Assessment of SiO2 Nanotube Activity to Modify DL α-Tocopherol via 1O2 Generation Under Visible Light Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.1.1. SiO2 Nanotubes
2.1.2. IrSiO2 Nanotubes
2.1.3. IrO2IrSiO2 Nanotubes
2.1.4. Porphyrin Synthesis
2.1.5. Preparation of SiO2P, IrSiO2P, and IrO2IrSiO2P
2.2. Singlet Oxygen Monitoring
2.3. DL α-Tocopherol Fluorescence Quenching
2.4. DL α-Tocopherol Absorbance Quenching
2.5. Characterization Methods
3. Results and Discussions
3.1. SEM
3.2. AFM
3.3. XRD and XRF
3.4. UV–Vis Spectroscopy
3.5. XPS Spectroscopy
3.6. N2 Adsorption–Desorption Measurements
3.7. Zeta Potential Measurements
3.8. ROS Photogeneration
3.9. Tocopherol Decay-PL
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive Oxygen Species |
SOSG | Singlet Oxygen Green Sensor |
SEM | Scanning Electron Microscopy |
AFM | Atomic Force Microscopy |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
XPS | X-ray Photoelectron Spectroscopy |
References
- Younis, M.R.; He, G.; Qu, J.; Lin, J.; Huang, P.; Xia, X.-H. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy. Adv. Sci. 2021, 8, 2102587. [Google Scholar] [CrossRef] [PubMed]
- Pibiri, I.; Buscemi, S.; Palumbo Piccionello, A.; Pace, A. Photochemically produced singlet oxygen: Applications and perspectives. ChemPhotoChem 2018, 2, 535–547. [Google Scholar] [CrossRef]
- Kruk, J.; Hollaänder-Czytko, H.; Oettmeier, W.; Trebst, A. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005, 162, 749–757. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef] [PubMed]
- Epe, B.; Miitzel, P.; Adam, W. DNA damage by oxygen radicals and excited state species: A comparative study using enzymatic probes in vitro. Chem. Biol. Interact. 1988, 67, 149–165. [Google Scholar] [CrossRef]
- Di Mascio, P.; Wefers, H.; Do-Thi, H.P.; Lafleur, M.V.M.; Sies, H. Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Biochim. Biophys. Acta 1989, 1007, 151–157. [Google Scholar] [CrossRef]
- Di Mascio, P.; Menck, C.F.M.; Nigro, R.G.; Sarasin, A.; Sies, H. Singlet Molecular Oxygen induced mutagenicity in a mammalian SV-40-Based Shuttle Vector. Photochem Photobiol. 1990, 51, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, S.; Di Mascio, P.; Murphy, M.E.; Sies, H. Physical and chemical scavenging of singlet molecular oxygen by tocopherols. Arch. Biochem. Biophys. 1990, 277, 101–108. [Google Scholar] [CrossRef]
- Chifor, E.; Bordeianu, I.; Anastasescu, C.; Calderon-Moreno, J.M.; Bratan, V.; Eftemie, D.-I.; Anastasescu, M.; Preda, S.; Plavan, G.; Pelinescu, D.; et al. Bioactive coatings based on nanostructured TiO2 modified with noble metal nanoparticles and lysozyme for Ti dental implants. Nanomaterials 2022, 12, 3186. [Google Scholar] [CrossRef]
- Rao, L.; Meng, Q.-F.; Huang, Q.; Liu, P.; Bu, L.-L.; Kondamareddy, K.K.; Guo, S.-S.; Liu, W.; Zhao, X.-Z. Controlled drug release: Photocatalytic degradation of cell membrane coatings for controlled drug release. Adv. Healthc. Mater. 2016, 5, 1420. [Google Scholar] [CrossRef]
- Kumar, A.; Park, G.D.; Patel, S.K.S.; Kondaveeti, S.; Otari, S.; Anwar, M.Z.; Kalia, V.C.; Singh, Y.; Kim, S.C.; Cho, B.-K.; et al. SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem. Eng. J. 2019, 359, 1252. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Wang, M.; Petti, L.; Jiang, T.; Jia, Z.; Xie, S.; Zhou, J. SERS-based multiplex immunoassay of tumor markers using double SiO2@Ag immune probes and gold-film hemisphere array immune substrate. Colloids Surf. A Physicochem. Eng. 2018, 546, 48–58. [Google Scholar] [CrossRef]
- Xin, H.; Liu, Y.; Xiao, Y.; Wen, M.; Sheng, L.; Jia, Z. Design and nanoengineering of photoactive antimicrobials for bioapplications: From fundamentals to advanced strategies. Adv. Funct. Mater. 2024, 34, 2402607. [Google Scholar] [CrossRef]
- Gnanasekar, S.; Kasi, G.; He, X.; Zhang, K.; Xu, L.; Kang, E.-T. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact. Mater. 2023, 21, 157–174. [Google Scholar] [CrossRef]
- Quek, J.A.; Lam, S.M.; Sin, J.C.; Mohamed, A.R. Visible light responsive flower-like ZnO in photocatalytic antibacterial mechanism towards Enterococcus faecalis and Micrococcus luteus. J. Photochem. Photobiol. B Biol. 2018, 187, 66–75. [Google Scholar] [CrossRef]
- Anastasescu, C.; Zaharescu, M.; Balint, I. Unexpected photocatalytic activity of simple and platinum modified tubular SiO2 for the oxidation of oxalic acid to CO2. Catal. Lett. 2009, 132, 81–86. [Google Scholar] [CrossRef]
- Anastasescu, C.; Anastasescu, M.; Zaharescu, M.; Balint, I. Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid. J. Nanopart. Res. 2012, 14, 1198. [Google Scholar] [CrossRef]
- Anastasescu, C.; Zaharescu, M.; Angelescu, D.; Munteanu, C.; Bratan, V.; Spataru, T.; Negrila, C.; Spataru, N.; Balint, I. Defect-related light absorption, photoluminiscence and photocatalytic activity of SiO2 with tubular morphology. Sol. Energy Mater. Sol. Cells 2017, 159, 325–335. [Google Scholar] [CrossRef]
- Anastasescu, C.; Negrila, C.; Angelescu, D.G.; Atkinson, I.; Anastasescu, M.; Spataru, N.; Zaharescu, M.; Balint, I. Distinct and interrelated facets bound to photocatalysis and ROS generation on insulators and semiconductors: Cases of SiO2, TiO2 and their composite SiO2-TiO2. Catal. Sci. Technol. 2018, 8, 5657–5668. [Google Scholar] [CrossRef]
- Pelinescu, D.; Anastasescu, M.; Bratan, V.; Maraloiu, V.-A.; Negrila, C.; Mitrea, D.; Calderon-Moreno, J.; Preda, S.; Gîfu, I.C.; Stan, A.; et al. Antibacterial activity of PVA hydrogels embedding oxide nanostructures sensitized by noble metals and ruthenium dye. Gels 2023, 9, 650. [Google Scholar] [CrossRef]
- Hansaem, J.; Jaeyoung, L. Iridium oxide fabrication and application: A review. J. Energy Chem. 2020, 46, 152–172. [Google Scholar]
- Wang, L.; Xi, Y.; Xu, Q. Multifunctional IrOx neural probe for in situ dynamic brain hypoxia evaluation. ACS Nano 2023, 17, 22277. [Google Scholar] [CrossRef]
- Socoteanu, R.; Boscencu, R.; Nacea, V.; Oliveira, A.S.; Vieira Ferreira, L.F. Microwave-assisted synthesis towards unssimetrical tetrapyrrolic compounds. Rev. Chim. 2008, 59, 498–502. [Google Scholar] [CrossRef]
- Boscencu, R.; Socoteanu, R.; Manda, G.; Radulea, N.; Anastasescu, M.; Gama, A.; Ferreira Machado, I.L.; Vieira Ferreira, L.F. New A3B tetrapyrrolic structures as potential candidates for a theranostic approach. Synthesis and photochemical behaviour. Dyes Pigm. 2019, 160, 410–417. [Google Scholar] [CrossRef]
- Anastasescu, C.; Anastasescu, M.; Teodorescu, V.S.; Gartner, M.; Zaharescu, M. SiO2 nanospheres and tubes obtained by sol–gel method. J. Non-Cryst. Solids 2010, 356, 2634–2640. [Google Scholar] [CrossRef]
- De Vaugelade, S.; Nicol, E.; Vujovic, S.; Bourcier, S.; Pirnay, S.; Bouchonnet, S. UV–vis degradation of α-tocopherol in a model system and in a cosmetic emulsion—Structural elucidation of photoproducts and toxicological consequences. J. Chromatogr. A 2017, 1517, 126–133. [Google Scholar] [CrossRef]
- Miyazawa, T.; Yamashita, T.; Fujimoto, K. Chemiluminescence detection of 8a hydroperoxy-tocopherone in photooxidized α-tocopherol. Lipids 1992, 27, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Demirkaya-Miloglu, F.; Kadioglu, Y.; Senol, O.; Yaman, M.E. Spectrofluorimetric determination of a-Tocopherol in capsules and human plasma. Indian J. Pharm. Sci. 2013, 75, 563–568. [Google Scholar]
- Neely, W.C.; Martin, M.; Barker, S.A. Products and relative reaction rates of the oxidation of tocopherols with singlet molecular oxygen. Photochem. Photobiol. 1988, 48, 423–428. [Google Scholar] [CrossRef]
Sample | C1s | O1s | Si2p | Ir4f |
---|---|---|---|---|
SiO2 | Peak A (284.4 eV) C-C, C-H bonds Peak B (286.1 eV) C-O bonds (simple) | Peak A (533 eV) Oxygen in SiO2 | Peak A (103.4 eV) Si4+ state (SiO2) | |
IrSiO2 | Peak A (284.5 eV) →C-C, C-H bonds Peak B (285.9 eV) C-O bonds (simple) | Peak A (532.9 eV) Oxygen in SiO2 | Peak A (103.2 eV) Si4+ state (SiO2) | Ir 4f line is undefined |
IrO2IrSiO2 | Peak A (284.5 eV) →C-C, C-H Peak B (285.7 eV) C-O bonds (simple) Peak C (287 eV) O-C-O, C=O (double bonds) Peak D (288.7 eV) possible carbonate group | Peak A (532.7 eV) Oxygen in SiO2 Peak B (530.2 eV) Oxygen in iridium oxides | Peak A (103.3 eV) Si4+ state (SiO2) | Peak A (61.9 eV) Peak B (64.9 eV) Peak C (63.5 eV) Peak D (66.5 eV) (a) A-B doublet (Ir4f7/2, Ir4f5/2) → Ir4+(IrO2) C-D doublet—satellites (b) A-B doublet → Ir3+ C-D doublet → Ir4+ |
Sample | SBET (m2/g) | *VT (cc/g) | VP (cc/g) | Dp (nm) | SDFT (m2/g) | VP DFT (cc/g) | Dp DFT (nm) |
---|---|---|---|---|---|---|---|
IrO2IrSiO2 | 30.6 | 0.075 | 0.086 | 4.77 | 25.4 | 0.067 | 4.54 |
IrSiO2 | 15.7 | 0.047 | 0.059 | 2.95 | 8.3 | 0.032 | 4.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasescu, M.; Socoteanu, R.; Bratan, V.; Preda, S.; Anastasescu, C.; Gîfu, I.C.; Nistor, C.L.; Boscencu, R.; Chifor, E.; Negrila, C.; et al. Assessment of SiO2 Nanotube Activity to Modify DL α-Tocopherol via 1O2 Generation Under Visible Light Irradiation. Micromachines 2025, 16, 784. https://doi.org/10.3390/mi16070784
Anastasescu M, Socoteanu R, Bratan V, Preda S, Anastasescu C, Gîfu IC, Nistor CL, Boscencu R, Chifor E, Negrila C, et al. Assessment of SiO2 Nanotube Activity to Modify DL α-Tocopherol via 1O2 Generation Under Visible Light Irradiation. Micromachines. 2025; 16(7):784. https://doi.org/10.3390/mi16070784
Chicago/Turabian StyleAnastasescu, Mihai, Radu Socoteanu, Veronica Bratan, Silviu Preda, Crina Anastasescu, Ioana Cătălina Gîfu, Cristina Lavinia Nistor, Rica Boscencu, Emilian Chifor, Catalin Negrila, and et al. 2025. "Assessment of SiO2 Nanotube Activity to Modify DL α-Tocopherol via 1O2 Generation Under Visible Light Irradiation" Micromachines 16, no. 7: 784. https://doi.org/10.3390/mi16070784
APA StyleAnastasescu, M., Socoteanu, R., Bratan, V., Preda, S., Anastasescu, C., Gîfu, I. C., Nistor, C. L., Boscencu, R., Chifor, E., Negrila, C., Bordeianu, I., Zaharescu, M., & Balint, I. (2025). Assessment of SiO2 Nanotube Activity to Modify DL α-Tocopherol via 1O2 Generation Under Visible Light Irradiation. Micromachines, 16(7), 784. https://doi.org/10.3390/mi16070784