Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Layer Preparation
2.2. Tribological Test
3. Results
3.1. Phases and Microstructure of the Al/W Composite Layer
3.2. Microhardness and Electrical Conductivity
3.3. Tribological Properties
3.3.1. Friction Coefficient
3.3.2. Wear Rate
3.3.3. Wear Morphology
4. Discussion
4.1. Aluminum Alloy Substrate
4.2. Al/W Composite Layer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, G.; Wang, W.; Wang, B.; Chen, Q.; Liu, X. Transient mixed-lubrication and contact behavior analysis of metal liquid film under magneto-thermal effect. Int. J. Mech. Sci. 2024, 271, 109142. [Google Scholar] [CrossRef]
- Ghassemi, M.; Varmazyar, M. Stress analysis of the rails of a new high velocity armature design in an electromagnetic launcher. Int. J. Impact Eng. 2008, 35, 1529–1533. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, L.; Ma, G.; Li, G.; Zhao, H.; Li, Y.; Tan, N.; Wang, H. Laser cladding Mo-based coatings on copper alloys to improve the current-carrying tribological properties of Cu/Al friction pairs. Surf. Coat. Technol. 2024, 487, 130989. [Google Scholar] [CrossRef]
- Ma, W.; Lu, J.; Liu, Y. Research Progress of Electromagnetic Launch Technology. IEEE Trans. Plasma Sci. 2019, 47, 2197–2205. [Google Scholar] [CrossRef]
- Wu, K.; Wu, W.; Pan, A.; Guo, C.; Cui, F.; Yang, X.; Yang, G. Investigation on the microstructure evolution and mechanical properties of electromagnetic rail material in a launch environment. Mater. Charact. 2024, 208, 113582. [Google Scholar] [CrossRef]
- Li, B.; Lu, J.; Tan, S.; Zhang, Y.; Cai, X. Design and Performance of Armature Surface Coating for Electromagnetic Launcher. IEEE Trans. Plasma Sci. 2022, 50, 2460–2466. [Google Scholar] [CrossRef]
- Watt, T.J.; Clay, C.E.; Bassett, P.M.; Bourell, D.L. The effect of surface indentations on gouging in railguns. Wear 2014, 310, 41–50. [Google Scholar] [CrossRef]
- Wang, X.; Yao, P.; Zhou, H.; Fan, K.; Deng, M.; Kang, L.; Yuan, Z.; Lin, Y. Research Progress on Surface Damage and Protection Strategies of Armature–Rail Friction Pair Materials for Electromagnetic Rail Launch. Materials 2024, 17, 277. [Google Scholar] [CrossRef]
- Ma, W.; Lu, J. Thinking and Study of Electromagnetic Launch Technology. IEEE Trans. Plasma Sci. 2017, 45, 1071–1077. [Google Scholar] [CrossRef]
- Watt, T.; Motes, D.T. The Effects of Surface Coatings on the Onset of Rail Gouging. IEEE Trans. Plasma Sci. 2011, 39, 168–173. [Google Scholar] [CrossRef]
- Singer, I.L.; Veracka, M.J.; Boyer, C.N.; Neri, J.M. Wear behavior of lubricant-conditioned copper rails and armatures in a railgun. IEEE Trans. Plasma Sci. 2011, 39, 138–143. [Google Scholar] [CrossRef]
- Akgümüş Gök, D.; Bayraktar, C.; Hoşkun, M. A review on processing, mechanical and wear properties of Al matrix composites reinforced with Al2O3, SiC, B4C and MgO by powder metallurgy method. J. Mater. Res. Technol. 2024, 31, 1132–1150. [Google Scholar] [CrossRef]
- Hu, X.; Huang, M.; Kong, N.; Han, F.; Tan, R.; Huang, Q. Enhancing the electrical insulation of highly thermally conductive carbon fiber powders by SiC ceramic coating for efficient thermal interface materials. Compos. Part B Eng. 2021, 227, 109398. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X.; Du, J.; Chen, H.; Tang, B.; Li, X. Effects of firings in hydrogen on the insulation performances of a 95 wt% alumina ceramic. Ceram. Int. 2024, 50, 23917–23924. [Google Scholar] [CrossRef]
- Tayari, F.; Iben Nassar, K.; Benamara, M.; Essid, M.; Soreto Teixeira, S.; Graça, M.P.F. Sol–gel synthesized (Bi0.5Ba0.5Ag)0.5 (NiMn)0.5O3 perovskite ceramic: An exploration of its structural characteristics, dielectric properties and electrical conductivity. Ceram. Int. 2024, 50, 11207–11215. [Google Scholar] [CrossRef]
- Lu, T.-T.; Hua, D.-P.; An, B.-L.; Hafeez, M.A.; Pan, J.; Chen, L.-X.; Lu, J.-Y.; Zhou, Q.; Zhang, C.; Liu, L. Improved anti-adhesive wear performance of rail/armature pair via interfacial energy modulation for electromagnetic launching applications. Scr. Mater. 2023, 236, 115677. [Google Scholar] [CrossRef]
- Chen, S.; Cong, Z.; Wang, Z.; Chen, J.; Cui, T.; Liang, J.; Wang, M. Effect of nano-SiC on microstructure evolution and enhanced high wear resistance mechanism of laser surface alloyed M42 high-speed steel. Tribol. Int. 2024, 194, 109559. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Zanella, C.; Belov, I.; Matsushita, T. Study of the process parameters influence on crack formation in laser alloying of grey cast iron. Opt. Laser Technol. 2024, 179, 111373. [Google Scholar] [CrossRef]
- Monisha, K.; Shariff, S.M.; Sekar, A.; Raju, R.; Manonmani, J.; Senthilselvan, J. Titanium boride coating by high power diode laser alloying of amorphous boron with titanium and its surface property investigations. Opt. Laser Technol. 2024, 170, 110159. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Y.; Chen, B.; Liang, S.; Zhuo, L. Microstructure and properties of W-25 wt% Cu composites reinforced with tungsten carbide produced by an in situ reaction. Vacuum 2020, 177, 109423. [Google Scholar] [CrossRef]
- Dong, L.L.; Ahangarkani, M.; Chen, W.G.; Zhang, Y.S. Recent progress in development of tungsten-copper composites: Fabrication, modification and applications. Int. J. Refract. Met. Hard Mater. 2018, 75, 30–42. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, D.; Song, W.; Tang, C.; Sun, P.; Yang, J.; Hu, Q.; Zeng, X. Microstructure and Wear of W-Particle-Reinforced Al Alloys Prepared by Laser Melt Injection. Micromachines 2022, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Xu, J.; Shan, D.; Guo, B.; Langdon, T.G. Sustainable fabrication of Cu/Nb composites with continuous laminated structure to achieve ultrahigh strength and excellent electrical conductivity. Compos. Part B Eng. 2021, 211, 108662. [Google Scholar] [CrossRef]
- Brodnik Zugelj, B.; Kalin, M. Submicron-scale experimental analyses of the multi-asperity contact behaviour of various steels, an aluminium alloy and a polymer. Tribol. Int. 2020, 141, 105955. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, X.; Hui, Z.; Wang, X.; Shi, H.; Huang, X. Erosion behaviors and mechanisms of Ti3AlC2 material under arc discharge in various mixed atmospheres. Ceram. Int. 2024, 50, 32755–32770. [Google Scholar] [CrossRef]
- Chen, M.; Lan, L.; Shi, X.; Yang, H.; Zhang, M.; Qiao, J. The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature. J. Alloys Compd. 2019, 777, 180–189. [Google Scholar] [CrossRef]
- Liu, X.-L.; Guan, X.; Zhang, T.-M.; Zhong, Y.; Zhang, W.-L.; Zhang, S.; Xiao, Q.; Zheng, Y.-T.; Gao, M.-S.; Chen, D.-Y.; et al. A comparative investigation into the material matching performance of different friction pairs under current-carrying friction. Tribol. Int. 2023, 185, 108543. [Google Scholar] [CrossRef]
- Qiu, Y.; Ren, P.; Yang, H.; Guo, B.; Shi, C.; Lu, Y.; Zhang, L.-C.; Zhou, S. Laser powder bed fusion of in-situ amorphous oxide dispersion strengthened immiscible Cu-316 L bimetallic composite: Formation mechanism and current-carrying wear behavior. Tribol. Int. 2024, 200, 110096. [Google Scholar] [CrossRef]
- Michl, A.; Weissmüller, J.; Müller, S. Sign-inverted response of aluminum work function to tangential strain. J. Phys. Condens. Matter 2013, 25, 445012. [Google Scholar] [CrossRef]
- Gong, Y.; Zeng, H. Probe-Hole Field Emission Microscope System Controlled by Computer. Chin. Phys. Lett. 1991, 8, 446. [Google Scholar] [CrossRef]
- Wang, P.; Yue, W.; Lu, Z.; Zhang, G.; Zhu, L. Friction and wear properties of MoS2-based coatings sliding against Cu and Al under electric current. Tribol. Int. 2018, 127, 379–388. [Google Scholar] [CrossRef]
Element | Mg | Zn | Cu | Si | Ti | Mn | Ti | Cr | Fe | Al |
---|---|---|---|---|---|---|---|---|---|---|
Wt. % | 2.1–2.9 | 5.1–6.1 | 1.2–2.0 | 0.40 | 0.20 | 0.30 | 0.20 | 0.18–0.28 | 0.50 | Bal |
Element | Al | Mg | Cr | Zr | Si | Fe | P | Cu |
---|---|---|---|---|---|---|---|---|
Wt. % | 2.1–2.9 | 5.1–6.1 | 1.2–2.0 | 0.40 | 0.20 | 0.30 | 0.20 | Bal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Li, B.; Zhu, Y.; Tang, C.; Sun, P.; Lai, T.; Wang, D. Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents. Micromachines 2025, 16, 523. https://doi.org/10.3390/mi16050523
Zhang H, Li B, Zhu Y, Tang C, Sun P, Lai T, Wang D. Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents. Micromachines. 2025; 16(5):523. https://doi.org/10.3390/mi16050523
Chicago/Turabian StyleZhang, Heng, Bai Li, Yulong Zhu, Congwen Tang, Pengfei Sun, Tao Lai, and Dengzhi Wang. 2025. "Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents" Micromachines 16, no. 5: 523. https://doi.org/10.3390/mi16050523
APA StyleZhang, H., Li, B., Zhu, Y., Tang, C., Sun, P., Lai, T., & Wang, D. (2025). Current-Carrying Wear Behavior of the Laser-Alloyed Al/W Composite Layer Under Different Currents. Micromachines, 16(5), 523. https://doi.org/10.3390/mi16050523