Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection
Abstract
:1. Introduction
2. Development of Biosensors
2.1. Synthesis of Carbon Dots
2.2. Synthesis of Glassy Carbon
2.3. Fabrication Methods of Electrodes
2.3.1. Screen-Printed Electrodes (SPE)
Screen-Printed Electrode Configurations
- -
- Screen-printed modules with three electrodes, which consist of a working electrode at which the electrochemical reaction of interest occurs, an auxiliary electrode (counter electrode) that completes the electrical circuit and is usually made from an inert material that does not participate in the electrochemical reaction under study, and a reference electrode that provides a stable potential against which it measures the potential of the working electrode [61].
- -
- Screen-printed modules with four electrodes, including a working electrode, a working sensor electrode, an auxiliary electrode, and a reference electrode. The four-electrode configuration is usually employed to measure the effect of an applied current on a solution or some barrier within that solution. The selection of the configuration depends on the specific application; however, the three-electrode configuration is the most used for fabricating biosensors to detect cancer [61].
Glassy Carbon Electrodes (GCEs) as Working Electrode
2.3.2. Electrochemical Deposition
2.3.3. Drop Casting
Electrode and Modification * | Modification Technique | Year | Ref. |
---|---|---|---|
Au NCs/MWCNTs-NH2/Ab2 | Drop cast | 2018 | [80] |
BSA/Ab1/PDA-AgNPs/GCE | Drop cast | 2019 | [45] |
GCE/NHCDs/CS/Au NPs/Con A | Both | 2020 | [52] |
GCE||Au–CNS@S-GQD/Ang-2 | Drop cast | 2021 | [77] |
ssDNA/Cys–ZnS-QD/GCE | Electrodeposition | 2021 | [81] |
Ab/GCE/GQD/AuNPs/St@AuNPs | Electrodeposition | 2021 | [74] |
BSA/CD44 antibody/GQDs/GCE | Drop cast | 2022 | [78] |
GCE/CoP-BNF/SNGQDs@AuNPs/Trasmatuzab | Drop cast | 2022 | [68] |
AuNPs–WS2QDs–GCE | Both | 2022 | [82] |
GCE/SnS2 nanosheets/lipidbilayer/Mo2TiC2 QDs—GCE/lipid bilayer/Mo2TiC2 QDs | Drop cast | 2023 | [79] |
GCE-OLC; GCE-OLC-PAN; GCE-OLC-PAN | Drop cast | 2023 | [83] |
2.3.4. Electrodeposition and Drop Cast
2.4. Transducer Principles
2.4.1. Electrochemical Principles of Transduction
Potentiometric Biosensors
Amperometric Biosensors
Conductometric Biosensors
Impedimetric Biosensors
Voltammetric Biosensors
2.4.2. Optical Principles of Transduction
Fluorescence-Based Optical Biosensors
Chemiluminescence-Based Optical Biosensors
Surface-Plasmon-Resonance-Based Biosensors
Optical-Fiber-Based Biosensors
3. Types of Biosensors for Cancer Detection
3.1. Enzymatic and Non-Enzymatic Biosensors
3.2. Biomarkers
4. Characterization of Biosensors
4.1. Characteristics of a Biosensor
4.2. Techniques for the Characterization of Electrochemical Biosensors
4.2.1. Electrochemical Impedance Spectroscopy (EIS)
4.2.2. Cyclic Voltammetry (CV)
4.2.3. Differential Pulse Voltammetry (DPV)
4.2.4. Square Wave Voltammetry (SWV)
4.2.5. Chronoamperometry (CA)
4.2.6. Linear Sweep Voltammetry (LSV)
4.3. Techniques for the Characterization of Optical Biosensors
5. Regulatory Challenges in the Clinical Translation of Carbon-Based Biosensors
6. Summary and Conclusions
7. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalklen, T.; Jing, Q.; Kar-Narayan, S. Biosensors Based on Mechanical and Electrical Detection Techniques. Sensors 2020, 20, 5605. [Google Scholar] [CrossRef]
- Reveguk, Z.V.; Sych, T.S.; Polyanichko, A.M.; Chuiko, Y.V.; Buglak, A.A.; Kononov, A.I. Rapid and selective colorimetric determination of L-DOPA in human serum with silver nanoparticles. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 299, 122810. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Z.; Zhao, Y.; Song, Z.-L.; Fan, G.-C.; Luo, X. Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode. ACS Sens. 2025. [Google Scholar] [CrossRef] [PubMed]
- Pourmadadi, M.; Rahmani, E.; Rajabzadeh-Khosroshahi, M.; Samadi, A.; Behzadmehr, R.; Rahdar, A.; Ferreira, L.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J. Drug Deliv. Sci. Technol. 2023, 80, 104156. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Yin, B.; Zhu, H.; Zeng, S.; Sohan, A.M.F.; Wan, X.; Liu, J.; Zhang, P.; Lin, X. Chip-based automated equipment for dual-mode point-of-care testing foodborne pathogens. Biosens. Bioelectron. 2024, 257, 116338. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Bayinqiaoge; Cole, T.; Zhang, C.; Wang, Y.; Tang, S.-Y. An off-chip platform for on-demand, single-target encapsulation for ultrasensitive biomarker detection. Biosens. Bioelectron. 2025, 272, 117134. [Google Scholar] [CrossRef]
- Riti, J.; Sutra, G.; Naas, T.; Volland, H.; Simon, S.; Perez-Toralla, K. Combining deep learning and droplet microfluidics for rapid and label-free antimicrobial susceptibility testing of colistin. Biosens. Bioelectron. 2024, 257, 116301. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.K.; Madaboosi, N.; Satija, J.; Nandagopal, B.; Srinivasan, R.; Sai, V.V.R. Polymeric optical fiber biosensor with PAMAM dendrimer-based surface modification and PlGF detection for pre-eclampsia diagnosis. Biosens. Bioelectron. 2024, 257, 116312. [Google Scholar] [CrossRef] [PubMed]
- Lakhera, P.; Chaudhary, V.; Jha, A.; Singh, R.; Kush, P.; Kumar, P. Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Mater. Today Chem. 2022, 26, 101129. [Google Scholar] [CrossRef]
- Kuche-Meshki, M.; Zare, H.R.; Akbarnia, A.; Moshtaghioun, S.M. A sensitive electrochemical genosensor for measuring gastric cancer biomarker, microRNA-106b, based on asparagine polymerization on carbon quantum dots modified electrode. Microchem. J. 2023, 191, 108846. [Google Scholar] [CrossRef]
- Li, D.; Wang, G.; Mei, X. Diagnosis of cancer at early stages based on the multiplex detection of tumor markers using metal nanoclusters. Analyst 2020, 145, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors–Sensor Principles and Architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, D.; Liu, Y.; Wang, W.; Ren, R.; Li, M.; Liu, D.; Liu, Y.; Liu, Y.; Pang, G. Electrochemical Signal Amplification Strategies and Their Use in Olfactory and Taste Evaluation. Biosensors 2022, 12, 566. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Kim, K.-B.; Gurudatt, N.; Hussain, K.K.; Choi, C.S.; Park, D.-S.; Shim, Y.-B. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 2019, 130, 48–54. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Kravets, V.G.; Grigorenko, A.N. Label-free optical biosensing: Going beyond the limits. Chem. Soc. Rev. 2023, 52, 6554–6585. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M.C. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors 2018, 18, 4126. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Wang, Y.; Feng, Q.; Wei, Y.; Ji, J.; Zhang, W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2016, 36, 465–481. [Google Scholar] [CrossRef]
- Kaur, S.; Srivastava, A.; Aggarwal, V.; Malhotra, B.D. Applications of Carbon Quantum Dots in Cancer Detection and Therapy. In Advanced Production and Industrial Engineering; IOS Press: Amsterdam, The Netherlands, 2022; pp. 311–316. [Google Scholar] [CrossRef]
- Rey-Barroso, L.; Peña-Gutiérrez, S.; Yáñez, C.; Burgos-Fernández, F.J.; Vilaseca, M.; Royo, S. Optical Technologies for the Improvement of Skin Cancer Diagnosis: A Review. Sensors 2021, 21, 252. [Google Scholar] [CrossRef]
- Owida, H.A. Developments and Clinical Applications of Noninvasive Optical Technologies for Skin Cancer Diagnosis. J. Skin Cancer 2022, 2022, 9218847. [Google Scholar] [CrossRef]
- Fonseca, J.D.S.; Fajardo, N.J.B.; Perdomo, N.V.; Charry, O.J.P.; Orjuela-Cañón, D.; Rodriguez, E.M.; Burbano, D.C.R. Fluorescent Carbon Dots Illuminate Hydrogen Peroxide Detection: A Promising Approach. In Proceedings of the 2023 IEEE 3rd Colombian BioCAS Workshop, Bogota, Colombia, 26–28 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Courtenay, L.A.; González-Aguilera, D.; Lagüela, S.; del Pozo, S.; Ruiz-Mendez, C.; Barbero-García, I.; Román-Curto, C.; Cañueto, J.; Santos-Durán, C.; Cardeñoso-Álvarez, M.E.; et al. Hyperspectral imaging and robust statistics in non-melanoma skin cancer analysis. Biomed. Opt. Express 2021, 12, 5107–5127. [Google Scholar] [CrossRef] [PubMed]
- Hyeraci, M.; Papanikolau, E.S.; Grimaldi, M.; Ricci, F.; Pallotta, S.; Monetta, R.; Minafò, Y.A.; Di Lella, G.; Galdo, G.; Abeni, D.; et al. Systemic Photoprotection in Melanoma and Non-Melanoma Skin Cancer. Biomolecules 2023, 13, 1067. [Google Scholar] [CrossRef]
- Keçili, R.; Hussain, C.G.; Hussain, C.M. Fluorescent nanosensors based on green carbon dots (CDs) and molecularly imprinted polymers (MIPs) for environmental pollutants: Emerging trends and future prospects. Trends Environ. Anal. Chem. 2023, 40, e00213. [Google Scholar] [CrossRef]
- Kortel, M.; Mansuriya, B.D.; Santana, N.V.; Altintas, Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. Micromachines 2020, 11, 866. [Google Scholar] [CrossRef]
- Ratre, P.; Nazeer, N.; Kumari, R.; Thareja, S.; Jain, B.; Tiwari, R.; Kamthan, A.; Srivastava, R.K.; Mishra, P.K. Carbon-Based Fluorescent Nano-Biosensors for the Detection of Cell-Free Circulating MicroRNAs. Biosensors 2023, 13, 226. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Han, Y.; Chen, X.; Tang, W.; Yue, T.; Li, Z. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends Food Sci. Technol. 2020, 95, 149–161. [Google Scholar] [CrossRef]
- Singh, S.; Dhawan, A.; Karhana, S.; Bhat, M.; Dinda, A.K. Quantum Dots: An Emerging Tool for Point-of-Care Testing. Micromachines 2020, 11, 1058. [Google Scholar] [CrossRef]
- Shiell, T.B.; Wong, S.; Yang, W.; Tanner, C.A.; Haberl, B.; Elliman, R.G.; McKenzie, D.R.; McCulloch, D.G.; Bradby, J.E. The composition, structure and properties of four different glassy carbons. J. Non-Cryst. Solids 2019, 522, 119561. [Google Scholar] [CrossRef]
- Vieira, L.D.S. A review on the use of glassy carbon in advanced technological applications. Carbon 2022, 186, 282–302. [Google Scholar] [CrossRef]
- Hu, M.; He, J.; Zhao, Z.; Strobel, T.A.; Hu, W.; Yu, D.; Sun, H.; Liu, L.; Li, Z.; Ma, M.; et al. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 2017, 3, e1603213. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.; Guo, Y. Recent Trends in Nanomaterial-Based Biosensors for Point-of-Care Testing. Front. Chem. 2020, 8, 586702. [Google Scholar] [CrossRef] [PubMed]
- Runprapan, N.; Wang, F.-M.; Ramar, A.; Yuan, C.-C. Role of Defects of Carbon Nanomaterials in the Detection of Ovarian Cancer Cells in Label-Free Electrochemical Immunosensors. Sensors 2023, 23, 1131. [Google Scholar] [CrossRef]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors 2023, 13, 40. [Google Scholar] [CrossRef]
- Sych, T.S.; Polyanichko, A.M.; Buglak, A.A.; Kononov, A.I. Quantitative determination of albumin and immunoglobulin in human serum using gold nanoclusters. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 298, 122796. [Google Scholar] [CrossRef]
- Lopes, R.C.F.G.; Rocha, B.G.M.; Maçôas, E.M.S.; Marques, E.F.; Martinho, J.M.G. Combining metal nanoclusters and carbon nanomaterials: Opportunities and challenges in advanced nanohybrids. Adv. Colloid Interface Sci. 2022, 304, 102667. [Google Scholar] [CrossRef]
- Paramasivam, G.; Palem, V.V.; Sundaram, T.; Sundaram, V.; Kishore, S.C.; Bellucci, S. Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials 2021, 11, 3228. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors. In Nanomaterials for Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–74. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, P.; Bhattacharya, S. Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others. In Environmental, Chemical and Medical Sensors; Bhattacharya, S., Agarwal, A.K., Chanda, N., Pandey, A., Sen, A.K., Eds.; Springer: Singapore, 2018; pp. 167–198. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Yang, H.-L.; Bai, L.-F.; Geng, Z.-R.; Chen, H.; Xu, L.-T.; Xie, Y.-C.; Wang, D.-J.; Gu, H.-W.; Wang, X.-M. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mater. Today Adv. 2023, 18, 100376. [Google Scholar] [CrossRef]
- Qin, D.; Jiang, X.; Mo, G.; Feng, J.; Yu, C.; Deng, B. A Novel Carbon Quantum Dots Signal Amplification Strategy Coupled with Sandwich Electrochemiluminescence Immunosensor for the Detection of CA15-3 in Human Serum. ACS Sens. 2019, 4, 504–512. [Google Scholar] [CrossRef]
- Yang, G.; Park, S.-J. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials 2019, 12, 1177. [Google Scholar] [CrossRef] [PubMed]
- Pirsaheb, M.; Mohammadi, S.; Khodarahmi, R.; Hoseinkhani, Z.; Mansouri, K.; Payandeh, M. A Turn Off Fluorescence Probe Based on Carbon Dots for Highly Sensitive Detection of BRCA1 Gene in Real Samples and Cellular Imaging. J. Fluoresc. 2022, 32, 1733–1741. [Google Scholar] [CrossRef]
- Miao, H.; Wang, L.; Zhuo, Y.; Zhou, Z.; Yang, X. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron. 2016, 86, 83–89. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, X.; Pan, Q.; Zhang, Y.; Deng, W.; Zou, G.; Hou, H.; Ji, X. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024, 498, 215468. [Google Scholar] [CrossRef]
- Huang, Q.; Lin, X.; Zhu, J.-J.; Tong, Q.-X. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens. Bioelectron. 2017, 94, 507–512. [Google Scholar] [CrossRef]
- Suner, S.S.; Sahiner, M.; Ayyala, R.S.; Bhethanabotla, V.R.; Sahiner, N. Versatile Fluorescent Carbon Dots from Citric Acid and Cysteine with Antimicrobial, Anti-biofilm, Antioxidant, and AChE Enzyme Inhibition Capabilities. J. Fluoresc. 2021, 31, 1705–1717. [Google Scholar] [CrossRef]
- Chen, A.; Liang, W.; Wang, H.; Zhuo, Y.; Chai, Y.; Yuan, R. Anodic Electrochemiluminescence of Carbon Dots Promoted by Nitrogen Doping and Application to Rapid Cancer Cell Detection. Anal. Chem. 2020, 92, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Uskoković, V. A historical review of glassy carbon: Synthesis, structure, properties and applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Antonowicz, K.; Cacha, L.; Turlo, J. Switching phenomena in glassy carbon. Carbon 1973, 11, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Gao, Y.; Du, B.; Vafaei, S.; Li, M.; Wu, H.; Tong, X.; Chen, Y. Synthesis of poly (L-cysteine)/g-C3N4 modified glassy carbon electrodes for electrochemical detection of methotrexate as a medicine for treatment of breast cancer in pharmaceutical fluid samples. Chemosphere 2023, 331, 138769. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; da Silva, A.D.; Camargo, J.R.; de Castro, B.S.; Meireles, L.M.; Silva, P.S.; Janegitz, B.C.; Silva, T.A. Carbon Nanomaterials-Based Screen-Printed Electrodes for Sensing Applications. Biosensors 2023, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Paimard, G.; Ghasali, E.; Baeza, M. Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications. Chemosensors 2023, 11, 113. [Google Scholar] [CrossRef]
- Fatima, B.; Hussain, D.; Bashir, S.; Hussain, H.T.; Aslam, R.; Nawaz, R.; Rashid, H.N.; Bashir, N.; Majeed, S.; Ashiq, M.N.; et al. Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111296. [Google Scholar] [CrossRef]
- Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst 2021, 146, 4000–4009. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, H.; Li, M.; Li, C.; Qian, L.; Yang, B. Electrochemical immunosensors with AuPt-vertical graphene/glassy carbon electrode for alpha-fetoprotein detection based on label-free and sandwich-type strategies. Biosens. Bioelectron. 2019, 132, 68–75. [Google Scholar] [CrossRef]
- Mincu, N.-B.; Lazar, V.; Stan, D.; Mihailescu, C.M.; Iosub, R.; Mateescu, A.L. Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics 2020, 10, 517. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, X.; He, S.; Gao, Z.; Di, Y.; Lu, K.; Li, K.; Wang, J. Aptamer-DNA concatamer-quantum dots based electrochemical biosensing strategy for green and ultrasensitive detection of tumor cells via mercury-free anodic stripping voltammetry. Biosens. Bioelectron. 2019, 126, 261–268. [Google Scholar] [CrossRef]
- Yang, Y.; Liao, Y.; Qing, Y.; Li, H.; Du, J. Electrochemical DNA Biosensors with Dual-Signal Amplification Strategy for Highly Sensitive HPV 16 Detection. Sensors 2023, 23, 7380. [Google Scholar] [CrossRef] [PubMed]
- Centane, S.; Nyokong, T. Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes. Sens. Bio-Sens. Res. 2021, 34, 100467. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Ma, W.; Yang, M.; Hou, C.; Luo, X.; Huo, D. Ultrasensitive detection of microRNA-21 by using specific interaction of antimonene with RNA as electrochemical biosensor. Bioelectrochemistry 2021, 142, 107890. [Google Scholar] [CrossRef]
- Antuña-Jiménez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Screen-Printed Electrodes Modified with Metal Nanoparticles for Small Molecule Sensing. Biosensors 2020, 10, 9. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens. Bioelectron. 2017, 89, 107–122. [Google Scholar] [CrossRef]
- Centane, S.; Nyokong, T. Aptamer versus antibody as probes for the impedimetric biosensor for human epidermal growth factor receptor. J. Inorg. Biochem. 2022, 230, 111764. [Google Scholar] [CrossRef]
- Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Fabrication of an immunosensor for quantitative detection of breast cancer biomarker UBE2C. RSC Adv. 2019, 9, 16738–16745. [Google Scholar] [CrossRef]
- Centane, S.; Nyokong, T. Co phthalocyanine mediated electrochemical detection of the HER2 in the presence of Au and CeO2 nanoparticles and graphene quantum dots. Bioelectrochemistry 2023, 149, 108301. [Google Scholar] [CrossRef]
- Prakash, S.; Yeom, J. Advanced Fabrication Methods and Techniques. In Nanofluidics and Microfluidics; Elsevier: Amsterdam, The Netherlands, 2014; pp. 87–170. [Google Scholar] [CrossRef]
- Jayakrishnan, D.S. 5—Electrodeposition: The versatile technique for nanomaterials. In Corrosion Protection and Control Using Nanomaterials; Saji, V.S., Cook, R., Eds.; Woodhead Publishing Series in Metals and Surface Engineering; Woodhead Publishing: Cambridge, UK, 2012; pp. 86–125. [Google Scholar] [CrossRef]
- German, N.; Ramanavicius, A.; Ramanaviciene, A. Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing. Sens. Actuators B Chem. 2014, 203, 25–34. [Google Scholar] [CrossRef]
- Soleimanian, A.; Khalilzadeh, B.; Mahdipour, M.; Aref, A.R.; Kalbasi, A.; Bazaz, S.R.; Warkiani, M.E.; Rashidi, M.R.; Mahdavi, M. An Efficient Graphene Quantum Dots-Based Electrochemical Cytosensor for the Sensitive Recognition of CD123 in Acute Myeloid Leukemia Cells. IEEE Sens. J. 2021, 21, 16451–16463. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, T.A. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal. Chem. 2019, 111, 47–61. [Google Scholar] [CrossRef]
- Kumar, A.K.S.; Zhang, Y.; Li, D.; Compton, R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; Darmonto, W.; Doong, R.-A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron. 2021, 181, 113151. [Google Scholar] [CrossRef]
- Kumar, N.; Yadav, S.; Sadique, M.A.; Khan, R. Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker. Biosensors 2022, 12, 966. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Wang, P.; Ma, Q. A novel bimetallic MXene derivative QD-based ECL sensor for miRNA-27a-3p detection. Biosens. Bioelectron. 2023, 228, 115225. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Y.; Su, H.; Mao, L.; Chen, M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens. Bioelectron. 2018, 122, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Moazampour, M.; Zare, H.R.; Shekari, Z. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on L-cysteine functionalized ZnS quantum dots. Anal. Methods 2021, 13, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Pourakbari, R.; Yousefi, M.; Khalilzadeh, B.; Irani-Nezhad, M.H.; Khataee, A.; Aghebati-Maleki, L.; Soleimanian, A.; Kamrani, A.; Chakari-Khiavi, F.; Abolhasan, R.; et al. Early stage evaluation of colon cancer using tungsten disulfide quantum dots and bacteriophage nano-biocomposite as an efficient electrochemical platform. Cancer Nanotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Peteni, S.; Ozoemena, O.C.; Khawula, T.; Haruna, A.B.; Rawson, F.J.; Shai, L.J.; Ola, O.; Ozoemena, K.I. Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer. ACS Sens. 2023, 8, 2761–2770. [Google Scholar] [CrossRef]
- Sumitha, M.S.; Xavier, T.S. Recent advances in electrochemical biosensors—A brief review. Hybrid Adv. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Himori, S.; Nishitani, S.; Sakata, T. Aptamer-based nanofilter interface for small-biomarker detection with potentiometric biosensor. Electrochim. Acta 2021, 368, 137631. [Google Scholar] [CrossRef]
- Takeda, K.; Kusuoka, R.; Inukai, M.; Igarashi, K.; Ohno, H.; Nakamura, N. An amperometric biosensor of L-fucose in urine for the first screening test of cancer. Biosens. Bioelectron. 2021, 174, 112831. [Google Scholar] [CrossRef] [PubMed]
- Dzyadevych, S.; Jaffrezic-Renault, N. 6—Conductometric biosensors. In Biological Identification; Schaudies, R.P., Ed.; Woodhead Publishing: Cambridge, UK, 2014; pp. 153–193. [Google Scholar] [CrossRef]
- Pradhan, R.; Kalkal, A.; Jindal, S.; Packirisamy, G.; Manhas, S. Four electrode-based impedimetric biosensors for evaluating cytotoxicity of tamoxifen on cervical cancer cells. RSC Adv. 2020, 11, 798–806. [Google Scholar] [CrossRef]
- Calvo, P.C.; Campo, O.; Guerra, C.; Castaño, S.; Fonthal, F. Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue. Sens. Bio-Sens. Res. 2020, 29, 100357. [Google Scholar] [CrossRef]
- Bilge, S.; Topal, B.D.; Caglayan, M.G.; Unal, M.A.; Nazır, H.; Atici, E.B.; Sınağ, A.; Ozkan, S.A. SnO2 nanoparticles/waste masks carbon hybrid materials for DNA biosensor application on voltammetric detection of anti-cancer drug pazopanib. Bioelectrochemistry 2023, 150, 108329. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, M.; Jia, Z.; Zhang, H.; Wang, J.; Huang, X.; Lv, C. Detection using a quantum dots/porous silicon optical biosensor based on digital fluorescence images. Sens. Actuators B Chem. 2020, 315, 128108. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Huang, J.; Yang, L. Ultra-sensitive detection of O-GlcNAc transferase based on micro-structured optical fiber biosensor with enhanced fluorescence collection. Sens. Actuators B Chem. 2022, 367, 132162. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Q.; Liu, X.; Wang, Y.; Wang, J.; Wang, X. An ultrasensitive fluorescence nano-biosensor based on RBP 41-quantum dot microspheres for rapid detection of Salmonella in the food matrices. Food Chem. 2025, 468, 142504. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Demchenko, A.P. Clinical Diagnostics Ex-Vivo Based on Fluorescence. In Introduction to Fluorescence Sensing: Volume 2: Target Recognition and Imaging; Demchenko, A.P., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 493–528. [Google Scholar] [CrossRef]
- Chen, X.; Xu, K.; Li, J.; Yang, M.; Li, X.; Chen, Q.; Lu, C.; Yang, H. Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens. Bioelectron. 2020, 155, 112104. [Google Scholar] [CrossRef] [PubMed]
- Dippel, A.B.; Anderson, W.A.; Evans, R.S.; Deutsch, S.; Hammond, M.C. Chemiluminescent Biosensors for Detection of Second Messenger Cyclic di-GMP. ACS Chem. Biol. 2018, 13, 1872–1879. [Google Scholar] [CrossRef] [PubMed]
- Shim, C.; Chong, R.; Lee, J.H. Enzyme-free chemiluminescence immunoassay for the determination of thyroid stimulating hormone. Talanta 2017, 171, 229–235. [Google Scholar] [CrossRef]
- Solaimuthu, A.; Vijayan, A.N.; Murali, P.; Korrapati, P.S. Nano-biosensors and their relevance in tissue engineering. Curr. Opin. Biomed. Eng. 2020, 13, 84–93. [Google Scholar] [CrossRef]
- Teotia, P.K.; Kaler, R.S. 1-D grating based SPR biosensor for the detection of lung cancer biomarkers using Vroman effect. Opt. Commun. 2018, 406, 188–191. [Google Scholar] [CrossRef]
- Srivastava, K.R.; Awasthi, S.; Mishra, P.K.; Srivastava, P.K. Chapter 13—Biosensors/molecular tools for detection of waterborne pathogens. In Waterborne Pathogens; Prasad, M.N.V., Grobelak, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 237–277. [Google Scholar] [CrossRef]
- Hu, J.; Song, E.; Liu, Y.; Yang, Q.; Sun, J.; Chen, J.; Meng, Y.; Jia, Y.; Yu, Z.; Ran, Y.; et al. Fiber Laser-Based Lasso-Shaped Biosensor for High Precision Detection of Cancer Biomarker-CEACAM5 in Serum. Biosensors 2023, 13, 674. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef]
- Wijayanti, S.D.; Tsvik, L.; Haltrich, D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023, 12, 3355. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Ramírez, L.; Rostro-Alanis, M.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors 2021, 11, 410. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29 (Suppl S1), S49–S52. [Google Scholar] [PubMed]
- González-Sánchez, M.-I.; Khadhraoui, H.; Jiménez-Pérez, R.; Iniesta, J.; Valero, E. Non-enzymatic glucose sensor using mesoporous carbon screen-printed electrodes modified with cobalt phthalocyanine by phase inversion. Microchem. J. 2024, 200, 110314. [Google Scholar] [CrossRef]
- Mahani, M.; Mousapour, Z.; Divsar, F.; Nomani, A.; Ju, H. A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Microchim. Acta 2019, 186, 132. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463. [Google Scholar] [CrossRef] [PubMed]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, D.; Leininger, J.; Hamby, C.; Safai, B. Diagnostic and Prognostic Biomarkers in Melanoma. J. Clin. Aesthetic Dermatol. 2014, 7, 13–24. [Google Scholar]
- Kocaman, N.; Yuksel, E.I.; Demir, B.; Calik, I.; Cicek, D. Two Novel Biomarker Candidates for Differentiating Basal Cell Carcinoma from Trichoblastoma; Asprosin and Meteorine Like Peptide. Tissue Cell 2022, 76, 101752. [Google Scholar] [CrossRef]
- Qiu, C.-G.; Shen, B.; Sun, X.-Q. Significant Biomarkers Identification Associated with Cutaneous Squamous Cell Carcinoma Progression. Int. J. Gen. Med. 2022, 15, 2347–2360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, S.; Li, J.; Wang, M.; Wang, C.; Hu, B.; Zhou, N.; Zhang, Z. 0D/2D heteronanostructure–integrated bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots for impedimetric cytosensing of melanoma B16-F10 cells. Microchim. Acta 2021, 188, 69. [Google Scholar] [CrossRef]
- Bucur, B.; Purcarea, C.; Andreescu, S.; Vasilescu, A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors 2021, 21, 3038. [Google Scholar] [CrossRef]
- Karunakaran, C.; Rajkumar, R.; Bhargava, K. Chapter 1—Introduction to Biosensors. In Biosensors and Bioelectronics; Karunakaran, C., Bhargava, K., Benjamin, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–68. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, L.R.; White, H.S.; Bard, A.J. Electrochemical Methods: Fundamentals and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2022; Available online: https://www.wiley.com/en-ae/Electrochemical+Methods%3A+Fundamentals+and+Applications%2C+3rd+Edition-p-9781119334057 (accessed on 25 July 2024).
- Calaminici, P.; Jug, K.; Köster, A.M. Quantum Mechanics and Molecular Orbital Theory: From Basic Principles to Quantum Chemistry. In Encyclopedia of Physical Organic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–37. [Google Scholar] [CrossRef]
- Simões, F.R.; Xavier, M.G. Electrochemical Sensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 155–178. [Google Scholar] [CrossRef]
- Chooto, Cyclic Voltammetry and Its Applications. In Voltammetry; IntechOpen: London, UK, 2019. [CrossRef]
- Chowdhury, A.D.; Ganganboina, A.B.; Park, E.Y.; Doong, R. Impedimetric biosensor for detection of cancer cells employing carbohydrate targeting ability of Concanavalin A. Biosens. Bioelectron. 2018, 122, 95–103. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Doong, R.-A. Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci. Rep. 2019, 9, 7214. [Google Scholar] [CrossRef]
- Akin, M.; Bekmezci, M.; Bayat, R.; Coguplugil, Z.K.; Sen, F.; Karimi, F.; Karimi-Maleh, H. Mobile device integrated graphene oxide quantum dots based electrochemical biosensor design for detection of miR-141 as a pancreatic cancer biomarker. Electrochimica Acta 2022, 435, 141390. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Yang, M.; Hou, C.; Huo, D. An ultrasensitive electrochemical biosensor for simultaneously detect microRNA-21 and microRNA-155 based on specific interaction of antimonide quantum dot with RNA. Microchem. J. 2023, 185, 108173. [Google Scholar] [CrossRef]
- Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-wave voltammetry. ChemTexts 2018, 4, 17. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Barazesh, B.; Moshtaghiun, S.M. A distinguished cancer-screening package containing a DNA sensor and an aptasensor for early and certain detection of acute lymphoblastic leukemia. Clin. Chim. Acta 2019, 497, 41–47. [Google Scholar] [CrossRef]
- Cui, F.; Ji, J.; Sun, J.; Wang, J.; Wang, H.; Zhang, Y.; Ding, H.; Lu, Y.; Xu, D.; Sun, X. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Anal. Bioanal. Chem. 2019, 411, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Mohammadi, S.; Salimi, A. A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 2021, 224, 121895. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-assembled N-doped Q-dot carbon nanostructures as a SERS-active biosensor with selective therapeutic functionality. Sens. Actuators B Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Han, C.; Chen, R.; Wu, X.; Shi, N.; Duan, T.; Xu, K.; Huang, T. Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots. Anal. Chim. Acta 2021, 1187, 339160. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Chiang, W.-H.; Ilhami, F.B.; Tsai, C.-Y.; Huang, S.-Y.; Cheng, C.-C. Water-soluble graphene quantum dot-based polymer nanoparticles with internal donor/acceptor heterojunctions for efficient and selective detection of cancer cells. J. Colloid Interface Sci. 2023, 637, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Gamoń, F.; Ziembińska-Buczyńska, A.; Łukowiec, D.; Tomaszewski, M. Ecotoxicity of selected carbon-based nanomaterials. Int. J. Environ. Sci. Technol. 2023, 20, 10153–10162. [Google Scholar] [CrossRef]
- Yamashita, T.; Yamashita, K.; Nabeshi, H.; Yoshikawa, T.; Yoshioka, Y.; Tsunoda, S.-I.; Tsutsumi, Y. Carbon Nanomaterials: Efficacy and Safety for Nanomedicine. Materials 2012, 5, 350–363. [Google Scholar] [CrossRef]
- Rahmati, M.; Mozafari, M. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front. Bioeng. Biotechnol. 2019, 7, 4. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 105–116. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, R. Optically Active Nanomaterials and Its Biosensing Applications—A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Eddin, F.B.K.; Fen, Y.W. Recent Advances in Electrochemical and Optical Sensing of Dopamine. Sensors 2020, 20, 1039. [Google Scholar] [CrossRef]
- Avelino, K.Y.P.S.; Silva, R.R.; da Silva Junior, A.G.; Oliveira, M.D.L.; Andrade, C.A.S. Smart applications of bionanosensors for BCR/ABL fusion gene detection in leukemia. SI Smart Mater. Appl. New Mater. 2017, 29, 413–423. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mitsubayashi, K.; Marty, J.L. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol. 2019, 37, 898–915. [Google Scholar] [CrossRef]
Biosensor Material | Biomarker | Type of Biosensor | Detection Mechanism | Detection Conditions | Year | Ref. |
---|---|---|---|---|---|---|
CDs and molecular-beacon-based | MicroRNA-21 | Non-enzymatic | Fluorescence (FRET-based) | 50 mM PBS buffer (pH 7.4); 20 uL CD-MB-BHQ1 conjugate (6 uM) mixed with microRNA-21 (up no 2 uM) in a total volume of 200 uL; 20 min incubation. | 2019 | [110] |
AuPt nanoparticles, VG sheets, GCE | Alpha-fetoprotein (AFP) | Enzymatic | Electrochemical | MO/CNT-Au/Ab2 with surface of Ag-Ab1-AuPt-VG/GCE and incubated. Electrochemical measurements were then conducted using electrode in a PBS solution at different pH values. | 2019 | [60] |
Bimetallic CoCu-ZIF nanosheets and MXene-derived carbon dots | B16-F10 cells | Non-enzymatic | Electrochemical | Normal mice cells (L929 cells) as interferents, as well as other cancer cells (MCF-7, 4T1, K7M2, CT26), cancer markers (PSA, EGFR, AFP, VEGF, Mb, Tn, IgG), and protein (10 pg·mL−1). | 2021 | [117] |
GQDs modified with Au nanoparticles and CoP-BNF to modify the GCE | HER2 (human epidermal growth factor) | Non-enzymatic | Electrochemical | NPs/HB5, and lastly, GCP/SNGQDs@AuNPs/HB5/HER2. The XPS spectrum of modified GC plates was recorded from 0 to 1200 eV. | 2022 | [68] |
AMNFs, CDs | microRNA-21 | Non-enzymatic | Electrochemical | Optimized incubation time and ssRNA-Cd2+-CD concentrations for efficient detection, with 100 pM identified as the optimal concentration for targeting microRNA-21. | 2023 | [79] |
Selectivity | Reproducibility | Stability | Sensitivity | Linearity | Year | Ref. |
---|---|---|---|---|---|---|
GCE||CNS–Au@S-GQDs/Ang-2 biosensor high selectivity for glioma cells, and minimal response to interfering cell MCF-7 and MCF-10. | Precision of 3.8% detecting glioma cells, measurements across 5 different electrodes. | GCE||CNS–Au@S-GQDs/Ang-2 intact over 4 weeks of storage at 4 °C, with recovery rates 84–94%. | The detection limit (LOD) of 40 cells mL−1. | Good linearity (R2 = 0.972) detecting glioma cells (100–50,000 cells mL−1). | 2021 | [77] |
Strong selectivity for the target DNA sequence (T) and non-complementary sequences due to the covalent conjugation of DNA probes on CDs. | N/A | * | LOD was 2 aM. | Linear fluorescence intensity correlation with BRCA1 concentration range of 0.16 fM–6.8 fM. | 2022 | [47] |
High selectivity for miRNA-27a-3p detection, unaffected by miRNA-205, miRNA-155, and miRNA-221 concentrations. | Good reproducibility in detecting gastric cancer, with higher miRNA-27a-3p expression levels, recoveries between 89.1% and 104.2%. | * | * | Intensity correlates positively with miRNA-27a-3p 1 fM to 10 nM, of 0.9919, Mo2TiC2 QDs and SnS2 nanosheets. | 2023 | [79] |
Selectivity | Reproducibility | Stability | Sensitivity | Linearity | Year | Ref. |
---|---|---|---|---|---|---|
Large difference in EIS between cancerous cells (HeLa and MCF-7) and normal cells (MCF-10 and bEnd.3). | N/A | N/A | LODs obtained for HeLa and MCF-7 were 246 and 367 cells mL−1, respectively. | Linear range of 5 × 102–105 cells mL−1. | 2018 | [125] |
The electrochemical signals of HeLa and Hct116 cells were far lower than K562 tumor cells; high specificity. | Three different concentrations of K562 cells. RSD assays ranged from 5.26% to 7.22%. | N/A | LOD of 60 cells mL−1 (S/N = 3). | Linear correlation high R2 = 0.9986. | 2019 | [62] |
Detected UBE2C in breast cancer cell MCF-7 extract, outperforming conventional ELISA. | Five different sensors with 0.05 mg mL−1 UBE2C an RSD value of 3.51%. And testing 0.05 mg mL−1 UBE2C 5 times, observed RSD of 3.11%. | Evaluated by storing PBS at 4 °C. After 4 weeks, retained 86% of its initial response 0.05 mg mL−1 UBE2C. | LOD and limit of quantification (LOQ) of 7.907 pg mL−1 and 26.356 pg mL−1. | Linear correlation R2 = 0.9914 in the range of 500 pg mL−1 to 5 mg mL−1. | 2019 | [69] |
Minimal change in impedance exposed to potential interferences like AFP, Tau protein, Hb, L-Cys, and L-glu at 10 ng mL−1. A significant increase impedance when CEA. | Measured concentrations of CEA ranging from 10.4 to 11.5 ng mL−1 and AVG of 10.9 ng mL−1. Low RSD was 6.8%. | Recovery rate of 98 ± 3% after 10 days of storage. Even after 20 days of storage, retained 87 ± 4% of its original activity. | LOD of 0.01 ng mL−1. | Linear range 0.5–1000 (ng mL−1). | 2019 | [126] |
The specific detection of PTK7 (0.1 pg·mL−1) and the ability to distinguish between different types of cells and protein markers indicated good selectivity. | Five measurements independent Apt/CoCu-ZIF@CDs/AEs toward B16-F10 cells with 3 concentrations of 5 × 102, 1 × 103, and 5 × 103 cells mL−1. | Storing Apt/CoCu-ZIF@CDs/AE in a refrigerator (4 °C) for 15 days and continuously detecting B16-F10 cells daily by EIS. | LOD was deduced to be 33 cells∙mL−1. | The B16-F10 concentration range from 1 × 102 cells∙mL−1 to 1 × 105 cells∙mL−1. | 2021 | [117] |
Detected HER2 in human serum samples, showcasing its selectivity amidst diverse serum components. | Through repeated measurements at various HER2 concentrations, RSD consistently below 8%. | After 4 days of storage, retained 90% of its performance ability. | LOD of GCE/PPy@SNGQDs/CoPc (6)/HB5 at 0.00141 ng/mL, and highest LOD for GCE/CoPc (2)/HB5, 0.647 ng/mL. | Linear range 1–10 ng/mL. | 2021 | [64] |
Both the antibody (Trastuzumab) and aptamer (HB5) probes showed competitive performance in capturing HER2. | Excellent reproducibility of both sensors, with RSDs of less than 2% for all electrodes at a HER2 concentration of 5 ng/mL. | Over 3 days stored at 4 °C, the Rct values were comparable to those of the initial day; retention rates: immunosensor 97% and aptasensor 96%. | LOD range from 0.0112 ng/mL to 0.0489 ng/mL. | N/A | 2022 | [68] |
GCE/AuNPs/CoTAPc (8)/HB5 and GCE/SNGQDs/CoTAPc(seq.) (6)/HB5 for HER2 detection in human serum. | Aptasensors: excellent reproducibility at various concentrations of HER2. | GCE/AuNPs (4)/CoTAPc (8)/HB5/HER2 probe showed the highest stability (0.56% RSD) over the 96 h at 4 °C. | LOD: achieved by the GCE/AuNPs (4)/HB5 probe (0.006 ng/mL), highest LOD with GCE/SNGQDs (2)/HB5 probe (0.29 ng/mL). | GCE/CeO2NPs (3)/HB5, GCE/SNGQDs(π) CoTAPc (5)/HB5, and GCE/AuNPs/CoTAPc (8)/HB5, R2 > 0.98. | 2023 | [70] |
Selectivity | Reproducibility | Stability | Sensitivity | Linearity | Year | Ref. |
---|---|---|---|---|---|---|
High selectivity in both methods (less than 7% variation), in the presence of interfering substances. | Higher reproducibility in label-free method, RSD of 1.22% compared to the sandwich-type method with 2.07% RSD. | After 1 month of storage at 4 °C, the sandwich-type method showed a peak current decrease of 1.5%, while the label-free method decreased by 4.0%. | The sandwich-type strategy offered higher sensitivity with an LOD of 0.7 fg mL−1. Label-free method with a LODof 0.9 fg mL−1. | The sandwich-type had linear range from 1 fg mL−1 to 100 ng mL−1, and a higher correlation coefficient (R2 = 0.996) compared to the label-free strategy (R2 = 0.990). | 2019 | [60] |
High selectivity for CD44 detection, various interfering analytes such as PSA, CEA, SCC-9 cells, IgG, MDA, HEK-293-T, and dopamine at 50.0 pg/mL. | Low RSD of 5.55% for 5 consecutive differential pulse voltammetry (DPV) scans. | N/A | LOD of 2.11 fg/mL in PBS. In spiked serum samples with a LOD of 2.71 fg/mL. | Range from 0.1 pg/mL to 100.0 ng/mL. It maintained a linear response from 1.0 pg/mL to 100.0 ng/mL. | 2022 | [78] |
Higher response to miR-141 than to miR-21 at equivalent concentrations. | N/A | N/A | LOD of 0.091 pM and a LOQ of 0.27 pM for miR-141 detection. | Linear range spanning from 2.3 to 6.1 nM for miR-141 detection. | 2022 | [127] |
Minimal interference from mismatched single-stranded RNAs; specificity for microRNA detection. | Low RSD of 3.6% across multiple measurements of microRNA-21 and microRNA-155. | The biosensor achieved high recovery rates (98.4% to 105%) and low RSDs (<3.1%). | Rapid detection times (80 min) with ultralow detection limits of 64 aM and 89 aM for microRNA-21 and microRNA-155. | Linear detection capabilities for microRNA-21 and microRNA-155 ranging from 0 to 1 pM. | 2023 | [128] |
High specificity for target HPV 16 DNA; minimal interference from other DNA sequences. | N/A | A minimal decrease in current response 1.008% after 7 days and 2.420% after 14 days, its reliability over time. | LOD of 1.731 × 10−16 mol/L. | Linear response ranges from 1.0 × 10−13 mol/L to 1.0 × 10−5 mol/L, R2 = 0.99232. | 2023 | [63] |
Selectivity | Reproducibility | Stability | Sensitivity | Linearity | Year | Ref. |
---|---|---|---|---|---|---|
High selectivity towards MCF-7 cells, current change compared to other cell types. | RSD of less than 4.6% across five electrodes. | Over 90.6% of the initial response remained constant after 14 days of storage at 4 °C. | LOD of 80 cells mL−1. | Detecting MCF-7 cells within the range of 0 to 1.0 × 106 cells mL−1, R2 = 0.9868. | 2018 | [80] |
Significant binding miRNA sequences compared to close sequences and non-complementary miRNAs. | RSDs range from 4.51% to 9.43% across 15 fabricated electrodes for each target miRNA. | After 3 weeks of storage at 4 °C, retained 84.3% to 89.5% of the initial response values. | LODs range from 0.04 fM to 0.33 fM. | Wide linear dynamic ranges from 0.001 to 1000 pM. | 2021 | [59] |
Lower oxidation peak currents for complementary targets compared to mismatched and non-complementary targets. | RSD of 2.6% when detecting microRNA-21 at a concentration of 10 fM. | After 12 days, retained approximately 101.2% of the original signal at 100 fM. | LOD of 21 aM. | Linear relationship between peak current and microRNA, determination, R2 = 0.994). | 2021 | [65] |
Specificity towards HPV-16 L1 antigen over native ovalbumin protein. | Detected the antigen and underwent a stripping process using glycine HCl solution (pH 2.8) for 5 min. It was then reused to detect the HPV-16 L1 antigen. | Repetitive regeneration detection steps, maintaining its functionality even after storage at 4 °C for 7 days. | Excellent sensitivity (>5.2 μA/log ([HPV-16 L1, fg/mL]), and low LOD of 1.83 fg/mL (32.7 aM) and 0.61 fg/mL (10.9 aM) for OLC-PAN and OLC-based immunosensors. | Two electrode platforms were used: OLC and OLC-PAN composites. Wide linear concentration range (1.95 fg/mL to 6.25 ng/mL). | 2023 | [83] |
Selectivity | Reproducibility | Stability | Sensitivity | Linearity | Year | Ref. |
---|---|---|---|---|---|---|
No significant fluorescence signals were detected; EpCAM with BSA and IgG at the same concentration. | Consistent results testing different cell lines, including Hep G2, A549, and HEK293 cells. | N/A | LOD was 1.19 nM. | The linear range was between 2 and 64 nM. | 2019 | [131] |
High specificity microRNA-21, from single mismatch mutants and scrambled sequences. | N/A | Stability regarding its structural integrity, performance, and physical properties. | LOD wasf.3 nM microRNA-21. | Linearity: microRNA-21 (between 5 and 160 nM) with neat linearity, y = 1.1407x + 58.37. | 2019 | [110] |
Detecting cell-selective therapeutic functionality towards HeLa cervical cancer. | Good reproducibility. No observable discrepancies over 2 months. | Stability in terms of material properties and Raman behavior; timeframe of 2 months. | Achieved a SERS enhancement factor of 107, high compared to Raman enhancement factors. | * | 2020 | [133] |
Recording the fluorescence, including target microRNA-155 and microRNA-21. Did not influence the detection of microRNA-21. | N/A | They exhibited good mechanical, physical, and fluorescence properties. | LOD was 0.03 fM. | Range of 0.1 to 125 fM for GA-CDs-CH and NB-CDs-CH hydrogels, and 0.1 to 26.3 fM for B-CDs-CH hydrogels. | 2020 | [132] |
Strong ECL signals (HeLa and MCF-7) due to their high metabolism and abundant release of H2O2; only a weak signal was detected with normal cells. | N/A | Stored at 4 °C for further use after fabrication, indicating a standard practice to maintain the stability of biosensors. | Notable increase in the ECL corresponding to the increased concentration of cancer cells (HeLa and MCF-7). | * | 2020 | [52] |
High specificity for the HE4 biomarker. | N/A | Stability in operation, time-saving characteristics; good robustness in the analysis samples. | LOD was low as 2.3 pM. Also achieved 196 cells mL−1 for ovarian cancer cells. | HE4-positive ovarian cancer cells, range of 1.02 × 104 to 2.56 × 106 cells mL−1. | 2021 | [134] |
It selectively induced blue solid fluorescence in cancer cells but not in normal cells. | N/A | * | * | N/A | 2023 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López, J.G.; Muñoz, M.; Arias, V.; García, V.; Calvo, P.C.; Ondo-Méndez, A.O.; Rodríguez-Burbano, D.C.; Fonthal, F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. Micromachines 2025, 16, 139. https://doi.org/10.3390/mi16020139
López JG, Muñoz M, Arias V, García V, Calvo PC, Ondo-Méndez AO, Rodríguez-Burbano DC, Fonthal F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. Micromachines. 2025; 16(2):139. https://doi.org/10.3390/mi16020139
Chicago/Turabian StyleLópez, Juana G., Mariana Muñoz, Valentina Arias, Valentina García, Paulo C. Calvo, Alejandro O. Ondo-Méndez, Diana C. Rodríguez-Burbano, and Faruk Fonthal. 2025. "Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection" Micromachines 16, no. 2: 139. https://doi.org/10.3390/mi16020139
APA StyleLópez, J. G., Muñoz, M., Arias, V., García, V., Calvo, P. C., Ondo-Méndez, A. O., Rodríguez-Burbano, D. C., & Fonthal, F. (2025). Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. Micromachines, 16(2), 139. https://doi.org/10.3390/mi16020139