MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Instruments
2.2. Synthesis of MoS2/MWCNT Nanostructure
2.3. Modification Process of SPCE
2.4. Preparation of Real Water Specimens
3. Results and Discussion
3.1. Structural and Morphological Characterization of MoS2/MWCNTs Nanostructure
3.2. Electrochemical Behavior of 4-NP at the MoS2/MWCNTs/SPCE
3.3. Influence of Scan Rate
3.4. Chronoamperometric Studies
3.5. Analytical Performance of MoS2/MWCNTs/SPCE
3.6. The Repeatability and Reproducibility of the MoS2/MWCNTs/SPCE Sensor
3.7. Response Stability
3.8. Selectivity of the MoS2/MWCNTs/SPCE Sensor
3.9. Practical Application of the MoS2/MWCNTs/SPCE Sensor for 4-NP Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prabakaran, E.; Pillay, K. Electrochemical detection of 4-nitrophenol by using graphene based nanocomposite modified glassy carbon electrodes: A mini review. Nanoarchitectonics 2021, 2, 61–87. [Google Scholar] [CrossRef]
- Hadadi, T.; Shahraki, M.; Karimi, P. Adsorption of some nitrophenols onto graphene and functionalized graphene sheets: Quantum mechanics calculations, monte carlo, and molecular dynamics simulations. Chem. Methodol. 2024, 8, 753–775. [Google Scholar]
- Zaidi, S.A.; Shin, J.H. A novel and highly sensitive electrochemical monitoring platform for 4-nitrophenol on MnO2 nanoparticles modified graphene surface. RSC Adv. 2015, 5, 88996–89002. [Google Scholar]
- Singh, S.; Kumar, N.; Kumar, M.; Agarwal, A.; Mizaikoff, B. Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chem. Eng. J. 2017, 313, 283–292. [Google Scholar]
- Saeed, P.N.; Guler, M. Electrochemical determination of 4-nitrophenol using functionalized graphene oxide/functionalized multi-walled carbon nanotubes hybrid material modified glassy carbon electrode. Chem. Phys. 2025, 588, 112468. [Google Scholar]
- Wang, P.; Xiao, J.; Liao, A.; Li, P.; Guo, M.; Xia, Y.; Li, Z.; Jiang, X.; Huang, W. Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim. Acta 2015, 176, 448–455. [Google Scholar]
- Liao, A.; Li, P.; Zhang, H.; Guo, M.; Xia, Y.; Li, Z.; Huang, W. Highly sensitive determination of 4-nitrophenol at a nafion modified glass carbon nanofilm electrode. J. Electrochem. Soc. 2016, 164, H63. [Google Scholar]
- Thirumalraj, B.; Rajkumar, C.; Chen, S.M.; Lin, K.Y. Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. J. Colloid Interface Sci. 2017, 499, 83–92. [Google Scholar] [CrossRef]
- Saira, F.; Saleemi, S.; Razzaq, H.; Qureshi, R. Spectrophotometric analysis of stability of gold nanoparticles during catalytic reduction of 4-nitrophenol. Turk. J. Chem. 2021, 45, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Zhang, Y.; Wang, Y.; Wang, M.; Li, Z.; Wang, G.; Su, X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022, 237, 122956. [Google Scholar] [PubMed]
- Almási, A.; Fischer, E.; Perjési, P. A simple and rapid ion-pair HPLC method for simultaneous quantitation of 4-nitrophenol and its glucuronide and sulfate conjugates. J. Biochem. Biophys. Methods 2006, 69, 43–50. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Aflatoonian, M.R.; Makarem, A. Glutathione detection at carbon paste electrode modified with ethyl 2-(4-ferrocenyl-[1,2,3] triazol-1-yl) acetate, ZnFe2O4 nano-particles and ionic liquid. J. Electrochem. Sci. Eng. 2022, 12, 209–217. [Google Scholar] [CrossRef]
- Arpitha, S.B.; Swamy, B.K.; Shashikumara, J.K. An efficient electrochemical sensor based on ZnO/Co3O4 nanocomposite modified carbon paste electrode for the sensitive detection of hydroquinone and resorcinol. Inorg. Chem. Commun. 2023, 152, 110656. [Google Scholar] [CrossRef]
- Javanshiri-Ghasemabadi, J.; Sadeghi, S. Facile fabrication of an electrochemical sensor for the determination of two sulfonamide antibiotics in milk, honey and water samples using the effective modification of carbon paste electrode with graphitic carbon nitride and manganese oxide nanostructures. J. Food Compos. Anal. 2023, 120, 105294. [Google Scholar]
- Akbarzadeh, T.N.; Esmaeelzadeh, S. Highly sensitive determination of methyldopa using modified screen-printed electrode. J. Environ. Bioanal. Electrochem. 2025, 1, 15–23. [Google Scholar]
- Zainul, R.; Rafika, R.; Hasanudin, H.; Laghari, I.A.; Hamdani, D.M.H.; Mapanta, J.; Handayana, R.; Delson, D.; Mandeli, R.S.; Putra, H.; et al. Systematic review of electrochemical stability and performance enhancement in energy storage and analytical applications. Asian J. Green Chem. 2024, 8, 198–216. [Google Scholar]
- Mahmoudi Moghaddam, H.; Beitollahi, H.; Tajik, S.; Jahani, S.; Khabazzadeh, H.; Alizadeh, R. Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor. Russ. J. Electrochem. 2017, 53, 452–460. [Google Scholar] [CrossRef]
- Cardoso Juarez, A.O.; Ivan Ocampo Lopez, E.; Kesarla, M.K.; Bogireddy, N.K.R. Advances in 4-Nitrophenol detection and reduction methods and mechanisms: An updated review. ACS Omega 2024, 9, 33335–33350. [Google Scholar] [CrossRef]
- Pham, X.N.; Pham, T.N.; Pham, T.T.; Nguyen, T.T.B. Highly efficient electrochemical detection of 4-nitrophenol based on electrode-modified CuInS2@UiO-66 nanocomposite. J. Solid State Electrochem. 2024, 28, 3467–3480. [Google Scholar] [CrossRef]
- Beitollahi, H.; Raoof, J.B.; Hosseinzadeh, R. Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Anal. Sci. 2011, 27, 991. [Google Scholar] [CrossRef]
- Kanoun, O.; Lazarević-Pašti, T.; Pašti, I.; Nasraoui, S.; Talbi, M.; Brahem, A.; Adiraju, A.; Sheremet, E.; Rodriguez, R.D.; Ali, M.B.; et al. A review of nanocomposite-modified electrochemical sensors for water quality monitoring. Sensors 2021, 21, 4131. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Wang, J. Electrochemical sensors: From the bench to the skin. Sens. Actuators B Chem. 2021, 344, 130178. [Google Scholar] [CrossRef]
- Roshanfekr, H. A simple specific dopamine aptasensor based on partially reduced graphene oxide–aunps composite. Prog. Chem. Biochem. Res. 2023, 6, 61–70. [Google Scholar]
- Wang, Q.; Xue, Q.; Chen, T.; Li, J.; Liu, Y.; Shan, X.; Liu, F.; Jia, J. Recent advances in electrochemical sensors for antibiotics and their applications. Chin. Chem. Lett. 2021, 32, 609–619. [Google Scholar]
- Tajik, S.; Lohrasbi-Nejad, A.; Mohammadzadeh Jahani, P.; Askari, M.B.; Salarizadeh, P.; Beitollahi, H. Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite. J. Food Meas. Charact. 2022, 16, 722–730. [Google Scholar] [CrossRef]
- Drobysh, M.; Liustrovaite, V.; Baradoke, A.; Viter, R.; Chen, C.F.; Ramanavicius, A.; Ramanaviciene, A. Determination of rSpike protein by specific antibodies with screen-printed carbon electrode modified by electrodeposited gold nanostructures. Biosensors 2022, 12, 593. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Ahmadi, S.A.; Askari, M.B.; Di Bartolomeo, A. Screen-printed electrode surface modification with NiCo2O4/RGO nanocomposite for hydroxylamine detection. Nanomaterials 2021, 11, 3208. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, Y.; Bin, L.; Fan, L.; Wang, L.; Yuan, X.; Li, D.; Liu, S.; Zhao, S. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem. J. 2021, 170, 106726. [Google Scholar] [CrossRef]
- Garkani Nejad, F.; Beitollahi, H.; Alizadeh, R. Sensitive determination of hydroxylamine on ZnO nanorods/graphene oxide nanosheets modified graphite screen printed electrode. Anal. Bioanal. Electrochem. 2017, 9, 134–144. [Google Scholar]
- Ambaye, A.D.; Kefeni, K.K.; Kebede, T.G.; Ntsendwana, B.; Mishra, S.B.; Nxumalo, E.N. Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. J. Electroanal. Chem. 2022, 919, 116542. [Google Scholar]
- Mazloum-Ardakani, M.; Beitollahi, H.; Amini, M.K.; Mirjalili, B.F.; Mirkhalaf, F. Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1, 3-dithiane self-assembled monolayer. J. Electroanal. Chem. 2011, 651, 243–249. [Google Scholar] [CrossRef]
- Hajializadeh, A. Voltammetry determination of vitamin B6 using modified screen printed electrode. J. Environ. Bioanal. Electrochem. 2025, 1, 114–124. [Google Scholar]
- Peyman, H. Design and fabrication of modified DNA-Gp nano-biocomposite electrode for industrial dye measurement and optical confirmation. Prog. Chem. Biochem. Res. 2022, 5, 391–405. [Google Scholar]
- Zhang, S.; Ling, P.; Chen, Y.; Liu, J.; Yang, C. 2D/2D porous Co3O4/rGO nanosheets act as an electrochemical sensor for voltammetric tryptophan detection. Diam. Relat. Mater. 2023, 135, 109811. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Dourandish, Z.; Garkani Nejad, F. Simple preparation and characterization of hierarchical flower-like NiCo2O4 nanoplates: Applications for sunset yellow electrochemical analysis. Biosensors 2022, 12, 912. [Google Scholar] [CrossRef]
- Mohammadzadeh Jahani, P.; Jafari, M. Novel approach for selective voltammetric noscapine quantification in biological and pharmaceutical samples using WO3 nanorods-modified graphite screen printed electrode. J. Environ. Bioanal. Electrochem. 2025, 1, 99–107. [Google Scholar]
- Singh, A.; Sharma, A.; Arya, S. Electrochemical sensing of ascorbic acid (AA) from human sweat using Ni–SnO2 modified wearable electrode. Inorg. Chem. Commun. 2023, 152, 110718. [Google Scholar] [CrossRef]
- Turkia, M.A.; Salman, T.A. A review on the synthesis of nanomaterials: Comparing traditional and biological green methods. J. Chem. Rev. 2024, 6, 458–481. [Google Scholar]
- Tajik, S.; Beitollahi, H.; Garkani Nejad, F. Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole. Electrochem. Commun. 2024, 169, 107824. [Google Scholar]
- Alao, I.; Oyekunle, I.; Iwuozor, K.; Emenike, E. Green synthesis of Copper Nanoparticles and Investigation of its Antimicrobial Properties. Adv. J. Chem. B 2022, 4, 39–52. [Google Scholar]
- Amudi, K.; Yiğit, A.; Menges, N.; Pınar, P.T. Highly selective electrochemical sensor for new generation targeted-anticancer drug Ibrutinib using newly synthesized nanomaterial GO-NH-B (OH)2@AgNPs modified glassy carbon electrode. Measurement 2023, 216, 112978. [Google Scholar]
- Sun, Y.; Xu, L.; Waterhouse, G.I.; Wang, M.; Qiao, X.; Xu, Z. Novel three-dimensional electrochemical sensor with dual signal amplification based on MoS2 nanosheets and high-conductive NH2-MWCNT@COF for sulfamerazine determination. Sens. Actuators B Chem. 2019, 281, 107–114. [Google Scholar]
- Wang, S.; Li, J.; Qiu, Y.; Zhuang, X.; Wu, X.; Jiang, J. Facile synthesis of oxidized multi-walled carbon nanotubes functionalized with 5-sulfosalicylic acid/MoS2 nanosheets nanocomposites for electrochemical detection of copper ions. Appl. Surf. Sci. 2019, 487, 766–772. [Google Scholar]
- Ma, L.; Bai, L.; Zhao, M.; Zhou, J.; Chen, Y.; Mu, Z. An electrochemical aptasensor for highly sensitive detection of zearalenone based on PEI-MoS2-MWCNTs nanocomposite for signal enhancement. Anal. Chim. Acta 2019, 1060, 71–78. [Google Scholar]
- Ren, S.; Zhang, Y.; Qin, R.; Xu, H.; Ye, M.; Nie, P. MoS2/MWCNT-COOH-modified glassy carbon electrode for nitrite detection in water environment. Chemosensors 2022, 10, 419. [Google Scholar] [CrossRef]
- Yadav, A.K.; Verma, D.; Solanki, P.R. Electrophoretically deposited L-cysteine functionalized MoS2@MWCNT nanocomposite platform: A smart approach toward highly sensitive and label-free detection of gentamicin. Materials Today Chem. 2021, 22, 100567. [Google Scholar] [CrossRef]
- Omran, A.A.; Al-Saedi, H.F.S.; Salah, O.H.; Kareem, A.H.; Hawas, M.N.; Alzahraa, Z.H.A. Boosted removal of sulfadiazine drug using multiwall carbon nanotubes and comparative with other adsorbents. Asian J. Green Chem. 2024, 8, 150–160. [Google Scholar]
- Agrahari, S.; Singh, A.K.; Tiwari, I.; Srikrishna, S. Electrochemical deposition of Pd on MoS2 supported graphene nanoflakes over functionalised MWCNTs as an immunosensor for detection of lung cancer biomarker. Microchem. J. 2024, 196, 109698. [Google Scholar]
- Hosseini, F.; Fadaee Kakhki, J.; Salari, Z.; Ebrahimi, M. Determination of tramadol in aqueous samples using solid phase microextraction fiber based on sol-gel coating reinforced with multiwall carbon nanotube followed by gas chromatography. Chem. Methodol. 2023, 7, 383–391. [Google Scholar]
- Alif, M.; Zainul, R.; Mulyani, A.; Syakirah, S.; Zikri, A.; Iqbal, A.; Abdullah, M.; Adeyi, A. Comprehensive review of functionalized multi-walled carbon nanotubes: Emerging trends and applications in simultaneous detection of uric acid, dopamine and ascorbic acid. Adv. J. Chem. A 2024, 7, 319–337. [Google Scholar]
- Massoumi, B.; Mohammad-Rezaei, R.; Abbasian, M.; Jaymand, M. Amine-functionalized carbon nanotubes as curing agent for polystyrene-modified novolac epoxy resin: Synthesis, characterization and possible applications. Appl. Phys. A 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Ulu, A.; Karaman, M.; Yapıcı, F.; Naz, M.; Sayın, S.; Saygılı, E.İ.; Ateş, B. The carboxylated multi-walled carbon nanotubes/l-asparaginase doped calcium-alginate beads: Structural and biocatalytic characterization. Catal. Lett. 2020, 150, 1679–1691. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M.; Behranvand, V. Anionic clay intercalated by multi-walled carbon nanotubes as an efficient 3D nanofiller for the preparation of high-performance l-alanine amino acid containing poly (amide-imide) nanocomposites. J. Mater. Sci. 2014, 49, 7004–7013. [Google Scholar]
- Singh, B.P.; Choudhary, V.; Teotia, S.; Gupta, T.K.; Singh, V.N.; Dhakate, S.R.; Mathur, R.B. Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv. Mater. Lett. 2015, 6, 104–113. [Google Scholar]
- do Amaral Montanheiro, T.L.; Cristóvan, F.H.; Machado, J.P.B.; Tada, D.B.; Durán, N.; Lemes, A.P. Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J. Mater. Res. 2015, 30, 55–65. [Google Scholar] [CrossRef]
- Tian, L.; Wu, R.; Liu, H. Synthesis of Au-nanoparticle-loaded 1T@2H-MoS2 nanosheets with high photocatalytic performance. J. Mater. Sci. 2019, 54, 9656–9665. [Google Scholar] [CrossRef]
- Lin, Q.; Dong, X.; Wang, Y.; Zheng, N.; Zhao, Y.; Xu, W.; Ding, T. Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution. J. Mater. Sci. 2020, 55, 6637–6647. [Google Scholar]
- Qu, B.; Sun, Y.; Liu, L.; Li, C.; Yu, C.; Zhang, X.; Chen, Y. Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Sci. Rep. 2017, 7, 42772. [Google Scholar]
- Zhang, Z.; Dong, Y.; Liu, G.; Li, J.; Sun, H.; Luo, H.; Liu, S. The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124431. [Google Scholar] [CrossRef]
- Madhu, R.; Karuppiah, C.; Chen, S.M.; Veerakumar, P.; Liu, S.B. Electrochemical detection of 4-nitrophenol based on biomass derived activated carbons. Anal. Methods 2014, 6, 5274–5280. [Google Scholar] [CrossRef]
- Laghrib, F.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Voltammetric determination of nitro compound 4-nitroaniline in aqueous medium at chitosan gelified modified carbon paste electrode (CS@ CPE). Int. J. Biol. Macromol. 2019, 131, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Calam, T.T. Electrochemical oxidative determination and electrochemical behavior of 4-nitrophenol based on an Au electrode modified with electro-polymerized 3, 5-diamino-1, 2, 4-triazole film. Electroanalysis 2020, 32, 149–158. [Google Scholar] [CrossRef]
- Huang, R.; Liao, D.; Liu, Z.; Yu, J.; Jiang, X. Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol. Sens. Actuators B Chem. 2021, 338, 129828. [Google Scholar] [CrossRef]
- Cao, K.; Si, C.; Zhang, H.; Hu, J.; Zheng, D. An electrochemical sensor based on a glassy carbon electrode modified with optimized Cu–Fe3O4 nanocomposite for 4-nitrophenol detection. J. Mater. Sci. Mater. Electron. 2022, 33, 2386–2398. [Google Scholar] [CrossRef]
- Jia, L.; Hao, J.; Wang, S.; Yang, L.; Liu, K. Sensitive detection of 4-nitrophenol based on pyridine diketopyrrolopyrrole-functionalized graphene oxide direct electrochemical sensor. RSC Adv. 2023, 13, 2392–2401. [Google Scholar] [CrossRef]
Electrochemical Sensing Platform | Electrochemical Technique | Linear Range | LOD | Ref. |
---|---|---|---|---|
Chitosan/ZnO nanoneedle-modified SPCE | DPV | 0.5 to 400.6 µM | 0.23 µM | [8] |
Activated carbon-modified glassy carbon electrode (GCE) | Linear sweep voltammetry | 1.0 to 500.0 µM | 0.16 µM | [60] |
Chitosan-modified carbon paste electrode (CPE) | DPV | 0.1 µM to 0.1 mM | 0.093 µM | [61] |
3, 5- diamino-1,2,4- triazole film-modified gold electrode | DPV | 0.24 to 130.6 µM | 0.09 µM | [62] |
Nb2CTX/Zn, Co-embedded N-doped carbon nanocage-modified GCE | DPV | 1.0 to 500.0 µM | 0.07 µM | [63] |
Cu0.5–Fe3O4 @ carbon black Vulcan-72-modified GCE | DPV | 0.1 to 4.0 µM and 5.0 to 150.0 µM | 0.065 µM | [64] |
Pyridine diketo pyrrolopyrrole-functionalized graphene oxide-modified GCE | DPV | 0.5 to 163.0 µM | 0.1 µM | [65] |
MoS2/MWCNTs/SPCE | DPV | 0.05 to 800.0 µM | 0.01 µM | Present work |
Interfering Compounds | Change in Cathodic Peak Current (%) |
---|---|
Hydroquinone | +3.5 |
Catechol | +3.8 |
4-aminophenol | +4.3 |
resorcinol | +2.9 |
K+ | −1.6 |
Na+ | −1.9 |
Mg2+ | −0.7 |
Ca2+ | −0.8 |
Cu2+ | −2.3 |
Cl− | +0.6 |
Br− | +1.1 |
SO42− | −1.3 |
NO3− | +2.2 |
Sample | Concentrations of 4-NP | Results | ||
---|---|---|---|---|
Spiked (µM) | Found (µM) | Recovery (%) | RSD (%) | |
Tap water | 0 | - | - | - |
5.0 | 4.9 | 98.0 | 3.3 | |
7.0 | 7.3 | 104.3 | 1.9 | |
9.0 | 9.1 | 101.1 | 2.7 | |
11.0 | 10.7 | 97.3 | 2.3 | |
River water | 0 | - | - | - |
5.5 | 5.6 | 101.8 | 2.2 | |
7.5 | 7.2 | 96.0 | 3.0 | |
9.5 | 9.7 | 102.1 | 2.4 | |
11.5 | 11.4 | 99.1 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beitollahi, H.; Tajik, S. MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples. Micromachines 2025, 16, 366. https://doi.org/10.3390/mi16040366
Beitollahi H, Tajik S. MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples. Micromachines. 2025; 16(4):366. https://doi.org/10.3390/mi16040366
Chicago/Turabian StyleBeitollahi, Hadi, and Somayeh Tajik. 2025. "MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples" Micromachines 16, no. 4: 366. https://doi.org/10.3390/mi16040366
APA StyleBeitollahi, H., & Tajik, S. (2025). MoS2/MWCNT Nanostructure: Enhanced Performance of Screen-Printed Carbon Electrode for Voltammetric Determination of 4-Nitrophenol in Water Samples. Micromachines, 16(4), 366. https://doi.org/10.3390/mi16040366