Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparations
2.2. Preparation and Characterization
3. Results
3.1. Principle and Performance Testing
3.2. Detection of Human Motor Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Li, H.; Li, Y. Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 2024, 24, 4002–4011. [Google Scholar] [CrossRef]
- NajafiKhoshnoo, S.; Kim, T.; Tavares-Negrete, J.A.; Pei, X.; Das, P.; Lee, S.W.; Rajendran, J.; Esfandyarpour, R. A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv. Mater. Technol. 2023, 8, 2201655. [Google Scholar] [CrossRef]
- Niu, H.; Li, H.; Li, Y.; Yue, W.; Gao, S.; Wei, X.; Shen, G. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent perception. Nano Energy 2023, 107, 108144. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.-Z.; Fang, S.; Sun, Y.; Niu, J.; Lai, W.-Y. Wireless human–machine interface based on artificial bionic skin with damage reconfiguration and multisensing capabilities. ACS Appl. Mater. Interfaces 2022, 14, 47300–47309. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Sun, G.; Wang, G.; Han, Q.; Meng, C.; Wei, Z.; Li, Y. Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv. Fiber Mater. 2024, 6, 1955–1968. [Google Scholar] [CrossRef]
- Dutta, T.; Chaturvedi, P.; Llamas-Garro, I.; Velázquez-González, J.S.; Dubey, R.; Mishra, S.K. Smart materials for flexible electronics and devices: Hydrogel. RSC Adv. 2024, 14, 12984–13004. [Google Scholar] [CrossRef]
- Truong, T.T.N.; Kim, J. High-performance resistive/capacitive pressure sensor applied on smart insoles detecting abnormal activity. J. Appl. Polym. Sci. 2024, 141, e55768. [Google Scholar] [CrossRef]
- Moghaddam, M.K.; Moezzi, M.; Torabi, T.; Barez, F. Flexible capacitive pressure sensor based on warp knitted spacer fabric. Sens. Actuators A Phys. 2024, 376, 115602. [Google Scholar] [CrossRef]
- Hesar, M.E.; Seyedsadrkhani, N.S.; Khan, D.; Naghashian, A.; Piekarski, M.; Gall, H.; Schermuly, R.; Ghofrani, H.A.; Ingebrandt, S. AI-enabled epidermal electronic system to automatically monitor a prognostic parameter for hypertension with a smartphone. Biosens. Bioelectron. 2023, 241, 115693. [Google Scholar] [CrossRef]
- Meena, K.K.; Arief, I.; Ghosh, A.K.; Liebscher, H.; Hait, S.; Nagel, J.; Heinrich, G.; Fery, A.; Das, A. 3D-printed stretchable hybrid piezoelectric-triboelectric nanogenerator for smart tire: Onboard real-time tread wear monitoring system. Nano Energy 2023, 115, 108707. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, J.; Chen, F.; Xie, C.; Zhuang, Q.; Huang, Q.; Zheng, Z. Construction of 3D patterns through modified electrochemical replication and transfer. Adv. Mater. Technol. 2024, 9, 2301695. [Google Scholar] [CrossRef]
- Feng, Z.; He, Q.; Wang, X.; Lin, Y.; Qiu, J.; Wu, Y.; Yang, J. Capacitive sensors with hybrid dielectric structures and high sensitivity over a wide pressure range for monitoring biosignals. ACS Appl. Mater. Interfaces 2023, 15, 6217–6227. [Google Scholar] [CrossRef] [PubMed]
- Pai, B.S.; Kamath, K.; Lathakumari, K.; Pandi, N.V.; Goutham, M. Design, development, fabrication and evaluation of the dynamics of a graphene based underwater acoustic vector sensor: A simulation and experimental study. Ocean. Eng. 2023, 283, 114877. [Google Scholar]
- Lee, Y.; Park, J.; Cho, S.; Shin, Y.-E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054. [Google Scholar] [CrossRef]
- Cheng, A.J.; Wu, L.; Sha, Z.; Chang, W.; Chu, D.; Wang, C.H.; Peng, S. Recent advances of capacitive sensors: Materials, microstructure designs, applications, and opportunities. Adv. Mater. Technol. 2023, 8, 2201959. [Google Scholar] [CrossRef]
- Lv, C.; Tian, C.; Jiang, J.; Dang, Y.; Liu, Y.; Duan, X.; Li, Q.; Chen, X.; Xie, M. Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception. Adv. Sci. 2023, 10, 2206807. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Zhang, B.; Liu, W.; Zhang, H.; Zhang, D. High sensitivity SnSe2/MWCNTs flexible pressure sensors based on a lotus leaf biomimetic microstructure for electronic skin. J. Mater. Chem. C 2024, 12, 10669–10677. [Google Scholar] [CrossRef]
- Su, B.; Gong, S.; Ma, Z.; Yap, L.W.; Cheng, W. Mimosa-inspired design of a flexible pressure sensor with touch sensitivity. Small 2015, 11, 1886–1891. [Google Scholar] [CrossRef]
- Bonam, S.; Bhagavathi, K.A.; Joseph, J.; Singh, S.G.; Vanjari, S.R.K. An ultra-flexible tactile sensor using silk piezoelectric thin film. IEEE Sens. J. 2023, 23, 18656–18663. [Google Scholar] [CrossRef]
- Li, Z.; Zou, L.; Chu, C.; Tang, G.; Deng, X.; Xu, F.; Yan, X.; Li, X. A research on flexible pressure/temperature composite tactile sensor for electronic skin. AIP Adv. 2024, 14, 065309. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, J.; Li, Y.; Huang, L. Flexible and high sensitive capacitive pressure sensor with microstructured electrode inspired by ginkgo leaf. J. Phys. D Appl. Phys. 2021, 54, 465401. [Google Scholar] [CrossRef]
- Zhang, X.; Dang, D.; Su, S.; Wang, Z.; Tong, Z. A highly sensitive flexible capacitive pressure sensor with wide detection range based on bionic gradient microstructures. IEEE Sens. J. 2023, 23, 15413–15423. [Google Scholar] [CrossRef]
- Zhong, Y.; Gu, F.; Wu, L.; Wang, J.; Dai, S.; Zhu, H.; Cheng, G.; Ding, J. Porous conductive electrode for highly sensitive flexible capacitive pressure sensor over a wide range. J. Alloys Compd. 2023, 934, 167919. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, J. Flexible capacitive pressure sensor based on a double-sided microstructure porous dielectric layer. Micromachines 2022, 14, 111. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Jiang, H.; Chen, Y.; Yang, Q. Ultrasensitive hierarchical piezoresistive pressure sensor for wide-range pressure detection. Adv. Intell. Syst. 2021, 3, 2100070. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, P.; Zhang, K.; Bu, X.; Dou, G.; Huang, L. Fabrication of flexible capacitive pressure sensors by adjusting the height of the interdigital electrode. ACS Appl. Electron. Mater. 2024, 6, 4539–4547. [Google Scholar] [CrossRef]
- Wu, S.; Yang, C.; Hu, J.; Pan, M.; Meng, W.; Liu, Y.; Li, P.; Peng, J.; Zhang, Q.; Chen, P. Normal-direction graded hemispheres for ionic flexible sensors with a record-high linearity in a wide working range. ACS Appl. Mater. Interfaces 2023, 15, 47733–47744. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, C.; Tang, W.; Fu, Z.; Pei, Z.; Zhang, Q. Lantern-inspired capacitive pressure sensor with wide linear measuring range. Measurement 2024, 234, 114818. [Google Scholar] [CrossRef]
- Yuan, H.; Liao, X.; Wu, K.; Chen, J.; Chen, K.; Zhu, T.; Wang, Y.; Zhang, J.; Liu, G.; Sun, J. Hierarchical wrinkling-cracking architectures for flexible pressure sensors. Adv. Mater. Interfaces 2023, 10, 2202169. [Google Scholar] [CrossRef]
- Lee, J.; So, H. 3D-printing-assisted flexible pressure sensor with a concentric circle pattern and high sensitivity for health monitoring. Microsyst. Nanoeng. 2023, 9, 44. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Q.; Cheng, Y.; Xu, R.; Li, H.; Tian, M.; Ma, J.; Jiao, T. Double-sided microstructured flexible iontronic pressure sensor with wide linear sensing range. J. Colloid Interface Sci. 2024, 670, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.-H.; Huh, H.; Li, Z.; Lu, N. Soft capacitive pressure sensors: Trends, challenges, and perspectives. ACS Nano 2022, 16, 3442–3448. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Guo, X.; Zhang, T.; Zhang, A.; Yan, Z.; Zhang, X.; Li, X.; Guan, Y.; Liao, D.; Lu, H. Flexible capacitive pressure sensor with high sensitivity and wide range based on a cheetah leg structure via 3D printing. ACS Appl. Mater. Interfaces 2023, 15, 46347–46356. [Google Scholar] [CrossRef]
- Zhao, T.; Zhu, H.; Zhang, H. Rapid prototyping flexible capacitive pressure sensors based on porous electrodes. Biosensors 2023, 13, 546. [Google Scholar] [CrossRef]
- Qin, R.; Nong, J.; Wang, K.; Liu, Y.; Zhou, S.; Hu, M.; Zhao, H.; Shan, G. Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 2024, 36, 2312761. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Peng, S.; Luo, X.; Zhang, Z.; Wu, T.; Jiang, J.; Zhang, Y. Microsphere-Structured Protein Hydrogel Dielectrics for Capacitive Wearable Sensors. Biomacromolecules 2024, 25, 3651–3660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, W.; Chen, H.; Li, H.; Xue, Z.; Shen, S. Flexible LC sensor array for wireless multizone pressure monitoring. IEEE Sens. J. 2023, 24, 2628–2636. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Jafarizadeh, B.; Baboukani, A.R.; Pala, N.; Wang, C. Monitoring and analysis of cardiovascular pulse waveforms using flexible capacitive and piezoresistive pressure sensors and machine learning perspective. Biosens. Bioelectron. 2023, 237, 115449. [Google Scholar] [CrossRef]
- Niu, H.; Gao, S.; Yue, W.; Li, Y.; Zhou, W.; Liu, H. Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure. Small 2020, 16, 1904774. [Google Scholar] [CrossRef]
- Zhao, D.; Nie, B.; Qi, G.; Li, S.; Zhu, Q.; Qiu, J.; Hsu, Y.; Zhang, Y.; Wang, W.; Zhang, Q. A flexible metal nano-mesh strain sensor with the characteristic of spontaneous functional recovery after fracture damage. Nanoscale 2022, 14, 12409–12417. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Xiao, S.; Meng, Z.; Liu, H.; Wan, G.; He, Y. High-performance flexible pressure sensor based on ordered double-level nanopillar array films: Design, development, and modeling. Compos. Sci. Technol. 2023, 241, 110157. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, C.; Shen, C.; Zhang, Y.; Cheng, W.; Wu, Z.; Ren, L. Double-Chamber Underwater Thruster Diaphragm with Flexible Displacement Detection Function. ACS Omega 2024, 9, 43175–43183. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Zhang, Y.; Zhang, C.; Shen, C.; Cheng, W.; Wei, Z.; Wu, Z.; Ren, L. Design of bionic water jet thruster with double-chamber driven by electromagnetic force. Int. J. Mech. Syst. Dyn. 2024, 4, 292–302. [Google Scholar] [CrossRef]
Components | Parameter | Value | Unit |
---|---|---|---|
Shell | Max. length Max. width Max. height Thickness of wall Inlet radius Outlet radius Outlet radius Outlet length | 200 120 45 2 5 5 5 55 | mm mm mm mm mm mm mm mm |
Inner shell | Inlet radius Inlet length Chamber height Chamber bottom radius Chamber top surface radius | 5 30 25 50 25 | mm mm mm mm mm |
Electromagnetic coil | outer diameter inner diameter wire diameter turns Radius | 50 35 0.4 150 25 | mm mm mm turn mm |
Permanent magnet | Height | 10 | mm |
Overall | Weight | 562.3 | g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Zhang, C.; Shen, C.; Zhang, Y.; Cheng, W.; Wu, Z.; Ren, L. Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster. Micromachines 2025, 16, 526. https://doi.org/10.3390/mi16050526
Cao C, Zhang C, Shen C, Zhang Y, Cheng W, Wu Z, Ren L. Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster. Micromachines. 2025; 16(5):526. https://doi.org/10.3390/mi16050526
Chicago/Turabian StyleCao, Chong, Chengchun Zhang, Chun Shen, Yasong Zhang, Wen Cheng, Zhengyang Wu, and Luquan Ren. 2025. "Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster" Micromachines 16, no. 5: 526. https://doi.org/10.3390/mi16050526
APA StyleCao, C., Zhang, C., Shen, C., Zhang, Y., Cheng, W., Wu, Z., & Ren, L. (2025). Detection of Positive and Negative Pressure in a Double-Chamber Underwater Thruster. Micromachines, 16(5), 526. https://doi.org/10.3390/mi16050526