Quality Control Technology for Abrasive Flow Precision Machining of a High-Performance Impeller
Abstract
1. Introduction
Innovation Points of This Study
- (1)
- Gradient channel structure innovation: For the first time, a gradient contraction type channel is designed to enhance the local abrasive collision strength through spatial gradient constraints, solving the weak problem of traditional straight channel blade root processing.
- (2)
- Quantitative innovation of coupling mechanism: We break through the bottleneck of single-parameter qualitative analysis and reveal the synergistic effect law of pressure, velocity, and viscosity, establishing quantifiable parameter regulation criteria.
- (3)
- Innovation of quality control system: We integrate orthogonal experiments and nonlinear regression to construct a closed-loop system of “parameter optimization quality prediction effect verification”, replacing the experience-dependent processing mode.
2. Equations of Solid–Liquid Two-Phase Flow
3. Numerical Simulation Model Construction
3.1. High-Performance Impeller Modelling and Meshing
3.2. Flow Chart for the High-Performance Impeller Simulation
3.3. Analysis of Abrasive Flow Cutting Theory
3.4. Classification of Different Runner Structures
3.5. Mesh Analysis of Different Flow Channels
3.6. Selection of High-Performance Impeller Boundary Conditions
3.7. Grid Division of Channel Structure
4. High-Performance Impeller Numerical Simulation
4.1. Numerical Analysis of the High-Performance Impeller Under Different Channel Structures
4.1.1. Analysis of Impeller Surface Dynamic Pressure Under Different Flow Path Structures
4.1.2. Analysis of Impeller Surface Wall Shear Under Different Flow Path Structures
4.2. Numerical Analysis of the High-Performance Impeller by Solid–Liquid Abrasive Particle Flow
4.2.1. Numerical Analysis of High-Performance Impeller Surfaces at Different Inlet Pressures
- (1)
- Dynamic pressure analysis of high-performance impeller surfaces at different inlet pressures.
- (2)
- Wall shear analysis of high-performance impeller surfaces at different inlet pressures.
4.2.2. Numerical Analysis on the Surface of the High-Performance Impellers at Various Inlet Speeds
- (1)
- Dynamic pressure analysis of high-performance impeller surfaces at different inlet speeds.
- (2)
- Wall shear analysis of high-performance impeller surfaces at different inlet speeds.
4.2.3. Numerical Analysis on the Surface of High-Performance Impellers at Various Abrasive Viscosities
5. Experimental Processing and Results Analysis
5.1. Experimental Methodology and Characterization Techniques
5.2. Laser Confocal Microscopy Inspection and Analysis
5.3. Scanning Electron Microscope Inspection and Analysis
5.4. Surface Roughness Stylus Inspection and Analysis
5.5. Analysis of Variance for Orthogonal Tests
5.6. Regression Analysis of the Orthogonal Test
6. Conclusions
- (1)
- Flow channel structure: The graduated flow channel structure was demonstrated to be superior to the direct flow channel. It significantly enhances the machining efficiency by increasing the collision frequency between abrasives and the workpiece, resulting in a marked increase in the dynamic pressure and wall shear stress on the impeller surface.
- (2)
- Influence of process parameters: Inlet pressure: Increasing the inlet pressure was the most influential factor, leading to a substantial improvement in the intensity and uniformity of the machining effect across the impeller surface.
- (3)
- Inlet velocity: While a higher inlet velocity intensified the overall machining effect, it concurrently exacerbated the non-uniformity of material removal, particularly creating a significant disparity between the blade’s pressure and suction surfaces.
- (4)
- Abrasive viscosity: An optimal abrasive viscosity (0.5 Pa·s in this study) was identified, which effectively improves the machining uniformity without excessively increasing flow resistance.
- (5)
- Experimental optimization and validation: Orthogonal experiments and analysis of variance (ANOVA) quantitatively confirmed that inlet pressure has the most significant impact on surface roughness, followed by abrasive grain size, with the number of processing cycles having a less pronounced effect. The optimal parameter combination (6 MPa inlet pressure, 10 cycles, and 40 μm abrasive size) was determined and validated. Under these conditions, the surface roughness of the impeller was reduced from an initial Ra of 0.766 μm to a final Ra of 0.047 μm, achieving a high-quality, uniformly polished surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, T.W.; Kim, E.S.; Yang, H.I. Effects of Dynamic Motion and Structural Response of a Semi-submersible Floating Offshore Wind Turbine Structure Under Waves Generated in a Hurricane Environment. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 537–556. [Google Scholar] [CrossRef]
- Guan, Y.C. Analysis of factors affecting the machining accuracy of impeller and improvement strategies. Sci. Technol. Innov. Appl. 2020, 30, 117–118. [Google Scholar]
- Zheng, S. Research on strength analysis of water pump impeller of shielded motor. Mot. Technol. 2022, 36–38. [Google Scholar]
- Zhang, J.J.; Liu, J.; Yang, S.Q.; Qiao, Z.J. Modeling and Experimental Study on Material Removal Amount of Curved Surface Parts. Mach. Des. Manuf. 2023, 242–246+252. [Google Scholar] [CrossRef]
- Fountas, N.; Krimpenis, A.; Vaxevanidis, N.M.; Davim, J.P. Single and Multi-objective Optimization Methodologies in CNC Machining. In Statistical and Computational Techniques in Manufacturing; Davim, J.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Zhang, L.C. Surface Integrity of Materials Induced by Grinding. In Machining with Abrasives; Jackson, M., Davim, J., Eds.; Springer: Boston, MA, USA, 2011. [Google Scholar] [CrossRef]
- Karim, M.A.; Jahan, M. 5 Electrical discharge machining of silicon: Current progress and future trends. In Nonconventional Machining; Davim, J.P., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2023; pp. 139–170. [Google Scholar] [CrossRef]
- Jackson, M. Surface Integrity of Micro- and Nanomachined Surfaces. In Surface Integrity in Machining; Davim, J., Ed.; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Jeong, H. Approaches to Sustainability in Chemical Mechanical Polishing (CMP): A Review. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 349–367. [Google Scholar] [CrossRef]
- Paul, C.P.; Kumar, A.; Bhargava, P.; Kukreja, L.M. Laser-Assisted Manufacturing: Fundamentals, Current Scenario, and Future Applications. In Nontraditional Machining Processes; Davim, J., Ed.; Springer: London, UK, 2013. [Google Scholar] [CrossRef]
- Hao, L.H.; Wu, M.-Y. Polishing technology of difficult-to-machine aero-engine impeller blades and its development status. Mech. Manuf. Autom. 2017, 46, 54–56. [Google Scholar] [CrossRef]
- Tang, F.B.; Wen, D.H.; Kong, F.Z.; Yuan, Q.L. Study on the wall effect of abrasive particle flow processing. China Mech. Eng. 2023, 34, 1077–1085. [Google Scholar]
- Kumar, M.; Alok, A.; Kumar, V.; Das, M. Advanced abrasive-based nano-finishing processes: Challenges, principles and recent applications. Mater. Manuf. Process. 2022, 37, 372–392. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, H.; Kumar, S.; Chaitanya, S. A systematic review on recent advancements in Abrasive Flow Machining (AFM). Mater. Today Proc. 2022, 56, 3108–3116. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Sun, D.; Lu, W.Z.; Ko, T.J. Development of Coating Removing from GFRP Surface by Abrasive Air Jet Using Amino Thermoset Plastic Abrasive. Int. J. Precis. Eng. Manuf. Green Technol. 2023, 10, 495–508. [Google Scholar] [CrossRef]
- Gao, H.; Guo, T.B.; Peng, C.; Wang, X.P.; Li, W.Q.; Lin, H.S. Rotary abrasive flow deburring and passivation polishing technology for tapping tools. Surf. Technol. 2023, 52, 299–307. [Google Scholar] [CrossRef]
- Toykoc, H.; Basu, S.; Meter, D.C.E. A novel thermal analysis of the abrasive flow machining (AFM) process. Int. J. Adv. Manuf. Technol. 2025, 137, 1891–1914. [Google Scholar] [CrossRef]
- Nagalingam, A.P.; Toh, B.L.; Yeo, S.H. Surface Polishing of Laser Powder Bed Fused Inconel 625 Surfaces Using Multi-Jet Hydrodynamic Cavitation Abrasive Finishing: An Emerging Class of Cleaner Surface Enhancement Process. Int. J. Precis. Eng. Manuf. Green Technol. 2023, 10, 637–657. [Google Scholar] [CrossRef]
- Zhang, L.; Ying, R.M.; Chen, G.D.; Huang, Y.; Shan, X.H. Study of cell adhesion on the surface of titanium alloy processed by abrasive flow. High Technol. Lett. 2022, 32, 875–880. [Google Scholar]
- Zhu, Y.S.; Wu, J.; Lu, W.Z.; Zuo, D.W.; Xiao, H.P.; Cao, D.W.; Ko, T.J. Surface Formation Mechanics and its Microstructural Characteristics of AAJP of Aluminum Alloy by Using Amino Thermosetting Plastic Abrasive. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 59–72. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yuan, J.L.; Deng, Q.F.; Wang, X.; Luo, Y.Y. High-speed abrasive flow composite polishing based on dielectrophoresis effect. Int. J. Adv. Manuf. Technol. 2022, 119, 8137–8146. [Google Scholar] [CrossRef]
- Poudel, B.; Lee, P.-H.; Song, G.; Nguyen, H.; Kim, K.; Jung, K.; Shao, C.; Kwon, P. Innovative Magnetic-Field Assisted Finishing (MAF) Using Nano-Scale Solid Lubricant: A Case Study on Mold Steel. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 1411–1426. [Google Scholar] [CrossRef]
- Ji, R.; Qi, Z.; Chen, J.; Zhang, L.; Lin, K.; Lu, S.; Li, Y. Numerical and Experimental Investigation on the Abrasive Flow Machining of Artificial Knee Joint Surface. Crystals 2023, 13, 430. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Zhang, Z.; Pang, M.; Liang, M.; Ma, L.; Su, J. A Novel Technique for Dressing Fixed Abrasive Lapping Pad with Abrasive Water Jet. Int. J. Precis. Eng. Manuf. Green Technol. 2023, 10, 1351–1373. [Google Scholar] [CrossRef]
- Yahya, C.; Reza, R.M.; Mohsen, K.; Mohammadreza, K. Design and development of ultrasonic assisted-rotational magnetorheological abrasive flow finishing (UARMRAFF) process. Appl. Acoust. 2022, 197, 108950. [Google Scholar]
- Basha, S.M.; Venkaiah, N.; Sankar, M.R. Development and performance evaluation of galactomannan polymer based abrasive medium to finish atomic diffusion additively manufactured pure copper using abrasive flow finishing. Addit. Manuf. 2023, 61, 103290. [Google Scholar] [CrossRef]
- Li, J.Y.; Sui, T.; Lu, H.; Zhou, H.W.; Zhu, J.B.; Liu, J.H.; Li, J.Z. Surface quality control technology of abrasive flow polishing S-shaped elbow. Int. J. Adv. Manuf. Technol. 2022, 121, 683–699. [Google Scholar] [CrossRef]
- Guo, J.; Gui, l.; Hou, W.; Li, J.Y.; Zhu, Z.B.; Sun, Z.W. Quality analysis of precision machining of valve sleeve cross bore abrasive grain flow. J. Jilin Univ. (Eng. Ed.) 2023, 53, 3367–3378. [Google Scholar] [CrossRef]
- Shi, K.B.; Sun, Y.L.; Yu, Z.; Li, G.H.; Zuo, D.W. Surface integrity study of abrasive flow finishing of titanium alloy. Surf. Technol. 2019, 48, 80–85+138. [Google Scholar] [CrossRef]




























| Parameter | DC Channel | Gradient Flow Channel | ||||
|---|---|---|---|---|---|---|
| Unit quantity (10,000) | 60,372 | 73,022 | 89,118 | 42,364 | 54,911 | 72,887 |
| Number of nodes (10,000) | 13,150 | 15,662 | 18,790 | 8.2000 | 10,507 | 13,760 |
| Grid quality (≥0.5) | 0.793 | 0.797 | 0.802 | 0.838 | 0.840 | 0.841 |
| Jacobi (<5) | 2.221 | 2.319 | 2.150 | 1.845 | 1.838 | 1.834 |
| Average skewness | 0.201 | 0.201 | 0.199 | 0.222 | 0.219 | 0.218 |
| Maximum skewness (<0.98) | 0.850 | 0.852 | 0.851 | 0.810 | 0.840 | 0.832 |
| Sample Number | Inlet Pressure (MPa) | Number of Processes (Times) | Grit Size (μm) |
|---|---|---|---|
| A-01 | 4 | 10 | 40 |
| A-02 | 4 | 20 | 80 |
| A-03 | 4 | 30 | 120 |
| A-04 | 5 | 10 | 80 |
| A-05 | 5 | 20 | 120 |
| A-06 | 5 | 30 | 40 |
| A-07 | 6 | 10 | 120 |
| A-08 | 6 | 20 | 40 |
| A-09 | 6 | 30 | 80 |
| Number | A-00 | A-01 | A-02 | A-03 | A-04 | A-05 | A-06 | A-07 | A-08 | A-09 |
|---|---|---|---|---|---|---|---|---|---|---|
| Ra value (μm) | 0.766 | 0.332 | 0.387 | 0.472 | 0.173 | 0.249 | 0.133 | 0.108 | 0.052 | 0.072 |
| Source | Freedom | AdjSS | AdjMS | F-Value | p-Value |
|---|---|---|---|---|---|
| Inlet pressure | 2 | 0.156073 | 0.078036 | 148.83 | 0.007 |
| Number of processes | 2 | 0.001533 | 0.000766 | 1.46 | 0.406 |
| Particle size | 2 | 0.017594 | 0.008797 | 16.78 | 0.056 |
| Error | 2 | 0.001049 | 0.000524 | ||
| Total | 8 | 0.176248 | |||
| S = 0.0228983 | R-sq = 99.41% | R-sq (adjusted) = 97.62% | |||
| Numbers | Inlet Pressure | Number of Processes | Particle Size | |||
|---|---|---|---|---|---|---|
| Factor | Value | Factor | Value | Factor | Value | |
| 1 | 4 MPa | 0.39367 | 10 times | 0.20100 | 40 μm | 0.16900 |
| 2 | 5 MPa | 0.18500 | 20 times | 0.22933 | 80 μm | 0.21067 |
| 3 | 6 MPa | 0.07733 | 30 times | 0.22567 | 120 μm | 0.27633 |
| Delta | 0.31633 | 0.02833 | 0.10733 | |||
| ranking | 1 | 3 | 2 | |||
| Item | Coefficient | Standard Deviation of Coefficient | T-Value | p-Value | Variance Inflation Factor |
|---|---|---|---|---|---|
| Constants | 0.735 | 0.252 | 2.92 | 0.100 | |
| Inlet pressure | −0.0848 | 0.0560 | −1.51 | 0.269 | 16.00 |
| Number of processes | 0.0087 | 0.0135 | 0.64 | 0.586 | 93.14 |
| Abrasive grain size | −0.00274 | 0.00547 | −0.50 | 0.666 | 244.00 |
| Inlet pressure × Number of processes | −0.00339 | 0.00318 | −1.07 | 0.398 | 152.57 |
| Inlet pressure × Abrasive grain size | 0.000232 | 0.000794 | 0.29 | 0.798 | 152.57 |
| Number of processes × Abrasive grain size | 0.000125 | 0.000079 | 1.57 | 0.257 | 44.57 |
| S = 0.0343019 | R-sq = 98.66% | R-sq (Adjusted) = 94.66% | |||
| No. | Detected Value | Predicted Value | Standardised Residuals | 95% Confidence Interval | 95% Prediction Interval |
|---|---|---|---|---|---|
| 01# | 0.324 | 0.325 | 0.033753 | (0.179582, 0.470037) | (0.117750, 0.531869) |
| 02# | 0.385 | 0.354 | 0.024062 | (0.250042, 0.457101) | (0.173291, 0.533852) |
| 03# | 0.475 | 0.482 | 0.033753 | (0.336820, 0.627275) | (0.274988, 0.689107) |
| 04# | 0.174 | 0.202 | 0.024061 | (0.098661, 0.305720) | (0.021910, 0.382471) |
| 05# | 0.253 | 0.256 | 0.024061 | (0.152708, 0.359768) | (0.075958, 0.436518) |
| 06# | 0.135 | 0.151 | 0.032050 | (0.012814, 0.288615) | (−0.051273, 0.352702) |
| 07# | 0.106 | 0.098 | 0.033753 | (−0.047085, 0.243370) | (−0.108916, 0.305202) |
| 08# | 0.054 | 0.040 | 0.032050 | (−0.097996, 0.177805) | (−0.162083, 0.241892) |
| 09# | 0.071 | 0.069 | 0.032050 | (−0.068519, 0.207281) | (−0.132607, 0.271369) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, S.; Wei, P.; Wang, C.; Li, Y.; Liu, K.; Liu, C.; Chen, Y.; Wu, G.; Li, X.; et al. Quality Control Technology for Abrasive Flow Precision Machining of a High-Performance Impeller. Micromachines 2025, 16, 1370. https://doi.org/10.3390/mi16121370
Li J, Li S, Wei P, Wang C, Li Y, Liu K, Liu C, Chen Y, Wu G, Li X, et al. Quality Control Technology for Abrasive Flow Precision Machining of a High-Performance Impeller. Micromachines. 2025; 16(12):1370. https://doi.org/10.3390/mi16121370
Chicago/Turabian StyleLi, Junye, Songyuan Li, Pingping Wei, Changqing Wang, Yanming Li, Ke Liu, Chunlin Liu, Yu Chen, Guiling Wu, Xiao Li, and et al. 2025. "Quality Control Technology for Abrasive Flow Precision Machining of a High-Performance Impeller" Micromachines 16, no. 12: 1370. https://doi.org/10.3390/mi16121370
APA StyleLi, J., Li, S., Wei, P., Wang, C., Li, Y., Liu, K., Liu, C., Chen, Y., Wu, G., Li, X., Liu, B., Qu, J., Wu, H., Zhang, J., & Zhang, Z. (2025). Quality Control Technology for Abrasive Flow Precision Machining of a High-Performance Impeller. Micromachines, 16(12), 1370. https://doi.org/10.3390/mi16121370

