Impact of Phase Defects on the Aerial Image in High NA Extreme Ultraviolet Lithography
Abstract
1. Introduction
2. Theoretical Model and Simulation
2.1. Model of the EUV Mask with Phase Defects
2.2. Defect Evaluation
3. Results and Discussion
3.1. The Impact of NA on Aerial Images of Defect-Free EUV Masks
3.2. The Impact of Phase Defect Size on Aerial Images of EUV Masks
3.3. The Impact of the Position of Phase Defects on Aerial Images
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, N.C.; Yu, C.H.; Yu, C.F.; Lu, C.L.; Chu, J.; Hsu, L.; Chin, A.; Yen, A. Mask defect management in extreme-ultraviolet lithography. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 023010. [Google Scholar] [CrossRef]
- Kim, R.H.; Wood, O.; Crouse, M.; Chen, Y.; Plachecki, V.; Hsu, S.; Gronlund, K. Application of EUV resolution enhancement techniques (RET) to optimize and extend single exposure bi-directional patterning for 7nm and beyond logic designs. Proc. SPIE 2016, 9776, 503–512. [Google Scholar]
- Urbanski, L.; Isoyan, A.; Stein, A.; Rocca, J.J.; Menoni, C.S.; Marconi, M.C. Defect-tolerant extreme ultraviolet nanoscale printing. Opt. Lett. 2012, 37, 3633–3635. [Google Scholar] [CrossRef]
- Kwon, H.J.; Harris-Jones, J.; Cordes, A.; Satake, M.; Li, Y.; Mochi, I.; Goldberg, K.A. EUV mask multi-layer defects and their printability under different multilayer deposition conditions. Proc. SPIE 2012, 8322, 832209. [Google Scholar]
- Erdmann, A.; Bret, T.; Jonckheere, R. Analysis of EUV mask multilayer defect printing characteristics. Proc. SPIE 2012, 8322, 83220E. [Google Scholar]
- Liang, T.; Magana, J.; Chakravorty, K.; Panning, E.; Zhang, G. EUV mask infrastructure readiness and gaps for TD and HVM. Proc. SPIE 2015, 9635, 963509. [Google Scholar]
- Wack, D.; Xiong, Y.; Inderhees, G. Solutions for EUV mask and blank inspections. In International Symposium on Extreme Ultraviolet Lithography; KLA Tencor: Miami, FL, USA, 2011. [Google Scholar]
- Qi, Z.J.; Rankin, J.; Narita, E.; Kagawa, M. Defect avoidance for EUV photomask readiness at the 7 nm node. Proc. SPIE 2016, 9984, 99840Q. [Google Scholar]
- Yamane, T.; Amano, T.; Takagi, N.; Watanabe, H.; Mori, I.; Ino, T.; Suzuki, T.; Takehisa, K.; Miyai, H.; Kusunose, H. Advances in the detection capability on actinic blank inspection. Proc. SPIE 2016, 9776, 97761G. [Google Scholar]
- Weiss, M.R.; Hellweg, D.; Koch, M.; Peter, J.H.; Perlitz, S.; Garetto, A.; Magnusson, K.; Capelli, R.; Jindal, V. Actinic review of EUV masks: Status and recent results of the AIMS EUV system. Proc. SPIE 2015, 9422, 942219. [Google Scholar]
- Wang, Y.G.; Miyakawa, R.; Chao, W.; Benk, M.; Wojdyla, A.; Donoghue, A.; Johnson, D.; Goldberg, K.; Neureuther, A.; Liang, T.; et al. Enhancing defect detection with Zernike phase contrast in EUV multilayer blank inspection. Proc. SPIE 2015, 9422, 94221C. [Google Scholar]
- Erdmann, A.; Evanschitzky, P.; Bret, T.; Jonckheere, R. Modeling strategies for EUV mask multilayer defect dispositioning and repair. Proc. SPIE 2013, 8679, 86790Y. [Google Scholar]
- Hirano, R.; Iida, S.; Amano, T.; Terasawa, T.; Watanabe, H.; Hatakeyama, M.; Murakami, T.; Terao, K. Patterned mask inspection technology with projection electron microscope technique on extreme ultraviolet masks. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 013009. [Google Scholar] [CrossRef]
- Hirano, R.; Iida, S.; Amano, T.; Watanabe, H.; Hatakeyama, M.; Murakami, T.; Yoshikawa, S.; Suematsu, K.; Terao, K. Study of extreme ultraviolet lithography patterned mask inspection tool for half-pitch 11-nm node defect detection performance. J. Micro/Nanolithogr. MEMS MOEMS 2014, 15, 021008. [Google Scholar] [CrossRef]
- Wang, Y.G.; Miyakawa, R.; Neureuther, A.; Naulleau, P. Zernike phase contrast microscope for EUV mask inspection. Proc. SPIE 2014, 9048, 904810. [Google Scholar]
- Terasawa, T.; Arisawa, Y.; Amano, T.; Yamane, T.; Watanabe, H.; Toyoda, M.; Harada, T.; Kinoshita, H. Simulation analysis of the characteristics of a high magnification imaging optics for the observation of extreme ultraviolet lithography mask to predict phase defect printability. Jpn. J. Appl. Phys 2013, 52, 096601. [Google Scholar] [CrossRef]
- Mochi, I.; Fernandez, S.; Nebling, R.; Locans, U.; Rajeev, R.; Dejkameh, A.; Kazazis, D.; Tseng, L.-T.; Danylyuk, S.; Juschkin, L.; et al. Quantitative characterization of absorber and phase defects on EUV reticles using coherent diffraction imaging. J. Micro/Nanolithogr. MEMS MOEMS 2020, 19, 014002. [Google Scholar] [CrossRef]
- Gondaira, K.; Todoroki, T.; Nishizawa, M.; Miyai, H. Actinic patterned mask inspection for high-NA EUV lithography. Opt. EUV Nanolithogr. 2024, 12953, 148–154. [Google Scholar]
- Suzuki, T.; Watanabe, R.; Sakuma, S.; Ide, T. Actinic blank inspection for High-NA EUV lithography. Photomask Technol. 2023, 12751, 110–116. [Google Scholar]
- Hao, Y.; Dong, L.; Chen, X.; Chen, R.; Fan, T.; Wei, Y.; Ye, T. Impact of EUV multilayer mask defects on imaging performance and its correction methods. Proc. SPIE 2019, 11147, 111471B. [Google Scholar]
- Terasawa, T.; Yamane, T.; Tanaka, T.; Suga, O.; Kamo, T.; Mori, I. Actinic phase defect detection and printability analysis for patterned EUVL mask. Proc. SPIE 2010, 7636, 763602. [Google Scholar]
- Li, C.; Dong, L.; Wei, Y. Inverse analysis of multilayer defects in EUV mask from the perspective of imaging performance. Proc. SPIE 2024, 12953, 1295315. [Google Scholar]
- Kim, Y.; Terasawa, T.; Amano, T.; Oh, S.; Hyun, Y.; Watanabe, H. Analysis of phase defect effect on contact hole pattern using a programmed phase defect in EUVL mask. Proc. SPIE 2014, 9048, 90482Q. [Google Scholar]
- Evanschitzky, P.; Shao, F.; Erdmann, A. Efficient simulation of extreme ultraviolet multilayer defects with rigorous data base approach. J. Micro/Nanolithogr. MEMS MOEMS 2013, 12, 021005. [Google Scholar] [CrossRef]
- Schoot, V.; Lok, S. High-NA EUV lithography exposure tool: Advantages and program progress. Proc. SPIE 2020, 11517, 76–89. [Google Scholar]
- Semaana, R.; Bottiglieri, G.; Erdmann, A.; Rispens, G.; de Winter, L.; Beekmans, S. Imaging effects of particles on the surface of EUV mask and wafer. In Proceedings of the 39th European Mask and Lithography Conference, Grenoble, France, 18 September 2024; Volume 13273, pp. 30–48. [Google Scholar]
- Kim, S.K. Computational Study of Extreme Ultraviolet Vote-Taking Lithography for Defect Repair. J. Nanosci. Nanotechnol 2020, 20, 4994–4997. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.; Chen, R.; Dong, L.; Wu, R.; Gai, T.; Ma, L.; Su, Y.; Wei, Y. EUV multilayer defect characterization via cycle-consistent learning. In Proceedings of the Optical Microlithography XVI, Santa Clara, CA, USA, 25–28 February 2003. [Google Scholar]
- Adam, K.; Granik, Y.; Torres, A.; Cobb, N.B. Improved modeling performance with an adapted vectorial formulation of the Hopkins imaging equation. Opt. Microlithogr. XVI 2003, 5040, 78–91. [Google Scholar]
- Wu, R.; Dong, L.; Chen, R.; Ye, T.; Wei, Y. A method for compensating lithographic influence of EUV mask blank defects by an advanced genetic algorithm. Int. Conf. Extrem. Ultrav. Lithogr. 2019, 11147, 223–234. [Google Scholar]
- Miyai, H.; Kohyama, T.; Suzuki, T.; Takehisa, K.; Kusunose, H. Actinic patterned mask defect inspection for EUV lithography. Photomask Technol. 2019, 11148, 162–170. [Google Scholar]
- Wu, R.; Dong, L.; Ma, X.; Wei, Y. Compensation of EUV lithography mask blank defect based on an advanced genetic algorithm. Opt. Express 2021, 29, 28872–28885. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Li, S.K.; Zheng, H.; Yuan, S.; Wang, X. Analysis of extreme ultraviolet mask defect inspection based on complex amplitudes of the aerial images. In Proceedings of the 14th International Conference on Information Optics and Photonics, Xi’an, China, 24 November 2023; Volume 12935, pp. 906–914. [Google Scholar]
- Adam, K.; Hotta, S.; Neureuther, A.R. Neureuther. Characterization of phase defects in phase shift masks. J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 2000, 18, 3227–3231. [Google Scholar]
- Clifford, C.H. Simulation and Compensation Methods for EUV Lithography Masks with Buried Defects; University of California: Berkeley, CA, USA, 2010. [Google Scholar]
- Roesch, M.; Kersteen, G.; Verch, A.; Albert, M.; Heringlake, P.; Gwosch, K.; Capelli, R. Quantitative access to phase-effects in high-NA photomasks using AIMS® EUV. Proc. SPIE 2024, 13273, 132731. [Google Scholar]
- Thakare, D.; Delabie, A.; Philipsen, V. Exploring the optimal combination of Ru/Ta bilayer mask stacks and illumination source shapes to mitigate mask 3D effects at high-NA extreme ultraviolet lithography. Opt. Express 2024, 32, 38203–38223. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dong, L.; Ma, X.; Wei, Y. Fast source mask co-optimization method for high-NA EUV lithography. Opto-Electron. Adv. 2024, 7, 230235. [Google Scholar] [CrossRef]
- Takehisa, K.; Jonckheere, R. Overcoming EUV Mask Blank Defects: What We Can, and What We Should. Proc. SPIE 2017, 10454, 127–139. [Google Scholar]












| Name | Notation | Unit | Value |
|---|---|---|---|
| Thickness of the SiO2 | nm | 30 | |
| Refraction index of the SiO2 [27] | 1 | 0.9782 + 0.0108j | |
| Thickness of the Mo | dMo | nm | 2.78 |
| Refraction index of the Mo [27] | nMo | 1 | 0.9238 + 0.0064j |
| Thickness of the Si | dSi | nm | 4.17 |
| Refraction index of the Si [27] | nSi | 1 | 0.999 + 0.0018j |
| Thickness of the Ta | dTa | nm | 70 |
| Refraction of the Ta [27] | nTa | 1 | 0.9429 + 0.0408j |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Zeng, Z. Impact of Phase Defects on the Aerial Image in High NA Extreme Ultraviolet Lithography. Micromachines 2025, 16, 1210. https://doi.org/10.3390/mi16111210
He K, Zeng Z. Impact of Phase Defects on the Aerial Image in High NA Extreme Ultraviolet Lithography. Micromachines. 2025; 16(11):1210. https://doi.org/10.3390/mi16111210
Chicago/Turabian StyleHe, Kun, and Zhinan Zeng. 2025. "Impact of Phase Defects on the Aerial Image in High NA Extreme Ultraviolet Lithography" Micromachines 16, no. 11: 1210. https://doi.org/10.3390/mi16111210
APA StyleHe, K., & Zeng, Z. (2025). Impact of Phase Defects on the Aerial Image in High NA Extreme Ultraviolet Lithography. Micromachines, 16(11), 1210. https://doi.org/10.3390/mi16111210

