Investigation of a Magnetic Sensor Based on the Magnetic Hysteresis Loop and Anisotropic Magnetoresistance of CoFe Thin Films Epitaxial Grown on Flexible Mica and Rigid MgO Substrates with Strain Effect
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Epitaxial Relationship with Change of AMR Ratio
3.2. The M-H Curve, Coherence Length, and Particle Size as Functions of Growth Temperature
3.3. Microscopic Strain on CoFe/Mica Under Bending Stress
3.4. Bending Strain Effect on CoFe/Mica with Different Growth Temperatures
3.5. Comparison of AMR Ratio with MgO Substrates and Mica Substrate Under Applied Strain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritzinger, P.; Výborný, K. Anisotropic Magnetoresistance: Materials, Models and Applications. R. Soc. Open Sci. 2023, 10, 230564. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.J.; McIntyre, T.; Kisner, R.; Killough, S.; Lenarduzzi, R. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets. In Proceedings of the SoutheastCon 2015, Fort Lauderdale, FL, USA, 9–12 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, D.; Shao, J.; Fu, Z.; Wang, C.; Wang, S.; Du, J.; Zhong, M.; Duan, J.; Li, Y.; et al. Highly Flexible Anisotropic Magnetoresistance Sensor for Wearable Electronics. Rev. Sci. Instrum. 2023, 94, 045005. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Kang, R.; Wang, Z.; Shu, X. Cross Axis Effect of AMR Sensors and Single Sensitive-Axis Compass. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 857–860. [Google Scholar] [CrossRef]
- Cañón Bermúdez, G.S.; Makarov, D. Magnetosensitive E-Skins for Interactive Devices. Adv. Funct. Mater. 2021, 31, 2007788. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A.; et al. Epidermal Electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Cañón Bermúdez, G.S.; Illing, R.; Wang, C.; Zhou, S.; Fassbender, J.; et al. A Bimodal Soft Electronic Skin for Tactile and Touchless Interaction in Real Time. Nat. Commun. 2019, 10, 4405. [Google Scholar] [CrossRef]
- Mitchell, E.N.; Haukaas, H.B.; Bale, H.D.; Streeper, J.B. Compositional and Thickness Dependence of the Ferromagnetic Anisotropy in Resistance of Iron-Nickel Films. J. Appl. Phys. 1964, 35, 2604–2608. [Google Scholar] [CrossRef]
- Bozorth, R.M. Magnetoresistance and Domain Theory of Iron-Nickel Alloys. Phys. Rev. 1946, 70, 923–932. [Google Scholar] [CrossRef]
- Rijks, T.G.S.M.; Coehoorn, R.; de Jong, M.J.M.; de Jong, W.J.M. Semiclassical Calculations of the Anisotropic Magnetoresistance of NiFe-Based Thin Films, Wires, and Multilayers. Phys. Rev. 1995, 51, 283–291. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.-L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on Spintronics: Principles and Device Applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Berger, L.; Freitas, P.P.; Warner, J.D.; Schmidt, J.E. On the Temperature Dependence of the Magnetoresistance of Ferromagnetic Alloys. J. Appl. Phys. 1988, 64, 5459–5461. [Google Scholar] [CrossRef]
- Zeng, F.L.; Ren, Z.Y.; Li, Y.; Zeng, J.Y.; Jia, M.W.; Miao, J.; Hoffmann, A.; Zhang, W.; Wu, Y. Z.; Yuan, Z. Intrinsic Mechanism for Anisotropic Magnetoresistance and Experimepntal Confirmation in CoxFe1−xSingle-Crystal Films. Phys. Rev. Lett. 2020, 125, 097201. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Osborn, W.; Wang, K.; Kazantseva, N.; Hattrick-Simpers, J.; Suchoski, R.; Takahashi, R.; Young, M.L.; Mehta, A.; Bendersky, L.A.; et al. Giant Magnetostriction in Annealed Co1−XFex Thin-Films. Nat. Commun. 2011, 2, 518. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H. Desk Handbook: Phase Diagram for Binary Alloys, 2nd ed.; ASM International: Almere, The Netherlands, 2010; ISBN 9781615030460. [Google Scholar]
- Ustinovshikov, Y.; Pushkarev, B. Ordering and Phase Separation in Alloys of the Fe–Co System. J. Alloys Compd. 2006, 424, 145–151. [Google Scholar] [CrossRef]
- Bartók, A.; Daniel, L.; Razek, A. A Multiscale Model for Thin Film AMR Sensors. J. Magn. Magn. Mater. 2013, 326, 116–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, C.; Lu, X.; Liu, M. Recent Progress on Flexible Inorganic Single-Crystalline Functional Oxide Films for Advanced Electronics. Mater. Horiz. 2019, 6, 911–930. [Google Scholar] [CrossRef]
- Shen, L.; Liu, M.; Ma, C.; Lu, L.; Fu, H.; You, C.; Lu, X.; Jia, C.-L. Enhanced Bending-Tuned Magnetic Properties in Epitaxial Cobalt Ferrite Nanopillar Arrays on Flexible Substrates. Mater. Horiz. 2018, 5, 230–239. [Google Scholar] [CrossRef]
- Bieńkowski, A.; Kulikowski, J. The Magneto-Elastic Villari Effect in Ferrites. J. Magn. Magn. Mater. 1980, 19, 120–122. [Google Scholar] [CrossRef]
- Zhukov, D.; Amelichev, V.; Kasatkin, S.; Kostyuk, D. Investigation of Multilayer Nanostructures of Magnetic Straintronics Based on the Anisotropic Magnetoresistive Effect. Sensors 2021, 21, 5785. [Google Scholar] [CrossRef]
- Amrillah, T.; Quynh, L.T.; Van, C.N.; Do, T.H.; Arenholz, E.; Juang, J.-Y.; Chu, Y.-H. Flexible Epsilon Iron Oxide Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 17006–17012. [Google Scholar] [CrossRef]
- Tsai, M.F.; Jiang, J.; Shao, P.W.; Lai, Y.H.; Chen, J.W.; Ho, S.Z.; Chen, Y.C.; Tsai, D.P.; Chu, Y.H. Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor. ACS Appl. Mater. Interfaces 2019, 11, 25882–25890. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yen, M.; Lai, Y.-H.; Markou, A.; Zhang, L.; Chin, Y.-Y.; Lin, H.J.; Chen, C.T.; Felser, C.; Chu, Y.H. Heteroepitaxy of Co-Based Heusler Compound/Muscovite for Flexible Spintronics. ACS Appl. Mater. Interfaces 2019, 11, 35162–35168. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Li, M.; Gao, Y.; Hu, Z.; Nan, T.; Liang, X.; Chen, H.; Yang, J.; Cash, S.; et al. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect. Adv. Mater. 2016, 28, 9370–9377. [Google Scholar] [CrossRef]
- Sergio, E.; Santiago, G.; Ha, M.; Kosub, T.; Zabila, Y.; Fassbender, J.; Makarov, D. Printable Anisotropic Magnetoresistance Sensors for Highly Compliant Electronics. Appl. Phys. A 2021, 127, 280. [Google Scholar] [CrossRef]
- Miao, Y.; Yang, D.; Jia, L.; Li, X.; Yang, S.; Gao, C.; Xue, D. Magnetocrystalline Anisotropy Correlated Negative Anisotropic Magnetoresistance in Epitaxial Fe30Co70 Thin Films. Appl. Phys. Lett. 2021, 118, 042404. [Google Scholar] [CrossRef]
- Jin, C.; Li, P.; Mi, W.B.; Bai, H.L. Magnetocrystalline anisotropy-dependent six-fold symmetric anisotropic magnetoresistance in epitaxial CoxFe3−xO4 films. Europhys. Lett. 2012, 100, 27006. [Google Scholar] [CrossRef]
- Sato, T.; Kokado, S.; Kosaka, S.; Ishikawa, T.; Ogawa, T.; Tsunoda, M. Large Negative Anisotropic Magnetoresistance in Co2MnGa Heusler Alloy Epitaxial Thin Films. Appl. Phys. Lett. 2018, 113, 112407. [Google Scholar] [CrossRef]
- Gong, J.; Zheng, D.; Li, D.; Jin, C.; Bai, H. Lattice Distortion Modified Anisotropic Magnetoresistance in Epitaxial La0.67Sr0.33MnO3 Thin Films. J. Alloys Compd. 2018, 735, 1152–1157. [Google Scholar] [CrossRef]
- Kwon, B.; Sakuraba, Y.; Sukegawa, H.; Li, S.; Qu, G.; Furubayashi, T.; Hono, K. Anisotropic Magnetoresistance and Current-Perpendicular-To-Plane Giant Magnetoresistance in Epitaxial NiMnSb-Based Multilayers. J. Appl. Phys. 2016, 119, 023902. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.X.; Zhu, J.; Ma, T.P.; Won, C.; Wu, Y.Z. Three-Dimensional Mapping of the Anisotropic Magnetoresistance in Fe3O4 Single Crystal Thin Films. J. Appl. Phys. 2013, 113, 17B103. [Google Scholar] [CrossRef]
- Kabara, K.; Tsunoda, M.; Kokado, S. Transverse Anisotropic Magnetoresistance Effects in Pseudo-Single-Crystal γ′-Fe4N Thin Films. AIP Adv. 2016, 6, 055818. [Google Scholar] [CrossRef]
- Shan, X.; Huang, Y.; Ren, H.; Zhu, R.; Zhang, H.; Feng, C.; Yu, G. Magnetic Anisotropy Instability due to Magnetic Field Annealing in Ta/MgO/NiFe/MgO/Ta Anisotropic Magnetoresistive Sensors. AIP Adv. 2023, 13, 105312. [Google Scholar] [CrossRef]
- Tóth, B.G.; Péter, L.; Révész, Á.; Pádár, J.; Bakonyi, I. Temperature Dependence of the Electrical Resistivity and the Anisotropic Magnetoresistance (AMR) of Electrodeposited Ni-Co Alloys. Eur. Phys. J. B 2010, 75, 167–177. [Google Scholar] [CrossRef]
- Liu, Y.W.; Cai, J.; Sun, L. Large Enhancement of Anisotropic Magnetoresistance and Thermal Stability in Ta/NiFe/Ta Trilayers with Interfacial Pt Addition. Appl. Phys. Lett. 2010, 96, 092509. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, C.; You, L.; Yang, X.; Zhang, Y. Angle-Dependent Anisotropic Magnetoresistance under the Competition between Anisotropic Field and Magnetic Field. IEEE Trans. Magn. 2021, 57, 1–7. [Google Scholar] [CrossRef]
- Nguyen, D.-C.; Chu, C.-C.; Anbalagan, A.K.; Lee, C.-H.; Chang, C.-S. Rietveld Refinement and X-Ray Absorption Study on the Bonding States of Lanthanum-Based Perovskite-Type Oxides La1−XCexCoO3. Crystals 2021, 12, 50. [Google Scholar] [CrossRef]
- Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541. [Google Scholar] [CrossRef]
- Su, G.-Y.; You, M.-C.; Chuang, K.-W.; Wu, M.-H.; Hsieh, C.-H.; Lin, C.-Y.; Yang, C.-Y.; Anbalagan, A.k.; Lee, C.-H. Investigating Anisotropic Magnetoresistance in Epitaxially Strained CoFe Thin Films on a Flexible Mica. Nanomaterials 2023, 13, 3154. [Google Scholar] [CrossRef]
- McCauley, J.W.; Newnham, R.E.; Gibbs, G.V. Crystal Structure Analysis of Synthetic Fluorophlogopite. Am. Mineral. 1973, 58, 249–254. [Google Scholar]
- Zhang, D.N.; Zhao, L.; Wang, J.F.; Li, Y.L. Electronic Structures and the Stability of MgO Surface: Density Functional Study. Surf. Rev. Lett. 2015, 22, 1550037. [Google Scholar] [CrossRef]
- Du, W.; Tang, X.; Liu, M.; Su, H.; Han, G.; Lu, Q. An Approach to Determine the Easy Axis of Magnetic Film by Anisotropic Magnetoresistance Measurements. J. Condens. Matter Phys. 2020, 32, 235802. [Google Scholar] [CrossRef]
- Littlejohn, A.J.; Xiang, Y.; Rauch, E.; Lu, T.-M.; Wang, G.-C. Van Der Waals Epitaxy of Ge Films on Mica. J. Appl. Phys. 2017, 122, 185305. [Google Scholar] [CrossRef]
- Bailey, A.I.; Kay, S.M. A Direct Measurement of the Influence of Vapour, of Liquid and of Oriented Monolayers on the Interfacial Energy of Mica. Proc. R. Soc. Lond. 1967, 301, 47–56. [Google Scholar] [CrossRef]
- Vitos, L.; Ruban, A.V.; Skriver, H.L.; Kollár, J. The Surface Energy of Metals. Surf. Sci. 1998, 411, 186–202. [Google Scholar] [CrossRef]
- Debye, P.; Scherrer, P. Interferenzen an regellos orientierten Teilchen im Röntgenlicht I. Phys. Zeitschr. 1916, 17, 277–283. [Google Scholar]
- Kittel, C. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys. Rev. 1946, 70, 965–971. [Google Scholar] [CrossRef]
- Bitla, Y.; Chu, Y.H. MICAtronics: A New Platform for Flexible X-Tronics. FlatChem 2017, 3, 26–42. [Google Scholar] [CrossRef]
- Castellanos-Gómez, A.; Poot, M.; Amor-Amorós, A.; Steele, G.A.; van der Zant, H.S.J.; Agraït, N.; Rubio-Bollinger, G. Mechanical Properties of Freely Suspended Atomically Thin Dielectric Layers of Mica. Nano Res. 2012, 5, 550–557. [Google Scholar] [CrossRef]
- Masiyama, Y. Magnetostriction in Cobalt-Iron alloys. Sci. Rep. Res. Tohoku A 1932, 21, 394. [Google Scholar]
Lattice Mismatch | CoFe(100)/Mica(100) | CoFe(100)/MgO(110) |
---|---|---|
Previous reported data of mica [41] and MgO [42] | 7.655% | −4.146% |
This work is measured by plane-normal XRD | 7.573% | −3.232% |
CoFe/mica | |||||
Tg | Particle size (nm) | Coherence length (nm) | Coercivity (Oe) | Squareness | Saturation magnetization (emu/cc) |
300 °C | 17.4 | 18.0 | 71.6 | 0.799 | 1562.9 |
400 °C | 42.2 | 25.7 | 59.0 | 0.875 | 1653.3 |
500 °C | 108.2 | 30.4 | 232.5 | 0.900 | 1701.3 |
CoFe/MgO | |||||
Tg | Particle size (nm) | Coherence length (nm) | Coercivity (Oe) | Squareness | Saturation magnetization (emu/cc) |
300 °C | 34.1 | 15.6 | 110.0 | 0.973 | 1476.6 |
400 °C | 45.6 | 19.6 | 93.1 | 0.950 | 1383.9 |
500 °C | 69.0 | 20.6 | 160.0 | 0.958 | 1474.9 |
EXAFS Fitting Result | |||
Experimental conditions | RFe-Co (Å) | RFe-Fe (Å) | Microscopic strain |
No bending (in-plane) | 2.439 ± 0.005 | 2.839 ± 0.009 | 0% |
0.5% strain (in-plane) | 2.444 ± 0.004 | 2.848 ± 0.008 | 0.3% (tensile) |
No bending (plane-normal) | 2.448 ± 0.005 | 2.839 ± 0.010 | 0% |
0.5% strain (plane-normal) | 2.449 ± 0.003 | 2.836 ± 0.006 | −0.1%(compressive) |
Calculate model from Artemi | 2.467 | 2.849 | |
Experimental conditions | RCo-Fe (Å) | RCo-Co (Å) | Microscopic strain |
No bending (in-plane) | 2.446 ± 0.003 | 2.828 ± 0.006 | 0% |
0.5% strain (in-plane) | 2.449 ± 0.004 | 2.835 ± 0.009 | 0.3% (tensile) |
No bending (plane-normal) | 2.449 ± 0.004 | 2.830 ± 0.007 | 0% |
0.5% strain (plane-normal) | 2.450 ± 0.003 | 2.828 ± 0.005 | −0.1%(compressive) |
Calculate model from Artemis | 2.467 | 2.849 | |
In-plane XRD result | |||
State | 2theta (degree) | d-spacing (Å) | Microscopic strain |
No bending | 45.193° ± 0.005° | 2.015 ± 0.001 | 0% |
0.5% strain | 45.105° ± 0.005° | 2.020 ± 0.001 | 0.25% |
Release | 45.176° ± 0.005° | 2.017 ± 0.001 | 0.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.-C.; You, M.-C.; Anbalagan, A.k.; Su, G.-Y.; Chuang, K.-W.; Yang, C.-Y.; Lee, C.-H. Investigation of a Magnetic Sensor Based on the Magnetic Hysteresis Loop and Anisotropic Magnetoresistance of CoFe Thin Films Epitaxial Grown on Flexible Mica and Rigid MgO Substrates with Strain Effect. Micromachines 2025, 16, 412. https://doi.org/10.3390/mi16040412
Cheng J-C, You M-C, Anbalagan Ak, Su G-Y, Chuang K-W, Yang C-Y, Lee C-H. Investigation of a Magnetic Sensor Based on the Magnetic Hysteresis Loop and Anisotropic Magnetoresistance of CoFe Thin Films Epitaxial Grown on Flexible Mica and Rigid MgO Substrates with Strain Effect. Micromachines. 2025; 16(4):412. https://doi.org/10.3390/mi16040412
Chicago/Turabian StyleCheng, Jen-Chieh, Min-Chang You, Aswin kumar Anbalagan, Guang-Yang Su, Kai-Wei Chuang, Chao-Yao Yang, and Chih-Hao Lee. 2025. "Investigation of a Magnetic Sensor Based on the Magnetic Hysteresis Loop and Anisotropic Magnetoresistance of CoFe Thin Films Epitaxial Grown on Flexible Mica and Rigid MgO Substrates with Strain Effect" Micromachines 16, no. 4: 412. https://doi.org/10.3390/mi16040412
APA StyleCheng, J.-C., You, M.-C., Anbalagan, A. k., Su, G.-Y., Chuang, K.-W., Yang, C.-Y., & Lee, C.-H. (2025). Investigation of a Magnetic Sensor Based on the Magnetic Hysteresis Loop and Anisotropic Magnetoresistance of CoFe Thin Films Epitaxial Grown on Flexible Mica and Rigid MgO Substrates with Strain Effect. Micromachines, 16(4), 412. https://doi.org/10.3390/mi16040412