A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting
Abstract
:1. Introduction
2. Rectifying Metasurface Design and Analysis
3. Rectifying Metasurface Measurements and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sudevalayam, S.; Kulkarni, P. Energy harvesting sensor nodes: Survey and implications. IEEE Commun. Surv. Tutor. 2010, 13, 443–461. [Google Scholar] [CrossRef]
- Zhao, Y.; An, W.; Luo, Y.; Li, S.; Xiong, L.; Yu, S. Low-profile antenna integrated with solar cells for the 2.4 GHz band. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 443–447. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, B.; Kim, S.W.; Kang, H.W.; Park, M.C.; Park, D.H.; Ju, B.K.; Choi, W.K. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag. Nanotechnology 2021, 32, 145401. [Google Scholar] [CrossRef] [PubMed]
- Gharapetian, D.; Fini, M.A.; Asgari, M.; Shabani, B. A nanofluid-based hybrid photovoltaic-thermal-thermoelectric generator system for combined heat and power applications. Energy Convers. Manag. 2024, 301, 118066. [Google Scholar] [CrossRef]
- Gharapetian, D.; Fini, M.A.; Bazargan, M. An exergy-economic analysis of a concentrated photovoltaic-thermal system with phase change materials cooled by a nanofluid in porous media. J. Energy Storage 2023, 72, 108336. [Google Scholar] [CrossRef]
- Dong, L.; Hu, G.; Tang, Q.; Zhao, C.; Yang, F.; Yang, Y. Advanced aerodynamics-driven energy harvesting leveraging galloping-flutter synergy. Adv. Funct. Mater. 2025, 35, 2414324. [Google Scholar] [CrossRef]
- Dong, L.; Ke, Y.; Liao, Y.; Wang, J.; Gao, M.; Yang, Y.; Li, J.; Yang, F. Rational modeling and design of piezoelectric biomolecular thin films toward enhanced energy harvesting and sensing. Adv. Funct. Mater. 2024, 34, 2410566. [Google Scholar] [CrossRef]
- Lin, K.T.; Lin, H.; Yang, T.; Jia, B. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat. Commun. 2020, 11, 1389. [Google Scholar] [CrossRef]
- Sreelekshmi, S.; Sankar, S.P. A square ring and single split resonator based wearable antenna for microwave energy harvesting for IoT nodes. Sustain. Energy Technol. Assess. 2022, 52, 102217. [Google Scholar] [CrossRef]
- Wu, X.; Xue, H.; Zhao, S.; Han, J.; Chang, M.; Liu, H.; Li, L. Accurate and efficient method for analyzing the transfer efficiency of metasurface-based wireless power transfer system. IEEE Trans. Antennas Propag. 2022, 71, 783–795. [Google Scholar] [CrossRef]
- Sun, H.; He, H.; Huang, J. Polarization-insensitive rectenna arrays with different power combining strategies. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 492–496. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Li, L. An optically transparent metantenna for RF wireless energy harvesting. IEEE Trans. Antennas Propag. 2021, 70, 2550–2560. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Zhu, X. Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 977–985. [Google Scholar] [CrossRef]
- Ding, W.; Chen, J.; Wu, R.X. A generative meta-atom model for metasurface-based absorber designs. Adv. Opt. Mater. 2023, 11, 2201959. [Google Scholar] [CrossRef]
- Han, Y.; Che, W.; Christopoulos, C.; Xiong, Y.; Chang, Y. A fast and efficient design method for circuit analog absorbers consisting of resistive square-loop arrays. IEEE Trans. Electromagn. Compat. 2016, 58, 747–757. [Google Scholar] [CrossRef]
- Kundu, D.; Mohan, A.; Chakrabarty, A. Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1589–1592. [Google Scholar] [CrossRef]
- Fu, C.; Han, L.; Liu, C.; Lu, X.; Sun, Z. Combining Pancharatnam–Berry phase and conformal coding metasurface for dual-band RCS reduction. IEEE Trans. Antennas Propag. 2021, 70, 2352–2357. [Google Scholar] [CrossRef]
- Ha, T.D.; Zhu, L.; Alsaab, N.; Chen, P.Y.; Guo, J.L. Optically transparent metasurface radome for RCS reduction and gain enhancement of multifunctional antennas. IEEE Trans. Antennas Propag. 2022, 71, 67–77. [Google Scholar] [CrossRef]
- Abdullah, M.; Koziel, S. Supervised-learning-based development of multibit RCS-reduced coding metasurfaces. IEEE Trans. Microw. Theory Tech. 2021, 70, 264–274. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, G.; Srivastava, K.V.; Ramkumar, J.; Ramakrishna, S.A. Polarization-insensitive optically transparent microwave metamaterial absorber using a complementary layer. IEEE Antennas Wirel. Propag. Lett. 2021, 21, 163–167. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, K.; Zhang, D.; Li, S.; Xu, Y.; Wang, X.; Zhuang, S. Ultrabroadband microwave absorber based on 3D water microchannels. Photonics Res. 2021, 9, 1391–1396. [Google Scholar] [CrossRef]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517. [Google Scholar] [CrossRef] [PubMed]
- Munk, B.A.; Munk, P.; Pryor, J. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag. 2007, 55, 186–193. [Google Scholar] [CrossRef]
- Li, S.; Gao, J.; Cao, X.; Li, W.; Zhang, Z.; Zhang, D. Wideband, thin, and polarization-insensitive perfect absorber based on the double octagonal rings metamaterials and lumped resistances. J. Appl. Phys. 2014, 116, 042002. [Google Scholar] [CrossRef]
- Wang, X.; Han, J.Q.; Li, G.X.; Xia, D.X.; Chang, M.Y.; Ma, X.J.; Xue, H.; Xu, P.; Li, R.J.; Zhang, K.Y.; et al. High-performance cost-efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface. Nat. Commun. 2023, 14, 6002. [Google Scholar] [CrossRef] [PubMed]
- Vinnakota, S.S.; Kumari, R.; Majumder, B. Metasurface-assisted broadband compact dual-polarized dipole antenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1912–1916. [Google Scholar] [CrossRef]
- Dong, L.; Si, L.; Liu, B.; Shen, Q.; Niu, R.; Bao, X.; Sun, H.; Zhu, W. An optically transparent rectifying metasurface for 2.4/5.8 GHz dual-band RF energy harvesting. Appl. Phys. Lett. 2025, 126, 012345. [Google Scholar] [CrossRef]
- Gui, H.; Xie, H.; Deng, L.; Huang, S.; Qiu, L.-L. Triple-band and polarization-insensitive rectifying metasurface with flexible substrate. J. Phys. D Appl. Phys. 2024, 57, 165003. [Google Scholar] [CrossRef]
- Amer, A.A.G.; Othman, N.; Sapuan, S.Z.; Alphones, A.; Hassan, M.F.; Al-Gburi, A.J.A.; Zakaria, Z. Dual-band, wide-angle, and high-capture efficiency metasurface for electromagnetic energy harvesting. Nanomaterials 2023, 13, 2015. [Google Scholar] [CrossRef]
- Eskandari, M.; Habibzadeh-Sharif, A.; Nazari, M. Design and full-wave analysis of ultra-broadband metamaterial absorbers based on ring resonators for solar energy harvesting. Iran. J. Sci. Technol. Trans. Electr. Eng. 2023, 47, 1167–1175. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, X.; Wang, X.; Han, J.; Li, L. Recent advances in metamaterials for simultaneous wireless information and power transmission. Nanophotonics 2022, 11, 1697–1723. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Duan, J.; Jing, H.; Lyu, Z.; Hao, J.; Qu, Z.; Wang, J.; Zhang, B. A multiband, polarization-controlled metasurface absorber for electromagnetic energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech. 2022, 70, 2861–2871. [Google Scholar] [CrossRef]
- Erkmen, F.; Ramahi, O.M. A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech. 2021, 69, 4021–4028. [Google Scholar] [CrossRef]
- Li, W.; Shen, T.; Zhang, B.; Wei, Y. A scalable, wide-angle metasurface array for electromagnetic energy harvesting. Micromachines 2024, 15, 904. [Google Scholar] [CrossRef]
- Song, C.; Wei, Y.; Wang, J.; Zhang, B.; Qin, Y.; Duan, J. A wide-angle incidence, broadband rectified metasurface for radar frequency band EM energy harvesting and wireless power transfer. Opt. Laser Technol. 2024, 174, 110544. [Google Scholar] [CrossRef]
- Dinh, M.Q.; Le Hoang, T.; Vu, H.T.; Tung, N.T.; Le, M.T. Design, fabrication, and characterization of an electromagnetic harvester using polarization-insensitive metamaterial absorbers. J. Phys. D Appl. Phys. 2021, 54, 345502. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Song, C.; Zhang, W.; Jia, T.; Huang, Y. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer. IEEE Trans. Microw. Theory Tech. 2020, 69, 1518–1528. [Google Scholar] [CrossRef]
- Ashoor, A.Z.; Ramahi, O.M. Polarization-independent cross-dipole energy harvesting surface. IEEE Trans. Microw. Theory Tech. 2019, 67, 1130–1137. [Google Scholar] [CrossRef]
Ref. | Frequency (GHz) | Polarization Insensitive | Optimal Power Level | Need Matching Network | RF to DC Efficiency |
---|---|---|---|---|---|
[33] | 2.4, 5.2, 5.8 | No | 7 dBm | Yes | 46.4% (5.8 GHz) |
[35] | 5.8 | No | 7 dBm | Yes | 72% |
[36] | 5.3–6.6 | No | 5 dBm | Yes | 57% |
[37] | 5.8 | Yes | 350 mw/ | Yes | 55% |
[38] | 2.4, 5.8 | Yes | 10 dBm | No | 59.0% (5.8 GHz) |
This Work | 5.8 | Yes | 12.5 dBm | No | 68.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Yu, J.; Dong, L. A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting. Micromachines 2025, 16, 611. https://doi.org/10.3390/mi16060611
Guo Z, Yu J, Dong L. A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting. Micromachines. 2025; 16(6):611. https://doi.org/10.3390/mi16060611
Chicago/Turabian StyleGuo, Zhihui, Juan Yu, and Lin Dong. 2025. "A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting" Micromachines 16, no. 6: 611. https://doi.org/10.3390/mi16060611
APA StyleGuo, Z., Yu, J., & Dong, L. (2025). A Wide-Angle and Polarization-Insensitive Rectifying Metasurface for 5.8 GHz RF Energy Harvesting. Micromachines, 16(6), 611. https://doi.org/10.3390/mi16060611