | CMOS-based | 9 | C-1 | Grounded | 45 nm | NA | 2 KHz | No |
[48] | 2022 | CMOS-based | 8 | C-1 | Grounded | 180 µm | 46 mW | 100 MHz | Yes |
Ref | Year | No. of Active Components | No. of Passive Components | Inc/Dec | G/F | No. of MOS | Power Supply | Power Consumption | Max Operating Frequency | Tunability | Experiment Complete |
---|---|---|---|---|---|---|---|---|---|---|---|
[90] | 2013 | 2 CCII, 1 multiplier | 4 R, 3 C | Both | G | - | - | - | 270 KHz | No | Yes |
[79] | 2014 | 2 CFOA, 1 OTA | 3 R, 2 C | Both | G | 42 | - | - | Few KHz | No | Yes |
[89] | 2014 | 4 CCII, 1 multiplier 1 Op-Amp | 10 R, 1 C | F | - | - | Few Hz | No | Yes | ||
[49] | 2015 | 6 OTA | 2 R, 1 C | Inc. | G | - | ±10 V | - | 1 KHz | Yes | Yes |
[50] | 2015 | 4 OTA | 4 R, 1 C | - | F | - | ±10 V | - | 5 KHz | - | Yes |
[55] | 2017 | 1 CCTA | 3 R, 1 C | Both | Both | 30 | ±1.5 V | 7.5 mW | 10 MHz | Yes | Yes |
[117] | 2017 | 1 DVCCTA | 3 R, 1 C | Both | G | 29 | ±1.25 V | - | 1 MHz | No | Yes |
[77] | 2017 | 1 CBTA, 1 multiplier | 2 R, 1 C | Both | G | 23 | ±0.9 V | - | 460 KHz | Yes | No |
[91] | 2017 | 1 CCII, 1 multiplier | 1 C, 1R | Both | G | - | ±10 V | - | 860 KHz | No | Yes |
[54] | 2017 | 2 transistors 1 OTA | 1C, 0R | Both | Both | 16 | ±1 V | - | 30 Hz | No | No |
[92] | 2017 | 1 MO-OTA, 1 multiplier | 1C, 1R | Both | G | >38 | ±1.25 V | - | 1 KHz | Yes | Yes |
[13] | 2018 | 4 MO-OTA | 1 C, 3 R | Both | G | 92 | ±2.5 V | - | 150 KHz | No | Yes |
[51] | 2018 | 2 OTA | 1 C, 0 R | Both | Both | 34 | ±1.2 V | - | 8 MHz | Yes | Yes |
[52] | 2018 | 1 MO-OTA | 1 C, 0 R | Both | Both | 17 | ±0.9 V | - | 1 MHz | No | No |
[71] | 2018 | 1 VDTA | 1 C | Both | G | 16 | ±0.9 V | - | 50 MHz | No | Yes |
[78] | 2018 | 1 VDTA, 1 multiplier | 1 C, 2 R | Both | F | 32 | ±0.9 V | - | 2 MHz | Yes | Yes |
[56] | 2019 | 1 CCTA, 1 CCII | 3 R, 1 C | Both | G | 38 | ±1.5 V | - | 5 MHz | No | Yes |
[68] | 2019 | 1 VDCC, 2 CMOS | 1 C | Both | G | 26 | ±0.9 V | - | 2 MHz | Yes | Yes |
[60] | 2019 | 1 CCCDTA | 1 C | Both | G | 35 | ±2.5 V | - | 1 MHz | No | No |
[72] | 2020 | 1 VDTA | 1 R, 1 C | Both | Both | 16 | ±0.9 V | 8 µW | 50 MHz | Yes | Yes |
[80] | 2020 | 1 CCII, 1 OTA | 1 C, 1 R | Both | G | 13 | ±1.2 V | 9.567 mW | 26.3 MHz | No | No |
[82] | 2020 | 1 CDBA, 1 OTA | 1 C | Both | Both | 27 | ±0.9 V | - | 1 MHz | Yes | No |
[86] | 2020 | 1 DVCC, 1 DO-OTA, 2 Mosfets | 1 C | Inc. | F | 29 | ±1.2 V | - | 1.5 MHz | Yes | Yes |
[88] | 2020 | 1 CDTA 1 OTA | 1 C, 0 R | Both | Both | 36 | ±0.9 V | - | 2 MHz | Yes | No |
[15] | 2021 | 1 CCCII | 1 C | Inc. | G | 9 | ±0.9 V | - | 7.5 MHz | No | No |
[62] | 2021 | 1 CFTA | 1 C | Both | G | 28 | ±0.9 V | - | 9 MHz | No | Yes |
[64] | 2021 | 2 VDTA | 1 R, 1 C | Inc. | F | 32 | ±0.9 V | - | 1.5 MHz | Yes | No |
[65] | 2021 | 2 MVDCC | 1 C, 2 R | Inc. | F | 52 | ±0.9 V | - | 500 KHz | Yes | Yes |
[66] | 2021 | 1 FB-VDBA | 1 C, 0 R | Both | Both | 19 | ±0.9 V | 1 MHz | No | No | |
[67] | 2021 | 1 VDGA | 1 C | Both | F | 33 | ±0.8 V | - | 1 MHz | Yes | No |
[84] | 2021 | 1 VDCC, 1 OTA | 2 R, 1 C | Inc. | G | 35 | - | - | 1 MHz | Yes | Yes |
[61] | 2021 | 1 CDTA, 4 MOS | 1 C | Both | F | 24 | ±1.2 V | - | 100 MHz | No | No |
[53] | 2022 | 1 MO-OTA, 1 OTA | 1 R, 1 C | Both | Both | 42 | ±1.5 V | - | 20 MHz | No | No |
[63] | 2022 | 1 DVCCTA | 2 R, 1 C | Both | Both | 27 | ±1 V | 8.74 m | 12.8 M | Yes | Yes |
[70] | 2022 | 2 VDIBA | 1 C | Both | F | - | ±1 V | 1.34 mW | 12.7 MHz | Yes | Yes |
[76] | 2022 | 2 VDCC, 2 MOSFETs | 1 C | Both | Both | 46 | ±0.9 V | - | 50 MHz | Yes | No |
[16] | 2023 | 1 CCII, 1 MOSFET | 1 R, 1 C | Inc. | G | 10 | ±1.5 V | 2.6 mW | 40 MHz | No | Yes |
[59] | 2023 | 1 CCCDTA | 1 C | Inc. | G | 35 | ±0.9 V | 715 µW | 1.5 MHz | Yes | Yes |
[69] | 2023 | 1 DVCC, 3 MOS | 1C | Both | G | 15 | ±1.25 V | 7.64 µW | 100 MHz | Yes | Yes |
[73] | 2023 | 1 DVCC, 1 OTA | 1 R, 1 C | Both | G | 23 | ±0.9 V | 591 µW | 30 MHz | Yes | Yes |
[87] | 2023 | 1 OTA, 1 VDBA | 1 MOS-Cap | Both | Both | 25 | ±0.9 V | - | 5 MHz | Yes | Yes |
[75] | 2023 | 1 MVDTA | 1 R, 2 C | - | Both | 50 | ±0.9 V | 1 mW | 500 KHz | Yes | Yes |
[57] | 2024 | 1 CCTA | 2 R, 1 C | Both | Both | 30 | ±3 V | 18 mW | 20 MHz | Yes | Yes |
[81] | 2024 | 1 CCCCTA, 1 OTA | 1 C | Dec. | Both | 34 | ±0.9 V | 7.2 μW | 15 MHz | Yes | No |
[83] | 2024 | 1 OTA, 1 VDCC | 1 R, 1 C | Both | F | - | ±3.3 V | - | 10 KHz | Yes | Yes |
[74] | 2024 | 1 DVCCTA | 2 R | Both | Both | - | ±0.9 V | 4.84 mW | 500 MHz | Yes | No |
[14] | 2025 | 1 OTA, 2 Mosefts | 2 R, 1 C | Inc. | G | 9 | ±0.9 V | - | 300 MHz | Yes | No |
[58] | 2025 | 1 CCCCTA | 2 R, 1 C | Dec. | Both | 32 | ±1.1 V | 2.2 mW | 1 MHz | Yes | Yes |
[85] | 2025 | 1 VDTA-VDCA | 1 C, 0 R | Both | Both | 21 | ±5 V | - | 10 MHz | Yes | No |
Ref | Year | No. of Active Components | No. of Passive Components | Grounded/Floating | Max Operating Frequency | Experiment Complete |
---|---|---|---|---|---|---|
[93] | 2011 | 1 LED, 4 TOA | 2R, 2C | Grounded | 100 Hz | Yes |
[98] | 2012 | 4 Diodes | 3 (1C, 1L, 1R) | Grounded | 1 KHz | No |
[99] | 2014 | 4 Diodes | 2 (1C, 1R) | Grounded | 10 KHz | No |
[79] | 2014 | 1 Diode, 3 CFOA | 3R, 2C | Grounded | 700 Hz | Yes |
[96] | 2016 | 2 BJTs, 2 Diodes | 6 (2C, 4R) | Floating | 10 KHz | Yes |
[100] | 2019 | 4 Diodes | 2 (1C, 1L) | Floating | 10 KHz | Yes |
[101] | 2019 | 6 Diodes | 2 (1C, 1R) | Grounded | 20 KHz | No |
[102] | 2021 | 2 Diodes | 3 (1C, 2R) | Grounded | 3 KHz | Yes |
[103] | 2021 | 2 Diodes | 3 (1C, 2R) | Grounded | 150 KHz | No |
[104] | 2022 | 2 Diodes | 4 (1C, 1L, 2R) | Grounded | 50 KHz | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neifar, A.; Barraj, I.; Mestiri, H.; Masmoudi, M. Memristor Emulator Circuits: Recent Advances in Design Methodologies, Healthcare Applications, and Future Prospects. Micromachines 2025, 16, 818. https://doi.org/10.3390/mi16070818
Neifar A, Barraj I, Mestiri H, Masmoudi M. Memristor Emulator Circuits: Recent Advances in Design Methodologies, Healthcare Applications, and Future Prospects. Micromachines. 2025; 16(7):818. https://doi.org/10.3390/mi16070818
Chicago/Turabian StyleNeifar, Amel, Imen Barraj, Hassen Mestiri, and Mohamed Masmoudi. 2025. "Memristor Emulator Circuits: Recent Advances in Design Methodologies, Healthcare Applications, and Future Prospects" Micromachines 16, no. 7: 818. https://doi.org/10.3390/mi16070818
APA StyleNeifar, A., Barraj, I., Mestiri, H., & Masmoudi, M. (2025). Memristor Emulator Circuits: Recent Advances in Design Methodologies, Healthcare Applications, and Future Prospects. Micromachines, 16(7), 818. https://doi.org/10.3390/mi16070818