Development of Energy-Selective Surface for Electromagnetic Protection
Abstract
:1. Introduction
2. Expansion of ESS Bandwidths
2.1. Single-Band ESS
2.2. Multi-Band ESSs
2.3. Wideband ESSs
3. Expansion of ESS Functions
3.1. Invisible ESSs
3.2. Protective ESSs
4. Expansion of ESS Applications
- Energy-Selective Radomes (ESRs): Integrating ESSs into radome structures to protect antennas from high-power interference while maintaining signal fidelity.
- Energy-Selective Protection (ESP): Deploying ESSs as adaptive shielding layers in electronic systems for real-time threat mitigation.
- Energy-Selective Antennas (ESAs): Embedding ESS functionalities directly into antenna designs to enable frequency-agile, self-protective radiation systems.
4.1. Energy-Selective Radomes
4.2. Energy-Selective Protection
4.3. Energy-Selective Antennas
5. Expansion of ESS Materials and Fabrication Processes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giri, D.; Tesche, F. Classification of intentional electromagnetic environments (IEME). IEEE Trans. Electromagn. Compat. 2004, 46, 322–328. [Google Scholar] [CrossRef]
- Baum, C.E. Reminiscences of high-power electromagnetics. IEEE Trans. Electromagn. Compat. 2007, 49, 211–218. [Google Scholar] [CrossRef]
- Lin, J.C. Weaponizing the microwave auditory effect and the Havana Syndrome. URSI Radio Sci. Bull. 2021, 2021, 36–38. [Google Scholar] [CrossRef]
- Arnesen, O.H.; Hoad, R. Overview of the European project ‘HIPOW’. IEEE Electromagn. Compat. Mag. 2014, 3, 64–67. [Google Scholar] [CrossRef]
- Feng, H.; Wu, X.; Li, Y. Review of the U.S. Congress’ Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack and Its Reports. Equip. Environ. Eng. 2020, 17, 132–137. [Google Scholar]
- Wang, C.; Wang, H.; Shen, L.; Abdi-Ghaleh, R.; Musa, M.Y.; Xu, Z.; Zheng, B. Structure-induced hyperbolic dispersion in waveguides. IEEE Trans. Antennas Propag. 2019, 67, 5463–5468. [Google Scholar] [CrossRef]
- Li, M.; Jing, L.; Lin, X.; Xu, S.; Shen, L.; Zheng, B.; Wang, Z.; Chen, H. Angular-adaptive spin-locked retroreflector based on reconfigurable magnetic metagrating. Adv. Opt. Mater. 2019, 7, 1900151. [Google Scholar] [CrossRef]
- Zheng, B.; Yang, Y.; Shao, Z.; Yan, Q.; Shen, N.H.; Shen, L.; Wang, H.; Li, E.; Soukoulis, C.M.; Chen, H. Experimental realization of an extreme-parameter omnidirectional cloak. Research 2019, 2019, 8282641. [Google Scholar] [CrossRef]
- Zhen, Z.; Qian, C.; Jia, Y.; Fan, Z.; Hao, R.; Cai, T.; Zheng, B.; Chen, H.; Li, E. Realizing transmitted metasurface cloak by a tandem neural network. Photonics Res. 2021, 9, B229–B235. [Google Scholar] [CrossRef]
- Dehdashti, S.; Shahsafi, A.; Zheng, B.; Shen, L.; Wang, Z.; Zhu, R.; Chen, H.; Chen, H. Conformal hyperbolic optics. Phys. Rev. Res. 2021, 3, 033281. [Google Scholar] [CrossRef]
- Fan, Z.; Qian, C.; Jia, Y.; Wang, Z.; Ding, Y.; Wang, D.; Tian, L.; Li, E.; Cai, T.; Zheng, B.; et al. Homeostatic neuro-metasurfaces for dynamic wireless channel management. Sci. Adv. 2022, 8, eabn7905. [Google Scholar] [CrossRef]
- Tan, Q.; Qian, C.; Cai, T.; Zheng, B.; Chen, H. Solving multivariable equations with tandem metamaterial kernels. Prog. Electromagn. Res. 2022, 175, 139–147. [Google Scholar] [CrossRef]
- Qian, C.; Wang, Z.; Qian, H.; Cai, T.; Zheng, B.; Lin, X.; Shen, Y.; Kaminer, I.; Li, E.; Chen, H. Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun. 2022, 13, 2694. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Cui, Z.; Xia, S.; Tang, X.; Zheng, B.; Lin, X.; Shen, L.; Chen, H.; Wu, Y. Reflectionless Refraction via One-Dimensional Ghost Polaritons in Planar Junctions of Hyperbolic Metasurfaces. Prog. Electromagn. Res. 2024, 181, 1–8. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, L.; Cai, Z.X.; Zhao, K.Z.; Ma, Q.; You, J.W.; Cui, T.J. Contactless Electromagnetic Human Sensing for Biomedical and Healthcare Applications. Prog. Electromagn. Res. 2025, 182, 121–139. [Google Scholar] [CrossRef]
- Li, R.; Huang, M.; Zou, Y.; Zheng, B.; Luo, C.; Shen, L.; Jin, H.; Chen, H. Experimental Realization of a One-Directional Broadband Transmissive Cloak in Microwaves. Laser Photonics Rev. 2024, 18, 2400611. [Google Scholar] [CrossRef]
- Li, C.; Yang, R.; Huang, X.; Fu, Q.; Fan, Y.; Zhang, F. Experimental demonstration of controllable PT and anti-PT coupling in a non-Hermitian metamaterial. Phys. Rev. Lett. 2024, 132, 156601. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, T.; Zhang, F.; Fu, Q.; Dong, J.; Kong, B.; Li, H. An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci. Rep. 2017, 7, 40441. [Google Scholar] [CrossRef]
- Cai, T.; Tang, S.; Zheng, B.; Wang, G.; Ji, W.; Qian, C.; Wang, Z.; Li, E.; Chen, H. Ultrawideband chromatic aberration-free meta-mirrors. Adv. Photonics 2021, 3, 016001. [Google Scholar] [CrossRef]
- Zhao, X.; Jiao, Y.; Liang, J.; Lou, J.; Zhang, J.; Lv, J.; Du, X.; Shen, L.; Zheng, B.; Cai, T. Multifield-controlled Terahertz hybrid metasurface for switches and logic operations. Nanomaterials 2022, 12, 3765. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Liu, D.; Wang, Z.; Wang, D.; Wu, B.; Wang, G.; Zheng, B.; Cai, T. Wideband and high-efficiency spin-locked achromatic meta-device. Nanophotonics 2023, 12, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yu, Q.; Qian, B.; Yu, K.; Xu, Y.; Zhou, H.; Shen, X. Fully-decoupled radio access networks: A resilient uplink base stations cooperative reception framework. IEEE Trans. Wirel. Commun. 2023, 22, 5096–5110. [Google Scholar] [CrossRef]
- Islam, S.; Pham, V.L.; Jang, T.H.; Yoo, H. Wave Manipulation with mmWave Wide Bandwidth and Extensive Spatial Coverage Using 1-Bit Reconfigurable Intelligent Surface. Prog. Electromagn. Res. 2024, 179, 83–94. [Google Scholar] [CrossRef]
- Kang, C.; Seo, J.; Jang, I.; Chung, H. Adjoint method-based Fourier neural operator surrogate solver for wavefront shaping in tunable metasurfaces. iScience 2025, 28, 111545. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, D.; Zhang, T.; Chen, T.; Ruan, Y.; Zheng, B. Metasurface-based focus-tunable mirror. Opt. Express 2019, 27, 30332–30339. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shen, L.; Jing, L.; Xu, S.; Zheng, B.; Lin, X.; Yang, Y.; Wang, Z.; Chen, H. Origami metawall: Mechanically controlled absorption and deflection of light. Adv. Sci. 2019, 6, 1901434. [Google Scholar] [CrossRef]
- Tan, Q.; Zheng, B.; Cai, T.; Qian, C.; Zhu, R.; Li, X.; Chen, H. Broadband spin-locked metasurface retroreflector. Adv. Sci. 2022, 9, 2201397. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Liu, D.; Zhuang, Y.; Zheng, B.; Lian, S.; Zou, X.; Cai, T. Axial ratio bandwidth enhanced circularly polarized transmitarray antenna with a flat gain response. Opt. Express 2022, 30, 40221–40230. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, Y.; Huang, F.; Xu, G.; Li, Q.; Wang, S.; Xu, Q.; Gu, J.; Han, J. Dual Non-Diffractive Beam Generation via Spin-and-Frequency Multiplexed All-Dielectric Metasurfaces. Prog. Electromagn. Res. 2024, 181, 21. [Google Scholar] [CrossRef]
- Li, R.; Huang, M.; Zou, Y.; Zhu, R.; Zheng, B.; Qiu, T.; Chen, H. Broadband Continuous Integer-and Fractional-Order Multimode OAM Beam Generator via a Metasurface. ACS Photonics 2025, 12, 870–878. [Google Scholar] [CrossRef]
- Cai, T.; Zhong, Y.; Liu, D.; Huang, H.; Wang, D.; Yang, Y.; Chen, H.; Lin, X. Observation of Polarization-Maintaining Near-Field Directionality. Prog. Electromagn. Res. 2024, 181, 35–41. [Google Scholar] [CrossRef]
- Wang, H.; Gao, W.; Zhu, R.; Wang, Z.; Xu, Z.; Zheng, B. Ultrathin acoustic metasurface holograms with arbitrary phase control. Appl. Sci. 2019, 9, 3585. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, R.; Shen, L.; Zheng, B. Reconfigurable metasurface hologram of dynamic distance via deep learning. Front. Mater. 2022, 9, 907672. [Google Scholar] [CrossRef]
- Jin, L.; Xie, J.; Pan, B.; Luo, G. Generalized phase retrieval model based on physics-inspired network for holographic metasurface. Prog. Electromagn. Res. 2023, 178, 103–110. [Google Scholar]
- Lee, S.; Hong, J.; Kang, J.; Park, J.; Lim, J.; Lee, T.; Jang, M.S.; Chung, H. Inverse design of color routers in CMOS image sensors: Toward minimizing interpixel crosstalk. Nanophotonics 2024, 13, 3895–3914. [Google Scholar] [CrossRef]
- Jia, Y.; Qian, C.; Fan, Z.; Ding, Y.; Wang, Z.; Wang, D.; Li, E.P.; Zheng, B.; Cai, T.; Chen, H. In situ customized illusion enabled by global metasurface reconstruction. Adv. Funct. Mater. 2022, 32, 2109331. [Google Scholar] [CrossRef]
- Chen, C.; Scientific, Z.H.G.; Center, T.I.; Chen, T.; Huang, M.; Lu, H.; Zheng, B. An Ultra-wideband and translucent metasurface absorber based on water. Prog. Electromagn. Res. 2023, 121, 117–125. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, D.; Lu, H.; Peng, L.; Cai, T.; Zheng, B. High-Efficiency Pancharatnam–Berry Metasurface-Based Surface Plasma Coupler. Adv. Photonics Res. 2024, 5, 2300315. [Google Scholar] [CrossRef]
- Jang, E.; Cho, J.; Kang, C.; Chung, H. Inverse design of ultrathin metamaterial absorber. arXiv 2025, arXiv:2504.14901. [Google Scholar]
- Wang, Z.; Qian, C.; Cai, T.; Tian, L.; Fan, Z.; Liu, J.; Shen, Y.; Jing, L.; Jin, J.; Li, E.P.; et al. Demonstration of Spider-Eyes-Like Intelligent Antennas for Dynamically Perceiving Incoming Waves. Adv. Intell. Syst. 2021, 3, 2100066. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Y.; Zhu, R.; Zou, Y.; Shen, L.; Zheng, B. Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks. Sci. Rep. 2022, 12, 12037. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, R.; Yang, B.; Lu, H.; Chen, T.; Zheng, B. Programmable metasurface RCS prediction under obstacles based on DNN. Front. Mater. 2022, 9, 996956. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, B.; Cai, T.; Li, X.; Liu, J.; Qian, C.; Chen, H. Machine–learning-enabled metasurface for direction of arrival estimation. Nanophotonics 2022, 11, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zheng, B.; Li, R.; Li, X.; Zou, Y.; Cai, T.; Chen, H. Diffraction Neural Network for Multi-Source Information of Arrival Sensing. Laser Photonics Rev. 2023, 17, 2300202. [Google Scholar] [CrossRef]
- Huang, M.; Li, R.; Zou, Y.; Zheng, B.; Qian, C.; Jin, H.; Chen, H. A comprehensive review of metasurface-assisted direction-of-arrival estimation. Nanophotonics 2024, 13, 4381–4396. [Google Scholar] [CrossRef]
- Salehi, M.; Behdad, N. A second-order dual X-/Ka-band frequency selective surface. IEEE Microw. Wirel. Components Lett. 2008, 18, 785–787. [Google Scholar] [CrossRef]
- Tao, K.; Li, B.; Tang, Y.; Wu, Q. Multi-layer tri-band frequency selective surface using stepped-and uniform-impedance resonators. Electron. Lett. 2016, 52, 583–585. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Dai, Z.; Hua, Z.; Lin, C.; Hou, Y.; Zhang, Q.; Wang, P.; Tan, Y. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters. PhotoniX 2022, 3, 21. [Google Scholar] [CrossRef]
- Wang, D.; Cui, X.; Liu, D.; Zou, X.; Wang, G.; Zheng, B.; Cai, T. Multi-Characteristic Integrated Ultra-Wideband Frequency Selective Rasorber. Prog. Electromagn. Res. 2024, 179, 49–59. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, Q.; Guo, S. A Dual-polarized Broadband Fabry-Perot Antenna Loaded with an Energy-selective Surface. In Proceedings of the 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 31 July–2 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1496–1498. [Google Scholar]
- Tian, J.; Cao, W. Reconfigurable flexible metasurfaces: From fundamentals towards biomedical applications. PhotoniX 2024, 5, 2. [Google Scholar] [CrossRef]
- Zhao, R.; Kang, X.; Zheng, Y.; Wu, H.; Wei, N.; Deng, S.; Wei, K.; Liu, X. High-power microwave limiters using recess-free AlGaN/GaN Schottky barrier diodes. IEEE Microw. Wirel. Technol. Lett. 2022, 33, 208–211. [Google Scholar] [CrossRef]
- Chen, D.; Xu, L.; Zhang, B.; Ma, H. Research on the effect of high power microwave on low noise amplifier and limiter based on the injection method. J. Electromagn. Anal. Appl. 2010, 2010, 1393. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.; Liu, J.; Liu, N.; Yu, H. Development of the plasma limiter for high power microwave weapon protection. In Proceedings of the 2023 24th International Vacuum Electronics Conference (IVEC), Chengdu, China, 25–28 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–2. [Google Scholar]
- Miligy, A.F.; Elfeky, A.H.; Kheirallah, H.N.; Rizk, M.R.; Madany, Y.M. Study of Miniaturized SIW and RWG Limiters for S-Band Receiver Protector Radar and Communication Applications. Prog. Electromagn. Res. 2023, 132, 171–185. [Google Scholar] [CrossRef]
- Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 2005, 485, 108–114. [Google Scholar] [CrossRef]
- Parejo, P.G.; Zayat, M.; Levy, D. Highly efficient UV-absorbing thin-film coatings for protection of organic materials against photodegradation. J. Mater. Chem. 2006, 16, 2165–2169. [Google Scholar] [CrossRef]
- Yang, C.; Huang, J.; Liu, P. A new method of electromagnetic protection based on energy selective surface. J. Hebei Univ. Sci. Technol. 2011, 32, 81–84. [Google Scholar]
- Yang, C.; Huang, J.; Liu, P. Protection and simulation of energy selective surface based on voltage conductive structure. Chin. J. Ship Res. 2012, 7, 98–103. [Google Scholar]
- Yang, C.; Liu, P.; Liu, J.; Zhou, D.; Li, G. Transient response of energy selective surface. High Power Laser Part. Beams 2013, 25, 1045–1049. [Google Scholar] [CrossRef]
- Hu, N.; Wang, K.; Zhang, J.; Zha, S.; Wu, Z.; Liu, C.; Liu, P. Design of ultrawideband energy-selective surface for high-power microwave protection. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 669–673. [Google Scholar] [CrossRef]
- Wan, S.; Liu, P.; He, J. Study on the shielding effectiveness of metal mesh to linear polarized electromagnetic wave. Saf. EMC 2010. [Google Scholar]
- Zhang, J.; Lin, M.; Wu, Z.; Ding, L.; Bian, L.A.; Liu, P. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide. IEEE Trans. Antennas Propag. 2019, 67, 2494–2502. [Google Scholar] [CrossRef]
- Wu, H.; Hu, J.; Zhong, L.; Lin, J. Field-path collaborative simulation and experimental study of electromagnetic energy selective surfaces. High Power Laser Part. Beams 2017, 29, 105–109. [Google Scholar]
- Yang, C.; Wendt, T.; De Stefano, M.; Kopf, M.; Becker, C.M.; Grivet-Talocia, S.; Schuster, C. Analysis and optimization of nonlinear diode grids for shielding of enclosures with apertures. IEEE Trans. Electromagn. Compat. 2021, 63, 1884–1895. [Google Scholar] [CrossRef]
- Hu, N.; Zhao, Y.; Zhang, J.; Liu, P.; Xu, H.; Costa, F. High-performance energy selective surface based on equivalent circuit design approach. IEEE Trans. Antennas Propag. 2021, 70, 4526–4538. [Google Scholar] [CrossRef]
- Liu, P.; Hu, N. Theory and application of energy selective electromagnetic protection method. Chin. J. Radio Sci. 2024. [Google Scholar]
- Yi, B.; Dong, Y.; Yang, C.; Liu, P.; Li, Y. Design and simulation of an improved energy selective surface. Prog. Electromagn. Res. 2015, 60, 57–66. [Google Scholar] [CrossRef]
- Yang, G.h.; Yang, X.; Zhang, K.; Wang, Y.; Zhang, T. An L-band narrowband energy selective surface design. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–3. [Google Scholar]
- Deng, F.; Xi, X.; Li, J.; Ding, F. A method of designing a field-controlled active frequency selective surface. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 630–633. [Google Scholar] [CrossRef]
- Wang, K.; Liu, P.; Liu, H.; Meng, J. A miniaturized, self-actuated, energy selective spatial filter. In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1689–1692. [Google Scholar]
- Chen, Z.; Chen, X.; Xu, G. A spatial power limiter using a nonlinear frequency selective surface. Int. J. Microw.-Comput.-Aided Eng. 2018, 28, e21205. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, W.; Han, G.; Han, L.; Ma, R.; Chen, X. Circuit-Based Dual-Resonance Energy Selective Surface. IEEE Trans. Electromagn. Compat. 2023, 65, 2015–2021. [Google Scholar] [CrossRef]
- Lu, S.; Yang, G.; Zhang, K.; Li, Y. Surface simulation and design of C-band energy selective surface. In Proceedings of the 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 9–12 December 2012; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4. [Google Scholar]
- Zha, S.; Wu, Z.; Xing, S.; Xie, J. A High-Performance Energy Selective Surface Design Method based on Series Resonant. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 27–29 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Wu, Z.; Liu, P.; Tian, T.; Ni, X. A kind of X-band Energy Selective Surface for High Density Radiation Field Protection. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Hu, Y.; Shi, G.; Chen, Y.; Wei, F.; Liao, Y. Design and Simulation of An X-band bandpass energy selection surface. In Proceedings of the 2020 6th Global Electromagnetic Compatibility Conference (GEMCCON), Xi’an, China, 20–23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–3. [Google Scholar]
- Liu, X.; Tang, S.; Ren, J. A Ku Band Broadband Energy Selective Surface Design. In Proceedings of the 2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 24–26 February 2023; IEEE: Piscataway, NJ, USA, 2023; Volume 6, pp. 373–377. [Google Scholar]
- Ni, X.; Liu, P.; Wu, Z.; Zha, S.; Xu, Y.; Liu, C.; Ding, H. A K-Band Energy Selective Surface Based on Resonance Design. In Proceedings of the 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Bejing, China, 16–19 May 2024; IEEE: Piscataway, NJ, USA, 2024; Volume 1, pp. 1–3. [Google Scholar]
- Huang, X.; Hou, W.; Zang, Y.; Lin, L.; Yao, W.; Liang, B.; Xu, K.D. A Narrowband Energy-Selective Surface With High-Selectivity for 5G Wireless Communications. IEEE Trans. Microw. Theory Tech. 2024, early access, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Deng, L.; Chen, L.; Qu, M.; Liu, X.; Chen, W. An S-Band Dual-Polarization Energy Selective Surface with Low-Cost Design. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 15–18 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Chen, Y.; Wang, D.; Li, N.; Zhao, J.; Luo, H.; Chen, F.; Li, X. Design of Broadband Polarization-insensitive Energy Selective Surface for S-band Based on Split Resonance Ring Structure. J. Microwaves 2024, 1–8. [Google Scholar]
- Yao, L.; Huang, X.; Chen, H.; Jiang, H.; Liang, Y.; Liu, P. A High Efficiency and Effectiveness Designing Methodology for Discrete-Coded Energy Selective Surface Based on Machine Learning. IEEE Trans. Antennas Propag. 2024, 73, 2427–2437. [Google Scholar] [CrossRef]
- Qian, C.; Zheng, B.; Shen, Y.; Jing, L.; Li, E.; Shen, L.; Chen, H. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 2020, 14, 383–390. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, H.; An, Y.; Hou, T.; Chang, Q.; Huang, L.; Li, J.; Su, R.; Zhou, P. Fiber laser development enabled by machine learning: Review and prospect. PhotoniX 2022, 3, 16. [Google Scholar] [CrossRef]
- Fan, Z.; Qian, C.; Jia, Y.; Chen, M.; Zhang, J.; Cui, X.; Li, E.P.; Zheng, B.; Cai, T.; Chen, H. Transfer-learning-assisted inverse metasurface design for 30% data savings. Phys. Rev. Appl. 2022, 18, 024022. [Google Scholar] [CrossRef]
- Lin, P.; Qian, C.; Zhang, J.; Chen, J.; Zhu, X.; Wang, Z.; Huangfu, J.; Chen, H. Enabling intelligent metasurfaces for semi-known input. Prog. Electromagn. Res. 2023, 178, 83–91. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Yi, J.N.; Mao, Y.; Qi, X.Y.; Hong, R.; Liu, Q.H. A novel optical proximity correction (OPC) system based on deep learning method for the extreme ultraviolet (EUV) lithography. Prog. Electromagn. Res. 2023, 176, 95–108. [Google Scholar] [CrossRef]
- Kreiss, L.; Jiang, S.; Li, X.; Xu, S.; Zhou, K.C.; Lee, K.C.; Mühlberg, A.; Kim, K.; Chaware, A.; Ando, M.; et al. Digital staining in optical microscopy using deep learning—A review. PhotoniX 2023, 4, 34. [Google Scholar] [CrossRef]
- Zhu, S.k.; Zheng, Z.h.; Meng, W.; Chang, S.s.; Tan, Y.; Chen, L.J.; Fang, X.; Gu, M.; Chen, J.h. Harnessing disordered photonics via multi-task learning towards intelligent four-dimensional light field sensors. PhotoniX 2023, 4, 26. [Google Scholar] [CrossRef]
- Feng, N.; Wang, H.; Wang, X.; Zhang, Y.; Qian, C.; Huang, Z.; Chen, H. Highly Accurate and Efficient 3D Implementations Empowered by Deep Neural Network for 2DLMs-Based Metamaterials. Prog. Electromagn. Res. 2024, 180, 1–11. [Google Scholar] [CrossRef]
- Qian, C.; Jia, Y.; Wang, Z.; Chen, J.; Lin, P.; Zhu, X.; Li, E.; Chen, H. Autonomous aeroamphibious invisibility cloak with stochastic-evolution learning. Adv. Photonics 2024, 6, 016001. [Google Scholar] [CrossRef]
- Amin, Y.; Cecere, P.; Pomili, T.; Pompa, P.P. Smartphone-Integrated YOLOv4-CNN Approach for Rapid and Accurate Point-of-Care Colorimetric Antioxidant Testing in Saliva. Prog. Electromagn. Res. 2024, 181, 9–19. [Google Scholar] [CrossRef]
- Qiu, H.; Fang, L.; Xi, R.; Mu, Y.; Xia, D.; Zhang, Y.; Ma, S.; Han, J.; Feng, Q.; Li, Y.; et al. Wideband High Gain Lens Antenna Based on Deep Learning Assisted Near-Zero Refractive Index Metamaterial. Prog. Electromagn. Res. 2025, 182, 13–25. [Google Scholar] [CrossRef]
- Bai, X.; Tan, S.; Mikki, S.; Li, E.; Cui, T.J. Information-theoretic measures for reconfigurable metasurface-enabled direct digital modulation systems: An electromagnetic perspective. Prog. Electromagn. Res. 2024, 179, 1–18. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, J.; Zheng, B.; Qian, C.; Cai, T.; Li, E.; Chen, H. Eye accommodation-inspired neuro-metasurface focusing. Nat. Commun. 2023, 14, 3301. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Luo, J.; Liao, J.; He, S. High-Accuracy Rapid Identification and Classification of Mixed Bacteria Using Hyperspectral Transmission Microscopic Imaging and Machine Learning. Prog. Electromagn. Res. 2023, 178, 49–62. [Google Scholar] [CrossRef]
- Sun, P.; Yang, H.; Zou, X.; Feng, K.; Zhang, R.; He, S. Dual-Color Self-Synchronized Cross-Phase-Modulation Mode-Locked Fiber Laser for Coherent Anti-Stokes Raman Scattering Detection. Prog. Electromagn. Res. 2024, 181, 81–87. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, P. Research on a double layer complementary energy selective surface. Proc. Natl. Antenna Annu. Conf. 2015, 2. [Google Scholar]
- Gao, Y.; Chen, X. Structure design and simulation analysis of a novel electromagnetic energy selective surface. J. Test Meas. Technol. 2021, 35, 79–83. [Google Scholar]
- Zhou, Q.; Liu, P.; Liu, C.; Zhao, N.; Zheng, R. A dual-band energy selective surface with hexagonal spiral structure. In Proceedings of the 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 17–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; Volume 1, pp. 8–10. [Google Scholar]
- Hu, N.; Zha, S.; Tian, T.; Liu, P. Design and analysis of multiband energy selective surface based on semiconductors. IEEE Trans. Electromagn. Compat. 2022, 64, 1076–1085. [Google Scholar] [CrossRef]
- Hu, N.; Zha, S.; Liu, C.; Liu, P. Design of A Dual-band Energy Selective Surface. J. Microwaves 2022, 38, 1–5. [Google Scholar]
- Zhong, S.; Chen, M.; Xu, G.; Chen, Y. Dual-Band Energy Selective Surface with Enhanced Independence Based on Two-Layer Diode-Loaded FSS. IEEE Trans. Antennas Propag. 2024, 72, 5011–5020. [Google Scholar] [CrossRef]
- Hu, N.; Liu, P.; He, H.; Zhou, T.; Xia, H. Concept and design of frequency-tunable energy selective surface. In 2023 National Microwave and Millimeter Wave Conference Papers Collection (Part 4); NUDT: Changsha, China, 2023; pp. 56–58. [Google Scholar]
- Zhuo, D.; Huang, X.; Li, Y.; Xu, Y.; Yao, L.; Lin, M.; Liu, P. Design and verification of a polarization-insensitive and angel-stable tunable electromagnetic scattering structure. Chin. J. Radio Sci. 2023, 38, 205–210. [Google Scholar]
- Xia, R.; Ren, J.; Xue, Z. A Tunable Ultra-Broadband Energy Selective Surface Design. In Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 20–22 September 2024; IEEE: Piscataway, NJ, USA, 2024; Volume 7, pp. 931–935. [Google Scholar]
- Li, H.; Yuan, X.; Wang, Q. Study on electromagnetic pulse protection performance of Y—Type energy selective surface. Piezoelectrics Acoustooptics 2017, 39, 717–721. [Google Scholar]
- Wu, Z.; Xu, Y.; Liu, P. Design of ultra-wideband energy selective surface for protection of high intensity EM fields. J. Natl. Univ. Def. Technol. 2023, 45, 179–185. [Google Scholar]
- Jiang, H.; Deng, B.; Xu, Y.; Tian, T.; Liu, P. Ultra-Wideband Energy-Selective Structure Based on Spoof Surface Plasmon Polariton. IEEE Antennas Wirel. Propag. Lett. 2024, 24, 537–541. [Google Scholar] [CrossRef]
- Li, C.; Zhang, T.; Bao, H.; Ding, D. Design of a Broadband Energy Selective Surface with Ultra-High Shielding Efficiency. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4303–4307. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Zhang, T.; Bao, H.; Ding, D. Design and Simulation of an Ultra-Wideband Energy Selective Surface. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi’an, China, 16–19 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–3. [Google Scholar]
- Zhou, L.; Liu, L.; Shen, Z. High-performance energy selective surface based on the double-resonance concept. IEEE Trans. Antennas Propag. 2021, 69, 7658–7666. [Google Scholar] [CrossRef]
- Tian, T.; Huang, X.; Xu, Y.; Liu, P.; Liu, C.; Hu, N.; Zhang, J.; Wu, Z. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding. IEEE Trans. Electromagn. Compat. 2023, 66, 224–233. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Y.; Liu, P.; Tian, T.; Lin, M. An ultra-broadband energy selective surface design method: From filter circuits to metamaterials. IEEE Trans. Antennas Propag. 2023, 71, 5865–5873. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, P.; Liu, C.; Jiang, H.; Tian, T. Multilayer Energy Selective Surface With Wide Operational Band and High Shielding Effectiveness Based on Second-Order Filter. IEEE Trans. Electromagn. Compat. 2024, 67, 337–340. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L. Research on the amplitude limiting characteristics of Ultra-Wideband Energy Selective Surface. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi’an, China, 16–19 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–3. [Google Scholar]
- Wu, Z.; Liu, P.; Deng, B.; Tian, T.; Zha, S.; Ni, X. An ultrabroadband energy selective surface with nonreciprocal performance for HIRF protection. IEEE Trans. Electromagn. Compat. 2023, 65, 1202–1210. [Google Scholar] [CrossRef]
- Hu, N.; Zhu, X.; Wang, H.; Yin, H.; Xu, Y. Design and analysis of response threshold of energy selective surface based on serial LC circuits. Int. J. Microw. Wirel. Technol. 2024, 16, 1181–1186. [Google Scholar] [CrossRef]
- Liu, X.; Ran, C.; Feng, W.; Wang, Y.; Zhang, X.; Liu, S. Design of An Energy Selective Surface with Adjustable Response Threshold. In Proceedings of the 2023 IEEE 11th Asia-Pacific Conference on Antennas and Propagation (APCAP), Guangzhou, China, 22–24 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–2. [Google Scholar]
- Guo, Y.; Li, G. Energy-selective-surface-based dynamic phase modulation surface. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1363–1367. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, B.; Shen, L.; Wang, H.; Zhang, X.; Zheludev, N.I.; Zhang, B. Ray-optics cloaking devices for large objects in incoherent natural light. Nat. Commun. 2013, 4, 2652. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, L.; Zheng, B.; Hao, R.; Yin, W.; Li, E.; Soukoulis, C.M.; Chen, H. Full-polarization 3D metasurface cloak with preserved amplitude and phase. Adv. Mater. 2016, 28, 6866–6871. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Zheng, B.; Lou, J.; Shen, L.; Yang, Y.; Tang, S.; Li, E.; Qian, C.; Chen, H. Experimental Realization of a Superdispersion-Enabled Ultrabroadband Terahertz Cloak. Adv. Mater. 2022, 34, 2205053. [Google Scholar] [CrossRef]
- Zheng, B.; Lu, H.; Qian, C.; Ye, D.; Luo, Y.; Chen, H. Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks. Electromagn. Sci. 2023, 1, 0020092. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, Y.; Zhang, J.; Huang, Z.; Zheng, B.; Chen, H.; Ye, D. Full-parameter omnidirectional transformation optical devices. Natl. Sci. Rev. 2024, 11, nwad171. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, B.; Li, R.; Shen, L.; Li, X.; Lu, H.; Zhu, R.; Cai, T.; Chen, H. Evolutionary games-assisted synchronization metasurface for simultaneous multisource invisibility cloaking. Adv. Funct. Mater. 2024, 34, 2401909. [Google Scholar] [CrossRef]
- Ran, C.; Liu, X.; Yang, D.; Zhang, X. Design of an energy selective surface with ultra-wideband absorption. In Proceedings of the 2023 National Antenna Annual Conference (Part 2), Harbin, China, 21–23 August 2023; UESTC: Chengdu, China, 2023; pp. 110–112. [Google Scholar]
- Yuan, J.; Kong, X.; Chen, K.; Shen, X.; Wang, Q.; Wu, C. Intelligent radome design with multilayer composites to realize asymmetric transmission of electromagnetic waves and energy isolation. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1511–1515. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, W.; Chen, X.; Han, G.; Han, L.; Su, J.; Yang, R. A low-profile energy selective surface with ultra-wide absorption band. IEEE Trans. Microw. Theory Tech. 2022, 71, 1348–1355. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z. 3-D absorptive energy-selective structures. IEEE Trans. Antennas Propag. 2021, 69, 5664–5672. [Google Scholar] [CrossRef]
- Qu, M.; He, Z.; Su, J.; Nayyeri, V. A Rasorber With Energy-Selective Passband and Ultrawideband Absorptive Out-of-Band. IEEE Trans. Microw. Theory Tech. 2024, 72, 5643–5652. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z. Diffusive energy-selective surface with low backscattering. IEEE Trans. Antennas Propag. 2021, 70, 430–439. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W. Energy Selective Surface with Wide Scattering Dand. In Proceedings of the 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 10–13 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Zhang, X.; Liu, X.; Liu, S.; Yang, D.; Chen, S. Low-profile energy and frequency integrated selective surface with ultra-wideband protection capability. In Proceedings of the 2023 National Antenna Annual Conference (Part 2), Harbin, China, 21–23 August 2023; UESTC: Chengdu, China, 2023; pp. 116–118. [Google Scholar]
- Qin, D.; Zhang, W. Design of energy selective surfaces with wide reflection band. In Proceedings of the 2019 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 425–427. [Google Scholar]
- Tan, J.; Yang, C.; Liu, P.; Liu, J. Design and simulation of cascaded energy-frequency selective surfaces. Chin. J. Ship Res. 2015, 10, 79–83. [Google Scholar]
- Cho, S.S.; Hong, I.P. Design of Wideband Energy Selective Surface to Defend against High-power Signals. In Proceedings of the 2023 7th International Electromagnetic Compatibility Conference (EMC Turkiye), İstanbul, Turkiye, 17–20 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Wang, L.; Li, C.; Zhang, T.; Bao, H.; Zhou, Y.; Zheng, S.; Ding, D. Design of Energy Selective Surface with Ultra-Wideband Protection. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 15–18 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Gong, W.; Zhang, W. Design of Energy Selective Surface with Ultra-wide Protection Band. In Proceedings of the 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Shenzhen, China, 11–13 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 106–108. [Google Scholar]
- Liu, H.; Liu, S.; Liu, Y.; Chen, Z.; Wang, Y.; Wang, B. Ultra-Wideband Active Frequency Selective Surface With Wideband Rejection Characteristic. In Proceedings of the 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Bejing, China, 16–19 May 2024; IEEE: Piscataway, NJ, USA, 2024; Volume 1, pp. 1–3. [Google Scholar]
- Jiang, Y.; Tian, L.; Jiang, Z.H.; Hong, W. Analysis and Design of Ultra-thin Filtering Energy Selective Surfaces with Ultra-Wideband and High Shielding Effectiveness. IEEE Trans. Antennas Propag. 2024, 73, 641–646. [Google Scholar] [CrossRef]
- Dong, J.; Cheng, Y.; Lin, S.; Zhou, Y.; Chen, Q. A Frequency-energy Composite Selective Surface for High-power Microwave Protection. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–15 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar]
- Hu, N.; Liu, C.; Tian, T.; Xu, Y.; Liu, P. Design and analysis of response threshold of energy selective surface based on diode girds. IEEE Trans. Electromagn. Compat. 2023, 65, 386–394. [Google Scholar] [CrossRef]
- Li, A.; Wu, X.; Xu, Y.; Zhou, Y. The lmpaet of Diode Selection on the Performance of Energy Selective Surface Radome. J. Aie Force Eng. Univ. 2024, 25, 12–16. [Google Scholar]
- Han, C.; Wei, J.; Jiang, T.; Liu, Z.; Zhang, J. Designing and Testing of Energy Selective Surface Based on PIN Diode. In Proceedings of the 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Zhuhai, China, 1–4 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar]
- Yi, B.; Li, L.; Chen, Z. Research into strong electromagnetic radiation response of navigation antenna with loaded energy selective surface. Shipboard Electron. Countermeas. 2022, 45, 95–99. [Google Scholar]
- Wang, K. Research on Energy Selective Structure Design and Navigation Protection Application. PhD Thesis, National University of Defense Technology, Changsha, China, 2017. [Google Scholar]
- Hu, N.; Xu, Y.; Liu, P. A vector analysis method for coupling effects between energy selective structures and antennas. J. Electron. Inf. Technol. 2023, 45, 3945–3954. [Google Scholar]
- Yao, L.; Huang, X.; Liu, W.; Liu, P. Design and Analysis of Integrated Curved Energy Selective Surface(C-ESS) Radome. In 2023 National Microwave and Millimeter Wave Conference Papers Collection (Part 2); College of Electronic Science, National University of Defense Technology: Chengdu, China, 2023; pp. 117–119. [Google Scholar]
- Zhou, Q.; Liu, P.; Wang, K.; Tu, H.; Liu, H. Design and simulation of energy selective radome integrated with monopole antenna. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar]
- Zhou, Q.; Liu, P.; Yi, B.; Yu, D. Design and realization of a self-actuated frequency-selective radome integrated with microstrip antenna. Int. J. Microw. Wirel. Technol. 2018, 10, 883–890. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, M.; Zhang, J.; Liu, J. Energy selective filter with power-dependent transmission effectiveness in waveguide. Electronics 2019, 8, 236. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, N.; Wu, Z.; Deng, B.; Lin, M.; Ding, L.; Liu, P. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave. IEEE Trans. Antennas Propag. 2021, 69, 7679–7687. [Google Scholar] [CrossRef]
- Wang, M.; Tang, M.; Zhang, H.C.; Mao, J. Energy selective antenna: Concept, design, and experiment. IEEE Trans. Electromagn. Compat. 2023, 65, 539–545. [Google Scholar] [CrossRef]
- Deng, B.; Lin, M.; Zhang, J.; Wu, Z.; Liu, C.; Liu, P. PIN-diode-based high-intensity radiation fields (HIRF) protection of a printed dipole antenna. IEEE Trans. Electromagn. Compat. 2020, 63, 198–205. [Google Scholar] [CrossRef]
- Lin, S.; Cheng, Y.; Dong, J.; Zhou, Y.; Chen, Q. A Microstrip Energy Selective Antenna Based on PIN Diodes. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–4. [Google Scholar]
- Fang, J.; Wu, Q.; Su, D. An Energy Selective Antenna Based on the Folded Dipole Structure and PIN Diodes. IEEE Trans. Electromagn. Compat. 2023, 65, 2006–2014. [Google Scholar] [CrossRef]
- Si, M.; Chen, J.; Fan, K. A GPS Antenna Protection System Loaded with Energy Selective Surface. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xi’an, China, 16–19 August 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–3. [Google Scholar]
- Stefanovich, G.; Pergament, A.; Stefanovich, D. Electrical switching and Mott transition in VO2. J. Physics: Condens. Matter 2000, 12, 8837. [Google Scholar] [CrossRef]
- Hao, R.; Li, Y.; Liu, F.; Sun, Y.; Tang, J.; Chen, P.; Jiang, W.; Wu, Z.; Xu, T.; Fang, B. Electric field induced metal–insulator transition in VO2 thin film based on FTO/VO2/FTO structure. Infrared Phys. Technol. 2016, 75, 82–86. [Google Scholar] [CrossRef]
- Leroy, J.; Crunteanu, A.; Bessaudou, A.; Cosset, F.; Champeaux, C.; Orlianges, J.C. High-speed metal-insulator transition in vanadium dioxide films induced by an electrical pulsed voltage over nano-gap electrodes. Appl. Phys. Lett. 2012, 100, 213507. [Google Scholar] [CrossRef]
- Chen, Q.; Cheng, Y.; Min, W.; Xiao, Y.; Xia, Z. A composite energy-selective surface based on diode-induced VO2 conduction for the applications of adaptive electromagnetic protection. Microw. Opt. Technol. Lett. 2024, 66, e33895. [Google Scholar] [CrossRef]
- Hu, N.; Xu, Y.; Liu, P. A Numerical Analysis of Conformal Energy Selective Surface Array with Synthetic Functions Expansion. Appl. Comput. Electromagn. Soc. J. ACES 2024, 39, 115–122. [Google Scholar] [CrossRef]
- Xiong, H.; Suo, M.; Li, X.; Xiao, D.; Zhang, H. Design of Energy-Selective Surface with an Ultra-wide Shielding Band for High-Power Microwave Protection. ACS Appl. Electron. Mater. 2023, 6, 696–701. [Google Scholar] [CrossRef]
- Li, A.; Wu, X.; Xu, Y.; Zhou, Y.J. A Flexible Energy Selective Surface for Adaptive High-power Microwave Protection. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 17 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
- Wu, Z.; Liu, P.; Lin, M.; Zha, S.; Ni, X. A microwave field-induced nonlinear metamaterial with wafer integration level. ACS Appl. Mater. Interfaces 2023, 15, 16189–16197. [Google Scholar] [CrossRef]
- Ni, X.; Liu, P.; Wu, Z.; Zha, S.; Xu, Y.; Liu, C.; Ding, H. A Wafer-Integrated Ultra-wideband Energy Selective Surface Design Method. In Proceedings of the 2024 IEEE MTT-S International Wireless Symposium (IWS), Beijing, China, 16–19 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–3. [Google Scholar]
- Wu, Z.; Liu, P.; Ni, X.; Xu, Y. A kind of Transparent Energy Selective Surface Design Method Based on Semiconductor Micro-Nano Hybrid Integration. In Proceedings of the 2023 IEEE 7th International Symposium on Electromagnetic Compatibility (ISEMC), Hangzhou, China, 20–23 October 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Luo, C.; Zhao, J.; Han, H.; Lu, H.; Zheng, B. Development of Energy-Selective Surface for Electromagnetic Protection. Micromachines 2025, 16, 555. https://doi.org/10.3390/mi16050555
Lv J, Luo C, Zhao J, Han H, Lu H, Zheng B. Development of Energy-Selective Surface for Electromagnetic Protection. Micromachines. 2025; 16(5):555. https://doi.org/10.3390/mi16050555
Chicago/Turabian StyleLv, Jinghao, Caofei Luo, Jiwei Zhao, Haoran Han, Huan Lu, and Bin Zheng. 2025. "Development of Energy-Selective Surface for Electromagnetic Protection" Micromachines 16, no. 5: 555. https://doi.org/10.3390/mi16050555
APA StyleLv, J., Luo, C., Zhao, J., Han, H., Lu, H., & Zheng, B. (2025). Development of Energy-Selective Surface for Electromagnetic Protection. Micromachines, 16(5), 555. https://doi.org/10.3390/mi16050555