Additive Manufacturing of Gear Electrodes and EDM of a Gear Cavity
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Annealing Temperature on Electrical Conductance
3.2. Effect of Holding Time on Electrical Conductance
3.3. EDM Performance of the Gear Electrode
4. EDM of Gear Cavity
5. Conclusions
- (1)
- The gear electrode fabricated by SLS displayed a lot of dislocations, resulting in its low electrical conductance. The heat treatment process can eliminate the dislocations of the gear electrode, thus effectively improving the electrical conductance. Compared with H, T can significantly affect the electrical conductance of the gear electrode. When the T = 300 °C and H = 4 h, the gear electrode displayed its maximum electrical conductance value (33.8 Ms/m).
- (2)
- The heat treatment process showed little effect on the MRR but had a significant impact on the TWR of the gear electrodes. TWR is closely related to the electrical conductance. The greater the conductance, the smaller the TWR. The gear electrode displayed its maximum electrical conductance with T of 300 °C and H of 4 h. At this time, the gear electrode also had the smallest TWR value (0.0029 mm3/min).
- (3)
- Under the effect of 120 V voltage, 150 μs pulse width and 50 μs pulse interval, the gear electrode was used in EDM, obtaining the helical gear cavity and the helical bevel gear cavity with good surface topography and geometric accuracy. The surface roughness (Ra) of the gear cavity was 2.43 μm. Compared with that of the gear electrode obtained by the milling process, the MRR of the gear electrode fabricated by SLS improved by 31.53%, thus effectively improving the EDM efficiency of the gear cavity.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.Z.; Liu, X.; Chetwynd, D.G.; Huang, P. Investigation of a novel elastic-mechanical wheel transmission under light duty conditions. Mech. Mach. Theory 2008, 43, 1462–1477. [Google Scholar] [CrossRef]
- Mehat, N.M.; Kamaruddin, S.; Othman, A.R. A Study of Hybrid Optimization of Injection Moulding Process Parameters for Plastic Gear. Adv. Mater. Res. 2012, 591–593, 2135–2138. [Google Scholar] [CrossRef]
- Sha, B.; Dimov, S.; Griffiths, M.S.; Packianather, M. Investigation of micro-injection moulding: Factors affecting the replication quality. J. Mater. Process. Technol. 2007, 183, 284–296. [Google Scholar] [CrossRef]
- Liao, Y.S.; Chen, S.T.; Lin, C.S. Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. J. Micromech. Microeng. 2005, 15, 245–253. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhou, Y.F.; Li, Z.Z.; Wang, C.P.; Li, X.Q.; Li, B. Research on NC Machining of Spiral Bevel Gear Based on General Five—Axis NC Machine Tool. China Mech. Eng. 2001, 12, 903–906. [Google Scholar]
- Kumar, J.; Soota, T.; Rajput, S.K. Machining of Zircaloy-2 using progressive tool design in EDM. Mater. Manuf. Process. 2022, 37, 1746–1755. [Google Scholar] [CrossRef]
- Xu, B.; Feng, T.; Wu, X.Y.; Luo, F.; Lei, J.G.; Yang, J.; Wu, S.Y. Micro-EDM of micro-stepped hole based on the wear of micro-bit. Mater. Manuf. Process. 2022, 37, 349–358. [Google Scholar] [CrossRef]
- Shabgard, M.R.; Gholipoor, A.; Baseri, H. A review on recent developments in machining methods based on electrical discharge phenomena. Int. J. Adv. Manuf. Technol. 2016, 87, 2081–2097. [Google Scholar] [CrossRef]
- Shubham, J.; Vishal, P. Critical review on the impact of EDM process on biomedical materials. Mater. Manuf. Process. 2021, 36, 1701–1724. [Google Scholar] [CrossRef]
- Singh, M.; Jain, V.K.; Ramkumar, J. 3-D fabrication using electrical discharge-milling: An overview. Mater. Manuf. Process. 2022, 37, 1215–1245. [Google Scholar] [CrossRef]
- Danade, U.A.; Londhe, S.D.; Metkar, R.M. Machining performance of 3D-printed ABS electrode coated with copper in EDM. Rapid Prototyp. J. 2019, 25, 1224–1231. [Google Scholar] [CrossRef]
- Machno, M.; Franczyk, E.; Bogucki, R.; Matras, A.; Zebala, W.A. Comparative Study on the Structure and Quality of SLM and Cast AISI 316L Samples Subjected to WEDM Processing. Materials 2022, 15, 701. [Google Scholar] [CrossRef] [PubMed]
- Retolaza, J.; Gondra, K.; Ansola, R.; Allue, A. Mechanical research to optimize parameter selection for PPS material processed by FDM. Mater. Manuf. Process. 2022, 37, 1332–1338. [Google Scholar] [CrossRef]
- Parmar, H.; Khan, T.; Tucci, F.; Umer, R.; Carlone, P. Advanced robotics and additive manufacturing of composites: Towards a new era in Industry 4.0. Mater. Manuf. Process. 2022, 37, 483–517. [Google Scholar] [CrossRef]
- Dimov, S.S.; Pham, D.T.; Lacan, F.; Dotchev, K.D. Rapid tooling applications of the selective laser sintering process. Assem. Autom. 2001, 21, 296–302. [Google Scholar] [CrossRef]
- Amorim, F.L.; Lohrengel, A.; Muller, N.; Schafer, G.; Czelusniak, T. Performance of sinking EDM electrodes made by selective laser sintering technique. Int. J. Adv. Manuf. Technol. 2012, 65, 1423–1428. [Google Scholar] [CrossRef]
- Silbernagel, C.; Gargalis, L.; Ashcroft, I.; Hague, R.; Galea, M.; Dickens, P. Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications. Addit. Manuf. 2019, 29, 100831. [Google Scholar] [CrossRef]
- Amorim, F.L.; Lohrengel, A.; Schaefer, G.; Czelusniak, T. A study on the SLS manufacturing and experimenting of TiB2-CuNi EDM electrodes. Rapid Prototyp. J. 2013, 19, 418–429. [Google Scholar] [CrossRef]
- Amorim, F.L.; Weingaertner, W.L. The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. J. Braz. Soc. Mech. Sci. Eng. 2007, 29, 366–371. [Google Scholar] [CrossRef]
- Czelusniak, T.; Amorim, F.L.; Higa, C.F.; Lohrengel, A. Development and application of new composite materials as EDM electrodes manufactured via selective laser sintering. Int. J. Adv. Manuf. Technol. 2014, 72, 1503–1512. [Google Scholar] [CrossRef]
- Sahu, A.K.; Mahapatra, S.S. Performance analysis of tool electrode prepared through laser sintering process during electrical discharge machining of titanium. Int. J. Adv. Manuf. Technol. 2019, 106, 1017–1041. [Google Scholar] [CrossRef]
- Monzón, M.; Benítez, A.N.; Marrero, M.D.; Hernández, N.; Hernández, P.; Aisa, J. Validation of electrical discharge machining electrodes made with rapid tooling technologies. J. Mater. Process. Technol. 2008, 196, 109–114. [Google Scholar] [CrossRef]
- Equbal, A.; Equbal, M.I.; Sood, A.K. An investigation on the feasibility of fused deposition modelling process in EDM electrode manufacturing. CIRP J. Manuf. Sci. Technol. 2019, 26, 10–25. [Google Scholar] [CrossRef]
- Bordón, P.; Rubén, P.; Monzón, M.D. Evaluation of the Performance of Atomic Diffusion Additive Manufacturing Electrodes in Electrical Discharge Machining. Materials 2022, 15, 5953. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Y.; Lui, T.S.; Chen, L.H.; Lin, Y.C. Recrystallization, Electric Flame-Off Characteristics, and Electron Backscatter Diffraction of Copper Bonding Wires. IEEE Trans. Adv. Packag. 2010, 33, 58–63. [Google Scholar] [CrossRef]
- Konkova, T.; Mironov, S.; Korznikov, A.; Myshlyaev, M.M.; Semiatin, S.T. Annealing behavior of cryogenically-rolled copper. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2013, 585, 178–189. [Google Scholar] [CrossRef]
- Li, C.Y.; Le, Q.C.; Hu, K.; Bao, L.; Ma, B.W.; Jia, Y.H.; Wang, X.; Zhou, W.Y.; Xu, G.J. Study on texture and dynamic recrystallization behavior of high purity copper during reverse extrusion. Mater. Res. Express 2020, 6, 1265e4. [Google Scholar] [CrossRef]
- Brisset, F.; Helbert, A.L.; Baudin, T. In Situ Electron Backscatter Diffraction Investigation of Recrystallization in a Copper Wire. Microsc. Microanal. 2013, 19, 969–977. [Google Scholar] [CrossRef]
- Amorim, F.L.; Lohrengel, A.; Neubert, V.; Higa, C.F.; Czelusniak, T. Selective laser sintering of Mo-CuNi composite to be used as EDM electrode. Rapid Prototyp. J. 2014, 20, 59–68. [Google Scholar] [CrossRef]
- Buchbinder, D.; Meiners, W.; Pirch, N.; Wissenbach, K.; Schrage, J. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. J. Laser Appl. 2014, 26, 012004. [Google Scholar] [CrossRef]
- Donik, C.; Kraner, J.; Paulin, I.; Godec, M. Influence of the Energy Density for Selective Laser Melting on the Microstructure and Mechanical Properties of Stainless Steel. Metals 2020, 10, 919. [Google Scholar] [CrossRef]
- Qian, L.H.; Lu, Q.H.; Kong, W.J.; Lu, K. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr. Mater. 2004, 50, 1407–1411. [Google Scholar] [CrossRef]
- Collado, I.; Núñez Galindo, A.; Ruiz, A.; Almagro Bello, J.F.; Botana, F.J. Quantifying phase transformation during the manufacturing process of AISI 430 ferritic stainless steel. Mater. Sci. Eng. 2020, 891, 012007. [Google Scholar] [CrossRef]
- Zhou, H.T.; Kong, F.T.; Wu, K.; Wang, X.P.; Chen, Y. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties. Mater. Des. 2017, 121, 202–212. [Google Scholar] [CrossRef]
- Cruz-Gandarilla, F.; Bolmaro, R.E.; Mendoza-Leon, H.F.; Salcedo-Garrido, A.M.; Cabanas-Moreno, J.G. Study of recovery and first recrystallisation kinetics in CGO Fe3%Si steels using misorientation-derived parameters (EBSD). J. Microsc. 2019, 275, 133–148. [Google Scholar] [CrossRef]
- Radwanski, K. Application of FEG-SEM and EBSD Methods for theAnalysis of the Restoration Processes Occurring During Continuous Annealing of Dual-Phase SteelStrips. Steel Res. Int. 2015, 86, 1379–1390. [Google Scholar] [CrossRef]
- Jedrychowski, M.; Tarasiuk, J.; Bacroix, B.; Wronski, S. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium a new approach in grain boundary analysis. J. Appl. Crystallogr. 2013, 46, 483–492. [Google Scholar] [CrossRef]
Element. | Cu | Si | p | Sn | Ni | Nb |
---|---|---|---|---|---|---|
Content (%) | 99.37 | 0.43 | 0.084 | 0.04 | 0.036 | 0.033 |
Untreated | T = 100 °C H = 4 h | T = 300 °C H = 1 h | T = 300 °C H = 2 h | T = 300 °C H = 4 h | T = 600 °C H = 4 h | |
---|---|---|---|---|---|---|
Average grain size (µm) | 13.64 | 11.7 | 10.57 | 14.12 | 11.82 | 12.95 |
Recrystallized grains (%) | 7.26 | 11.65 | 14.25 | 4.97 | 12.41 | 7.39 |
Substructured grains (%) | 7.70 | 6.14 | 4.82 | 3.39 | 8.93 | 4.41 |
Deformed grains (%) | 85.04 | 82.21 | 80.93 | 91.64 | 78.66 | 88.21 |
No. | Annealing Temperature T (°C) | Holding Time H (h) | Conductance (Ms/m) |
---|---|---|---|
1 | 100 | 1 | 13.94 |
2 | 300 | 1 | 30.50 |
3 | 600 | 1 | 24.32 |
4 | 100 | 2 | 12.23 |
5 | 300 | 2 | 30.10 |
6 | 600 | 2 | 23.69 |
7 | 100 | 4 | 12.91 |
8 | 300 | 4 | 33.80 |
9 | 600 | 4 | 23.07 |
10 | Untreated | Untreated | 9.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, K.; Liu, Y.; Xu, B.; Zhan, S.; Liang, J. Additive Manufacturing of Gear Electrodes and EDM of a Gear Cavity. Micromachines 2025, 16, 1153. https://doi.org/10.3390/mi16101153
Jiang K, Liu Y, Xu B, Zhan S, Liang J. Additive Manufacturing of Gear Electrodes and EDM of a Gear Cavity. Micromachines. 2025; 16(10):1153. https://doi.org/10.3390/mi16101153
Chicago/Turabian StyleJiang, Kai, Yangquan Liu, Bin Xu, Shunda Zhan, and Junwei Liang. 2025. "Additive Manufacturing of Gear Electrodes and EDM of a Gear Cavity" Micromachines 16, no. 10: 1153. https://doi.org/10.3390/mi16101153
APA StyleJiang, K., Liu, Y., Xu, B., Zhan, S., & Liang, J. (2025). Additive Manufacturing of Gear Electrodes and EDM of a Gear Cavity. Micromachines, 16(10), 1153. https://doi.org/10.3390/mi16101153