Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Surface Treatment of Aluminum Alloys
2.3. Preparation of Metal–Polymer Hybrid Structures
2.4. Bonding Strength Measurement
2.5. Heat Dissipation Characterization of Metal–Composite Hybrids
2.6. Demonstration of Metal–Composite Hybrid Applications
2.7. Characterization
3. Results and Discussion
3.1. Surface Characterization of Anodized and Post-Treated Aluminum
3.2. Bonding Strength Measurements of Metal–Polymer Hybrids
3.3. Heat Dissipation Applications of Metal–Polymer Hybrid Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandeep, R.; Natarajan, A. Advances in joining technologies for the innovation of 21st century lightweight aluminium-CFRP hybrid structures. Proc. Inst. Mech. Eng. Part E 2022, 236, 1239–1255. [Google Scholar] [CrossRef]
- Grujicic, M.; Sellappan, V.; Omar, M.A.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. An overview of the polymer-to-metal direct-adhesion hybrid technologies for load-bearing automotive components. J. Mater. Process. Technol. 2008, 197, 363–373. [Google Scholar] [CrossRef]
- Qiu, J.; Sakai, E.; Lei, L.; Takarada, Y.; Murakami, S. Improving the shear strength by silane treatments of aluminum for direct joining of phenolic resin. J. Mater. Process. Technol. 2012, 212, 2406–2412. [Google Scholar] [CrossRef]
- Azghan, M.A.; Eslami-Farsani, R. The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres. Mater. Res. Express 2018, 5, 025302. [Google Scholar] [CrossRef]
- Deng, T.; He, Y.; Xian, C.; Li, Y.; Xia, T.; Yang, Y.; Yang, C. Structure and properties of the hot pressing molded anodized aluminum alloy/polyformaldehyde hybrids. Int. J. Adhes. Adhes. 2024, 133, 103742. [Google Scholar] [CrossRef]
- Araoyinbo, A.O.; Rahmat, A.; Derman, M.N.; Ahmad, K.R. Room temperature anodization of aluminum and the effect of the electrochemical cell in the formation of porous alumina films from acid and alkaline electrolytes. Adv. Mat. Lett. 2012, 3, 273–278. [Google Scholar] [CrossRef]
- Masuda, H.; Yada, K.; Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 1998, 37, L1340. [Google Scholar] [CrossRef]
- Zhang, J.-S.; Zhao, X.-H.; Zuo, Y.; Xiong, J.-P. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath. Surf. Coat. Technol. 2008, 202, 3149–3156. [Google Scholar] [CrossRef]
- Horiuchi, S.; Terasaki, N.; Itabashi, M. Evaluation of the properties of plastic-metal interfaces directly bonded via injection molding. Manuf. Rev. 2020, 7, 11. [Google Scholar] [CrossRef]
- Lucchetta, G.; Marinello, F.; Bariani, P.F. Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. CIRP Ann. 2011, 60, 559–562. [Google Scholar] [CrossRef]
- Azadi, M.; Dezianian, S.; Azadi, M.; Beyzavi, A.H.; Talebsafa, V. Effects of Various Adhesive Layers on Electrochemical Characteristics of 3D-Printed Polylactic Acid Coatings on AM60 Magnesium Alloy. High Temp. Corros. Mater. 2024, 101, 433–454. [Google Scholar]
- Li, X.; Xu, D.; Gong, N.; Xu, Z.; Wang, L.; Dong, W. Improving the strength of injection molded aluminum/polyphenylene sulfide lap joints dependence on surface microstructure and composition. Mater. Des. 2019, 179, 107875. [Google Scholar]
- Kadoya, S.; Kimura, F.; Kajihara, Y. PBT–anodized aluminum alloy direct joining: Characteristic injection speed dependence of injected polymer replicated into nanostructures. Polym. Test. 2019, 75, 127–132. [Google Scholar]
- Du, K.; Huang, J.; Li, C.; Chen, J.; Li, Y.; Yang, C.; Xia, X.; Sheng, X. The bonding strength of polyamide-6 direct adhesion with anodized AA5754 aluminum alloy. J. Thermoplast. Compos. Mater. 2020, 35, 1852–1865. [Google Scholar]
- Leontiev, A.P.; Roslyakov, I.V.; Napolskii, K.S. Complex influence of temperature on oxalic acid anodizing of aluminium. Electrochim. Acta. 2019, 319, 88–94. [Google Scholar]
- Kikuchi, T.; Nakajima, D.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Porous Aluminum Oxide Formed by Anodizing in Various Electrolyte Species. Curr. Nanosci. 2015, 11, 560–571. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Zhou, T. Large-area mechanical interlocking via nanopores: Ultra-high-strength direct bonding of polymer and metal materials. Appl. Surf. Sci. 2019, 492, 558–570. [Google Scholar]
- Ryu, S.W.; Kim, D.H.; Lee, W.H.; Honh, J.Y.; Jeon, Y.P.; Lee, J.U. Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process. Polymers 2025, 17, 299. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, H.S.; Jung, Y.; Hong, J.Y.; Jeon, Y.P.; Lee, J.U. Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures. Polymers 2025, 17, 165. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Q.; Wan, H.; Yi, J.; Wei, Y.; Liu, P. Surface modification and biocompatible improvement of polystyrene film by Ar, O2 and Ar + O2 plasma. Appl. Surf. Sci. 2013, 265, 452–457. [Google Scholar]
- Mikula, K.; Skrzypczak, D.; Izydorcyk, G.; Warchol, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2021, 28, 12321–12333. [Google Scholar]
- Muhammad, N.H.; Jamaluddin, A.; Abdus, S.M.; Muhamad, H.H.; Ahmad, Y.Z. Influence of thermoplastic polyurethane (TPU) and printing parameters on the thermal and mechanical performance of polylactic acid (PLA)/thermoplastic polyurethane (TPU) polymer. Polym. Test. 2025, 143, 108697. [Google Scholar]
- ISO19095-2; Plastics—Evaluation of the Adhesion Interface Performance in Plastic-Metal Assemblies—Part2: Test Specimens. International Standard. International Organization for Standardization: Vernier, Switzerland, 2015.
- Huang, H.; Sun, M.; Wei, X.; Sakai, E.; Qiu, J. Effect of interfacial nanostructures on shear strength of Al-PPS joints fabricated via injection moulding method combined with anodizing. Surf. Coat. Technol. 2023, 428, 127896. [Google Scholar]
- Xu, D.; Yang, W.; Li, X.; Hu, Z.; Li, M.; Wang, L. Surface nanostructure and wettability inducing high bonding strength of polyphenylene sulfide-aluminum composite structure. Appl. Surf. Sci. 2020, 515, 145966. [Google Scholar]
- Ryu, J.H.; Yang, S.M.; Kim, J.H.; Yang, S.J. Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity. Carbon Lett. 2022, 32, 1433–1439. [Google Scholar]
- Wu, D.; Xing, Y.; Zhang, D.; Hao, Z.; Dong, Q.; Han, Y.; Liu, L.; Wang, M.; Zhang, R. Optimized interfacial compatibility of carbon fiber and epoxy resin via controllable thickness and activated ingredients of polydopamine layer. Carbon Lett. 2024, 34, 351–359. [Google Scholar] [CrossRef]
- Bard, S.; Tran, T.; Schönl, F.; Rosenfeldt, S.; Demleitner, M.; Ruckdäschel, H.; Retsch, M.; Altstädt, V. Relationship between the tensile modulus and the thermal conductivity perpendicular and in the fiber direction of PAN-based carbon fibers. Carbon Lett. 2024, 34, 361–369. [Google Scholar]
- Jeong, Y.H.; Im, J.; Lee, D.M.; Kim, M.C.; Oh, D.; Son, J.; Park, S.; Hyun, K.; Jeong, B.; Lee, J. Coagulation engineering of surfactant-based wet spinning of carbon nanotube fibers. Carbon Lett. 2024, 34, 1803–1815. [Google Scholar]
- Prasher, R. Thermal Interface Materials: Historical Perspective, Status, and Future Directions. Proc. IEEE 2006, 94, 1571–1586. [Google Scholar]
- Liu, P.; He, X.; Qu, X. The thermal and dielectric properties of diamond/SiC composites prepared by polymer impregnation and pyrolysis. Carbon Lett. 2023, 33, 597–604. [Google Scholar] [CrossRef]
- Meng, J.; Huang, J.; Xu, X. Thermophysical properties of Cu-coated carbon fibers reinforced aluminum matrix composites by stir casting. Carbon Lett. 2023, 33, 2053–2061. [Google Scholar]
- Lei, D.; Li, X.D.; Ma, M.J.; Kim, D.Y.; Noh, J.H.; Kim, B.S. Salt-activated phenolic resin/PAN-derived core-sheath nanostructured carbon nanofiber composites for capacitive energy storage. Carbon Lett. 2023, 33, 699–711. [Google Scholar]
- Chen, Y.; Tu, C.; Liu, Y.; Liu, P.; Gong, P.; Wu, G.; Huang, X.; Chen, J.; Liu, T.; Jiang, J. Microstructure and mechanical properties of carbon graphite composites reinforced by carbon nanofibers. Carbon Lett. 2023, 33, 561–571. [Google Scholar] [CrossRef]
Factor | Level | ||||||
---|---|---|---|---|---|---|---|
3D Printing | Type of polymer filament | PLA | TPU | PP | ABS | TPEE | CF-PLA |
Nozzle temperature (°C) | 210 | 200 | 220 | 260 | 260 | 200 | |
Bed temperature (°C) | 100 | ||||||
Chamber temperature (°C) | 60 | ||||||
Printing speed (mm/min) | 5000 | ||||||
Adhesion method/Area (m2) | Single lap joint/5.0 × 10.0 | ||||||
Measuring speed (MPa/min) | 5 |
PLA | TPU | ABS | PP | TRIEL | CF-PLA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Plasma treatment | X | O | X | O | X | O | X | O | X | O | X | O |
Bonding strength (MPa) | 10.89 | 19.81 | 7.57 | 8.16 | 4.96 | 6.88 | 7.96 | 13.01 | 6.98 | 10.50 | 11.90 | 15.16 |
Increase rate (%) | 81.91 | 7.79 | 38.71 | 63.44 | 50.43 | 27.39 |
Material | Thermal Conductivity (W/mK) |
---|---|
Thermal interface materials (TIM) | 12.8 |
PLA | 0.193 |
Carbon fiber | 100~ |
CF-PLA | 0.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Lee, W.; Park, J.B.; Lee, J.U. Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures. Micromachines 2025, 16, 399. https://doi.org/10.3390/mi16040399
Kim DH, Lee W, Park JB, Lee JU. Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures. Micromachines. 2025; 16(4):399. https://doi.org/10.3390/mi16040399
Chicago/Turabian StyleKim, Dong Hyun, Wonhwa Lee, Jung Bin Park, and Jea Uk Lee. 2025. "Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures" Micromachines 16, no. 4: 399. https://doi.org/10.3390/mi16040399
APA StyleKim, D. H., Lee, W., Park, J. B., & Lee, J. U. (2025). Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures. Micromachines, 16(4), 399. https://doi.org/10.3390/mi16040399