The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise
Abstract
1. Introduction
2. Materials and Methods
Data Reduction
3. Results and Discussion
3.1. The Flow Parameters
3.2. Noise Measurements
3.3. Nois vs. Velocity
3.4. Actuator Manufacturing Technology
4. Conclusions
- It was shown that generally, the higher the actuator chamber, the higher the noise, although this was not a constant trend across the entire frequency range tested. This observation is inconsistent with the literature data on orifice diameter.
- The SJ velocity increases with the decreasing orifice length, which is caused by the flow losses increasing with the orifice length.
- No relationship was observed between cavity height and SJ velocity. However, different velocities were observed for different cavity heights (Figure 4). It should therefore be emphasized that such a relationship probably exists, but it was not possible to establish it in this paper. Mathematical models of the resonance frequency do not describe this relationship, even though it has already been demonstrated in the literature.
- An inversely proportional relationship exists between the orifice size (l/d) and the characteristic frequency (Figure 5).
- The SPL(A) increases with the increasing orifice diameter; this relationship is not entirely clear, as increasing the orifice causes a lower average velocity, which should increase noise. However, increasing the orifice diameter may cause an increase in volumetric flow, which may cause an increase in the vorticity behind the orifice and, consequently, in noise; further investigation of this aspect is recommended.
- The SPL(A) decreases with the increasing orifice length, which is related to the drop in velocity in an orifice.
- The SPL(A) increases with the increasing cavity height; this effect may be caused by improved resonance conditions in the chamber (increasing the chamber height causes a decrease in the Helmholtz resonance frequency) and may promote the formation of turbulence in the chamber.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renaud, F.; Verduyckt, I.; Chang, T.; Lacerda, A.; Borges, C.; Bockstael, A.; Bouserhal, R.E. Student’s Self-Reported Experience of Soundscape: The Link between Noise, Psychological and Physical Well-Being. Int. J. Environ. Res. Public Health 2024, 21, 84. [Google Scholar] [CrossRef] [PubMed]
- Newbury, J.B.; Heron, J.; Kirkbride, J.B.; Fisher, H.L.; Bakolis, I.; Boyd, A.; Thomas, R.; Zammit, S. Air and Noise Pollution Exposure in Early Life and Mental Health from Adolescence to Young Adulthood. JAMA Netw. Open 2024, 7, E2412169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ou, D.; Kang, S. The Effects of Masking Sound and Signal-to-Noise Ratio on Work Performance in Chinese Open-Plan Offices. Appl. Acoust. 2021, 172, 107657. [Google Scholar] [CrossRef]
- Radun, J.; Tervahartiala, I.K.; Kontinen, V.; Keränen, J.; Hongisto, V. Do Active Noise-Cancelling Headphones’ Influence Performance, Stress, or Experience in Office Context? Build. Environ. 2024, 266, 112102. [Google Scholar] [CrossRef]
- Gil, P.; Wilk, J.; Smolen, S.; Gałek, R.; Markowicz, M.; Kucharski, P. Experimental Investigations of the LED Lamp with Heat Sink Inside the Synthetic Jet Actuator. Energies 2022, 15, 9402. [Google Scholar] [CrossRef]
- Ding, H.; Cheng, Z.; Liu, M.; Xiao, L.; Zhu, S. Effects of Synthetic Jet Control Parameters on Characteristics of Flow around a Square Cylinder at Subcritical Reynolds Number. Ocean. Eng. 2024, 309, 118577. [Google Scholar] [CrossRef]
- Murillo-Rincón, J.; Duque-Daza, C. Evaluation of Synthetic Jet Flow Control Technique for Modulating Turbulent Jet Noise. Fluids 2023, 8, 110. [Google Scholar] [CrossRef]
- Ja’fari, M.; Shojae, F.J.; Jaworski, A.J. Synthetic Jet Actuators: Overview and Applications. Int. J. Thermofluids 2023, 20, 100438. [Google Scholar] [CrossRef]
- Arik, M. An Investigation into Feasibility of Impingement Heat Transfer and Acoustic Abatement of Meso Scale Synthetic Jets. Appl. Therm. Eng. 2007, 27, 1483–1494. [Google Scholar] [CrossRef]
- Lasance, C.J.M.; Aarts, R.M.; Ouweltjes, O. Synthetic Jet Cooling Part II: Experimental Results of an Acoustic Dipole Cooler. In Proceedings of the 2008 Twenty-Fourth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008; pp. 26–31. [Google Scholar]
- Gil, P.; Smyk, E.; Gałek, R.; Przeszłowski, Ł. Thermal, Flow and Acoustic Characteristics of the Heat Sink Integrated inside the Synthetic Jet Actuator Cavity. Int. J. Therm. Sci. 2021, 170, 107171. [Google Scholar] [CrossRef]
- Arafa, N.; Sullivan, P.; Ekmekci, A. Noise and Jet Momentum of Synthetic Jet Actuators with Different Orifice Configurations. AIAA J. 2024, 62, 668–676. [Google Scholar] [CrossRef]
- Gil, P.; Wilk, J. Experimental Investigations of Different Loudspeakers Applied as Synthetic Jet Actuators. Actuators 2021, 10, 224. [Google Scholar] [CrossRef]
- Smyk, E.; Wilk, J.; Markowicz, M. Synthetic Jet Actuators with the Same Cross-Sectional Area Orifices-Flow and Acoustic Aspects. Appl. Sci. 2021, 11, 4600. [Google Scholar] [CrossRef]
- Smyk, E.; Markowicz, M. Acoustic and Flow Aspects of Synthetic Jet Actuators with Chevron Orifices. Appl. Sci. 2021, 11, 652. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Lin, J.; Sun, A.; Gan, Z.; Zhang, X.; Liu, J. Effects of Loudspeaker-Driven Synthetic Jet Actuator Parameters on the Characteristics of the Synthetic Jet. Appl. Acoust. 2022, 197, 108943. [Google Scholar] [CrossRef]
- Kanase, M.M.; Mangate, L.D.; Chaudhari, M.B. Acoustic Aspects of Synthetic Jet Generated by Acoustic Actuator. J. Low. Freq. Noise Vib. Act. Control 2018, 37, 31–47. [Google Scholar] [CrossRef]
- Ikhlaq, M.; Yasir, M.; Ghaffari, O.; Arik, M. Acoustics and Heat Transfer Characteristics of Piezoelectric Driven Central Orifice Synthetic Jet Actuators. Exp. Heat. Transf. 2021, 35, 758–779. [Google Scholar] [CrossRef]
- Jeyalingam, J.; Jabbal, M. Experimental Investigation of the Aeroacoustics of Synthetic Jet Actuators in Quiescent Conditions. Sens. Actuators A Phys. 2018, 280, 52–60. [Google Scholar] [CrossRef]
- Paolillo, G.; Greco, C.S.; Cardone, G. Novel Quadruple Synthetic Jet Device: Flowfield and Acoustic Behavior. AIAA J. 2017, 55, 2241–2253. [Google Scholar] [CrossRef]
- Bruun, H.H. Hot-Wire Anemometry: Principles and Signal Analisis; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- IEC 61672-1:2013; Electroacoustics—Sound Level Meters—Part 1: Specifications. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- ISO 3746:2010; International Organization for Standardization (ISO) Acoustics—Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure—Survey Method Using an Enveloping Measurement Surface over a Reflecting Plane. ISO: Geneva, Switzerland, 2010; p. 48.
- Bhapkar, U.S.; Srivastava, A.; Agrawal, A. Acoustic and Heat Transfer Characteristics of an Impinging Elliptical Synthetic Jet Generated by Acoustic Actuator. Int. J. Heat Mass Transf. 2014, 79, 12–23. [Google Scholar] [CrossRef]
- Smith, B.L.; Glezer, A. The Formation and Evolution of Synthetic Jets. Phys. Fluids 1998, 10, 2281–2297. [Google Scholar] [CrossRef]
- Gil, P.; Smyk, E. Synthetic Jet Actuator Efficiency Based on the Reaction Force Measurement. Sens. Actuators A Phys. 2019, 295, 405–413. [Google Scholar] [CrossRef]
- Holman, R.; Utturkar, Y.; Mittal, R.; Smith, B.L.; Cattafesta, L. Formation Criterion for Synthetic Jets. AIAA J. 2005, 43, 2110–2116. [Google Scholar] [CrossRef]
- Gil, P.; Strzelczyk, P. Performance and Efficiency of Loudspeaker Driven Synthetic Jet Actuator. Exp. Therm. Fluid. Sci. 2016, 76, 163–174. [Google Scholar] [CrossRef]
- Persoons, T.; O’Donovan, T.S.; Donovan, T.S.O.; Persoons, T.; Donovan, T.S.O. A Pressure-Based Estimate of Synthetic Jet Velocity. Phys. Fluids 2007, 19, 2–5. [Google Scholar] [CrossRef]
- Jacob, A.; Shafi, K.A.; Roy, K.E.R. Heat Transfer Characteristics of Piston-Driven Synthetic Jet. Int. J. Thermofluids 2021, 11, 100104. [Google Scholar] [CrossRef]
- Singh, P.K.; Sahu, S.K.; Upadhyay, P.K. Experimental Investigation of the Thermal Behavior a Single-Cavity and Multiple-Orifice Synthetic Jet Impingement Driven by Electromagnetic Actuator for Electronics Cooling. Exp. Heat. Transf. 2022, 35, 132–158. [Google Scholar] [CrossRef]
- Singh, P.K.; Sahu, S.K.; Upadhyay, P.K.; Jain, A.K. Experimental Investigation on Thermal Characteristics of Hot Surface by Synthetic Jet Impingement. Appl. Therm. Eng. 2020, 165, 114596. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, P.K.; Sahu, S.K.; Yadav, H. A Critical Review on Flow and Heat Transfer Characteristics of Synthetic Jet. Trans. Indian. Natl. Acad. Eng. 2022, 7, 61–92. [Google Scholar] [CrossRef]
- Jain, M.; Puranik, B.; Agrawal, A. A Numerical Investigation of Effects of Cavity and Orifice Parameters on the Characteristics of a Synthetic Jet Flow. Sens. Actuators A Phys. 2011, 165, 351–366. [Google Scholar] [CrossRef]
- Hong, M.H.; Cheng, S.Y.; Zhong, S. Effect of Geometric Parameters on Synthetic Jet: A Review. Phys. Fluids 2020, 32, 031301. [Google Scholar] [CrossRef]
- Smyk, E.; Wawrzyniak, S.; Peszyński, K. Synthetic Jet Actuator with Two Opposite Diaphragms. Mech. Mech. Eng. 2020, 24, 17–25. [Google Scholar] [CrossRef]
- Kordík, J.; Trávníček, Z. Optimal Diameter of Nozzles of Synthetic Jet Actuators Based on Electrodynamic Transducers. Exp. Therm. Fluid. Sci. 2017, 86, 281–294. [Google Scholar] [CrossRef]
- Chaudhari, M.; Verma, G.; Puranik, B.; Agrawal, A. Frequency Response of a Synthetic Jet Cavity. Exp. Therm. Fluid. Sci. 2009, 33, 439–448. [Google Scholar] [CrossRef]
- Kordík, J.; Trávníček, Z. Maximization of Integral Outlet Quantities of an Axisymmetric Synthetic Jet Actuator Based on a Loudspeaker. EJP Web Conf. 2016, 114, 02152. [Google Scholar] [CrossRef]
- Girfoglio, M.; Greco, C.S.; Chiatto, M.; de Luca, L. Modelling of Efficiency of Synthetic Jet Actuators. Sens. Actuators A Phys. 2015, 233, 512–521. [Google Scholar] [CrossRef]
- Bhapkar, U.S.; Srivastava, A.; Agrawal, A. Acoustic and Heat Transfer Aspects of an Inclined Impinging Synthetic Jet. Int. J. Therm. Sci. 2013, 74, 145–155. [Google Scholar] [CrossRef]
- Jabbal, M.; Jeyalingam, J. Towards the Noise Reduction of Piezoelectrical-Driven Synthetic Jet Actuators. Sens. Actuators A Phys. 2017, 266, 273–284. [Google Scholar] [CrossRef]
- Broučková, Z.; Trávníček, Z. Visualization Study of Hybrid Synthetic Jets. J. Vis. 2015, 18, 581–593. [Google Scholar] [CrossRef]
[mm] | [mm] | [mm] | ||||
---|---|---|---|---|---|---|
Case 1 | 20 | 20 | 10 | 2 | 0.18 | 2 |
Case 2 | 20 | 20 | 15 | 1.33 | 0.27 | 1.33 |
Case 3 | 20 | 20 | 20 | 1 | 0.36 | 1 |
Case 4 | 20 | 5 | 10 | 0.5 | 0.18 | 2 |
Case 5 | 20 | 40 | 10 | 4 | 0.18 | 2 |
Case 6 | 20 | 60 | 10 | 6 | 0.18 | 2 |
Case 7 | 10 | 20 | 10 | 2 | 0.18 | 1 |
Case 8 | 25 | 20 | 10 | 2 | 0.18 | 2.5 |
Case 9 | 45 | 20 | 10 | 2 | 0.18 | 4.5 |
[Hz] | SPL (A) [dB(A)] | Re | St | |
---|---|---|---|---|
Case 1 | 170 | 74.2 | 5135 | 84.2 |
Case 2 | 210 | 73.8 | 4093 | 140.4 |
Case 3 | 220 | 78.3 | 3725 | 191.6 |
Case 4 | 220 | 72.1 | 6890 | 95.8 |
Case 5 | 130 | 67.7 | 4441 | 73.6 |
Case 6 | 120 | 57.9 | 4034 | 70.8 |
Case 7 | 160 | 61 | 5006 | 81.7 |
Case 8 | 180 | 67.2 | 3258 | 86.7 |
Case 9 | 160 | 63 | 3809 | 81.7 |
Body Material | Articles |
---|---|
Aluminum alloy | Gil et al. [5]; Gil et al. [11]; Gil and Wilk [13]; Paolillo et al. [20] |
PMMA | Smyk et al. [14]; Jeyalingam and Jabbal [19] *; Bhapkar et al. [24]; Singh et al. [31]; Singh et al. [32]; Chaudhari et al. [38] |
Cavity from PMMA and orifice manufactured with 3D printing technology | Smyk and Markowicz [15] |
Some metal | Ikhlaq et al. [18] |
Manufactured with 3D printing technology | Gil and Smyk [26]; Smyk et al. [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smyk, E.; Stopel, M. The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise. Micromachines 2025, 16, 803. https://doi.org/10.3390/mi16070803
Smyk E, Stopel M. The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise. Micromachines. 2025; 16(7):803. https://doi.org/10.3390/mi16070803
Chicago/Turabian StyleSmyk, Emil, and Michał Stopel. 2025. "The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise" Micromachines 16, no. 7: 803. https://doi.org/10.3390/mi16070803
APA StyleSmyk, E., & Stopel, M. (2025). The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise. Micromachines, 16(7), 803. https://doi.org/10.3390/mi16070803