Reduction Method for a Network-on-Chip Low-Level Modeling
Abstract
1. Introduction
- Development of technical specifications;
- Construction of high-level models in high-level languages;
- Splitting the system into functional blocks and specifying their characteristics;
- Development of behavioral models in hardware description languages (HDLs);
- Prototyping and verification of the developed system;
- Adaptation of low-level models to the requirements of the chip manufacturer;
- Estimation of the physical properties of the implemented system;
- Tape-out;
- Packaging.
2. Background
2.1. Networks-on-Chip
2.2. Behavioral Modeling of Networks-on-Chip
- Analytical level. It is the process of deriving, analyzing, and approximating analytical formulae that describe the processes occurring in a NoC. An example of such a model is formulated as an expression that represents the solution to the problem of minimizing the energy expenditure of communication between network nodes [19]. Another example is presented in [28], where the dependence of the speed of parallel data processing on the NoC parameters is expressed in a mathematical formula. The influence of delays in data transmission as the network dimension increases is analyzed.
2.3. Survey of Low-Level NoC Models
- There are a large number of sensors.
- Each sensor randomly generates packets with the information.
- Some packets have a high priority. They must be processed out of queue.
- Only one processor handles the packets.
- Incoming packets must be routed to the processor one at a time.
2.4. Very Large Scale Multiprocessors
3. Improving the NoC Low-Level Modeling
3.1. Reduction Method for a Low-Level NoC Model
3.2. Universal Interface for Connecting NoC Components to the Communication Subsystem
4. Discussion
4.1. Research and Comparison of Routing Algorithms for Various NoC Topologies
4.2. Research and Comparison of the Results of Synthesis of Various NoC Configurations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdelfattah, M.S.; Bitar, A.; Betz, V. Design and Applications for Embedded Networks-on-Chip on FPGAs. IEEE Trans. Comput. 2017, 66, 1008–1021. [Google Scholar] [CrossRef]
- Romanov, A.; Ivannikov, A. SystemC Language Usage as the Alternative to the HDL and High-Level Modeling for NoC Simulation. Int. J. Embed. Real-Time Commun. Syst. 2018, 9, 18–31. [Google Scholar] [CrossRef]
- Jerger, N.E.; Peh, L.-S. On-Chip Networks; Synthesis Lectures on Computer Architecture; Springer: Cham, Switzerland, 2009; Volume 4, pp. 1–141. [Google Scholar] [CrossRef]
- Rane, U.V.; Gad, R.S.; Panem, C. Design of Network on Chip (NoC) Computing Node for Mesh Topology Using Soft-Core NIOS-II Processor. J. Phys. Conf. Ser. 2021, 1921, 012075. [Google Scholar] [CrossRef]
- Romanov, O.; Lysenko, O. The Comparative Analysis of the Efficiency of Regular and Pseudo-Optimal Topologies of Networks-on-Chip Based on Netmaker. In Proceedings of the Embedded Computing (MECO), Bar, Montenegro, 19–21 June 2012; pp. 66–69. [Google Scholar]
- Romanov, A.; Myachin, N.; Sukhov, A. Fault-Tolerant Routing in Networks-on-Chip Using Self-Organizing Routing Algorithms. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Huang, X.; Ramos, A.F.; Deng, Y. Optimal Circulant Graphs as Low-Latency Network Topologies. J. Supercomput. 2022, 78, 13491–13510. [Google Scholar] [CrossRef]
- Bose, A.; Ghosal, P. A Scalable NoC Topology Targeting Network Performance. In Proceedings of the 14th International Workshop on Network on Chip Architectures, Toronto, ON, Canada, 18–22 October 2021; ACM: New York, NY, USA, 2021; pp. 4–9. [Google Scholar]
- Kurapati, S.N. Specification-Driven Functional Verification with Verilog PLI & VPI and SystemVerilog DPI; University of California: San Diego, CA, USA, 2007. [Google Scholar]
- Siwakoti, Y.P.; Town, G.E. Design of FPGA-Controlled Power Electronics and Drives Using MATLAB Simulink. In Proceedings of the 2013 IEEE ECCE Asia Downunder, Melbourne, Australia, 3–6 June 2013; IEEE: New York, NY, USA, 2013; pp. 571–577. [Google Scholar]
- Meeus, W.; van Beeck, K.; Goedemé, T.; Meel, J.; Stroobandt, D. An Overview of Today’s High-Level Synthesis Tools. Des. Autom. Embed. Syst. 2012, 16, 31–51. [Google Scholar] [CrossRef]
- Nane, R.; Sima, V.-M.; Pilato, C.; Choi, J.; Fort, B.; Canis, A.; Chen, Y.T.; Hsiao, H.; Brown, S.; Ferrandi, F.; et al. A Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2016, 35, 1591–1604. [Google Scholar] [CrossRef]
- Aleksandr, R.; Evgeny, L.; Aleksandr, A. Modification of the BookSim Simulator for Modeling Networks-on-Chip Based on Two-Dimensional Circulant Topologies. In CEUR Workshop Proceedings; CEUR: Aachen, Germany, 2019; pp. 182–192. [Google Scholar]
- Jiang, N.; Michelogiannakis, G.; Becker, D.; Towles, B.; Dally, W.J. Booksim 2.0 User’s Guide; Stanford University Press: Redwood, CA, USA, 2010. [Google Scholar]
- Phan, H.-P.; Tran, X.-T.; Yoneda, T. Power Consumption Estimation Using VNOC2.0 Simulator for a Fuzzy-Logic Based Low Power Network-on-Chip. In Proceedings of the 2017 IEEE International Conference on IC Design and Technology (ICICDT), Austin, TX, USA, 23–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Cycle-Accurate Network on Chip Simulation with Noxim. ACM Trans. Model. Comput. Simul. 2017, 27, 1–25. [Google Scholar] [CrossRef]
- Tran, A.T.; Baas, B. NoCTweak: A Highly Parameterizable Simulator for Early Exploration of Performance and Energy of Networks on-Chip; Technical Report ECE-VCL-2012-2; LSI Computation Lab, ECE Department, University of California: Davis, CA, USA, 2012. [Google Scholar]
- Lu, Z.; Thid, R.; Millberg, M.; Nilsson, E.; Jantsch, A. NNSE: Nostrum Network-on-Chip Simulation Environment. In Proceedings of the SSoCC, Stockholm, Sweden, 18–19 April 2005. [Google Scholar]
- Hu, J.; Marculescu, R. Energy-Aware Mapping for Tile-Based NoC Architectures under Performance Constraints. In Proceedings of the 2003 Conference on Asia South Pacific Design Automation—ASPDAC, Kitakyushu, Japan, 21–24 January 2003; ACM Press: New York, NY, USA, 2003; p. 233. [Google Scholar]
- Ababei, C.; Kia, H.S.; Yadav, O.P.; Hu, J. Energy and Reliability Oriented Mapping for Regular Networks-on-Chip. In Proceedings of the Fifth ACM/IEEE International Symposium on Networks-on-Chip, Pittsburgh, PA, USA, 1–4 May 2011; pp. 121–128. [Google Scholar]
- Mota, R.G.; Silveira, J.; Silveira, J.; Brahm, L.; Zorzo, A.; Mór, F.; Marcon, C. Efficient Routing Table Minimization for Fault-Tolerant Irregular Network-on-Chip. In Proceedings of the 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, 11–14 December 2016; pp. 632–635. [Google Scholar]
- GitHub—Peterfalcao/NoCPhoenixVerilog. Available online: https://github.com/peterfalcao/NoCPhoenixVerilog (accessed on 8 May 2025).
- GitHub—KorotkiyEugene/LAG_sv_sim_predef_traffic_predef_links: Synthesizable Network-on-Chip (NoC) with Link Aggregation (LAG), Written in System Verilog. Allows to Define Spatial Distribution of Traffic for a given Application and Choose Number of Physical Links in Each Trunk. Intended for Simulation in ModelSim. Available online: https://github.com/KorotkiyEugene/LAG_sv_sim_predef_traffic_predef_links (accessed on 8 May 2025).
- GitHub—NoPointExc/PageRank-Sort: Page Rank and Sort Module Based One NetWork on Circuit(NOC), Verilog Language. Available online: https://github.com/NoPointExc/PageRank-Sort (accessed on 8 May 2025).
- Qin, W.; Rajagopalan, S.; Vachharajani, M.; Wang, H.; Zhu, X.; August, D.; Keutzer, K.; Malik, S.; Peh, L.-S. Design Tools for Application Specific Embedded Processors. In International Workshop on Embedded Software; Springer: Berlin/Heidelberg, Germany, 2002; pp. 319–333. [Google Scholar]
- Ben, A.; Ben, S. A Survey of Network-On-Chip Tools. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 040910. [Google Scholar] [CrossRef]
- Gries, M.; Weber, S.J.; Brooks, C. The Mescal Architecture Development System (Tipi) Tutorial; Citeseer: University Park, PA, USA, 2003. [Google Scholar]
- Chen, X.; Lu, Z.; Jantsch, A.; Chen, S. Shuming Chen Speedup Analysis of Data-Parallel Applications on Multi-Core NoCs. In Proceedings of the 2009 IEEE 8th International Conference on ASIC, Changsha, China, 20–23 October 2009; IEEE: New York, NY, USA, 2009; pp. 105–108. [Google Scholar]
- Kourdy, R.; Yazdanpanah, S.; Rad, M.R.N. Using the NS-2 Network Simulator for Evaluating Multi Protocol Label Switching in Network-on-Chip. In Proceedings of the 2010 Second International Conference on Computer Research and Development, Kuala Lumpur, Malaysia, 7–10 May 2010; pp. 795–799. [Google Scholar]
- Jain, L.; Al-Hashimi, B.; Gaur, M.; Laxmi, V.; Narayanan, A. NIRGAM: A Simulator for NoC Interconnect Routing and Application Modeling. In Proceedings of the Design, Automation and Test in Europe Conference, Nice, France, 16–20 April 2007; pp. 16–20. [Google Scholar]
- Duan, X.; Li, Y. A Multiphase Routing Scheme in Irregular Mesh-Based Nocs. In Proceedings of the 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming, Tianjin, China, 9–11 December 2011; pp. 277–280. [Google Scholar]
- Bertozzi, D.; Jalabert, A.; Murali, S.; Tamhankar, R.; Stergiou, S.; Benini, L.; De Micheli, G. NoC Synthesis Flow for Customized Domain Specific Multiprocessor Systems-on-Chip. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 113–129. [Google Scholar] [CrossRef]
- Goossens, K.; Dielissen, J.; Radulescu, A. Æthereal Network on Chip:Concepts, Architectures, and Implementations. IEEE Des. Test Comput. 2005, 22, 414–421. [Google Scholar] [CrossRef]
- Siguenza-Tortosa, D.; Nurmi, J. VHDL-Based Simulation Environment for Proteo NoC. In Proceedings of the Seventh IEEE International High-Level Design Validation and Test Workshop, Cannes, France, 29 October 2002; IEEE Computer Society: Los Alamitos, CA, USA, 2002; pp. 1–6. [Google Scholar]
- Genko, N.; Atienza, D.; De Micheli, G.; Benini, L. Feature—NoC Emulation: A Tool and Design Flow for MPSoC. IEEE Circuits Syst. Mag. 2007, 7, 42–51. [Google Scholar] [CrossRef]
- Liu, F.; Gu, H.; Yang, Y. Performance Study of Virtual-Channel Router for Network-on-Chip. In Proceedings of the 2010 International Conference on Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; Volume 5, pp. V5-255–V5-259. [Google Scholar]
- Mullins, R.; West, A.; Moore, S. Low-Latency Virtual-Channel Routers for On-Chip Networks. ACM SIGARCH Comput. Archit. News 2004, 32, 188. [Google Scholar] [CrossRef]
- Romanov, A.Y.; Ivannikov, A.D.; Romanova, I.I. Simulation and Synthesis of Networks-on-Chip by Using NoCSimp HDL Library. In Proceedings of the 2016 IEEE 36th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 19–21 April 2016; IEEE: New York, NY, USA, 2016; pp. 300–303. [Google Scholar]
- Genko, N.; Atienza, D.; De Micheli, G.; Mendias, J.M.; Hermida, R.; Catthoor, F. A Complete Network-On-Chip Emulation Framework. In Proceedings of the Design, Automation and Test in Europe, Munich, Germany, 7–11 March 2005; IEEE: New York, NY, USA, 2005; pp. 246–251. [Google Scholar]
- Ryazanova, A.E.; Amerikanov, A.A.; Lezhnev, E.V. Development of Multiprocessor System-on-Chip Based on Soft Processor Cores SchoolMIPS. J. Phys. Conf. Ser. 2019, 1163, 012026. [Google Scholar] [CrossRef]
- Dally, W.J. Virtual-Channel Flow Control. ACM SIGARCH Comput. Archit. News 1990, 18, 60–68. [Google Scholar] [CrossRef]
- Korotkyi, I.; Lysenko, O. Hardware Implementation of Link Aggregation in Networks-on-Chip. In Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, 11–14 December 2011; pp. 1112–1117. [Google Scholar]
- GitHub–Tianjin95/MNOC_3rd: My 3rd Monitoring Network on Chip Verilog Code. Available online: https://github.com/tianjin95/MNOC_3rd (accessed on 8 May 2025).
- Gea-Garcia, B.I.; Vazquez-Avila, J.L.; Sandoval-Arechiga, R.; Pizano-Escalante, J.L.; Parra-Michel, R.; Siller, M. NoC-based hardware function libraries for running multiple DSP algorithms. In Proceedings of the 2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2013; pp. 1–6. [Google Scholar]
- Delgado-Gallardo, A.; Sandoval-Arechiga, R.; Parra-Michel, R. Top-Down Modeling Approach for Networks-on-Chip Components Design: A Switch as Case Study. IEEE Access 2023, 11, 4412–4433. [Google Scholar] [CrossRef]
- Kelm, J.H.; Johnson, D.R.; Johnson, M.R.; Crago, N.C.; Tuohy, W.; Mahesri, A.; Lumetta, S.S.; Frank, M.I.; Patel, S.J. Rigel: An Architecture and Scalable Programming Interface for a 1000-Core Accelerator. In Proceedings of the 36th Annual International Symposium on Computer Architecture, Austin, TX, USA, 20–24 June 2009; ACM: New York, NY, USA, 2009; pp. 140–151. [Google Scholar]
- Romanov, A.Y.; Lerner, A.; Amerikanov, A.A. Cycle-Accurate Multi-FPGA Platform for Accelerated Emulation of Large on-Chip Networks. J. Supercomput. 2024, 80, 22462–22478. [Google Scholar] [CrossRef]
- Romashikhin, M.; Romanov, A. Hardware-Software Complex for Prototyping NoCs Using a Few FPGA Chips. In Proceedings of the 2023 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 10–16 September 2023; IEEE: New York, NY, USA, 2023; pp. 330–334. [Google Scholar]
- Dreschmann, M.; Heisswolf, J.; Geiger, M.; Haußecker, M.; Becker, J. A Framework for Multi-FPGA Interconnection Using Multi Gigabit Transceivers. In Proceedings of the 28th Symposium on Integrated Circuits and Systems Design, Bahia, Brazil, 31 August–4 September 2015; ACM: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Zhao, Y.; Wu, C.; Ye, P.; Meng, J.; Huang, H.; Yang, K. Synchronization Design Method for High-Speed Signal Transmission Between FPGAs in DIGITAL Oscilloscope. In Proceedings of the 2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI), Harbin, China, 9–11 August 2023; IEEE: New York, NY, USA, 2023; pp. 451–456. [Google Scholar]
- Schoeberl, M.; Pezzarossa, L.; Sparsø, J. S4NOC: A Minimalistic Network-on-Chip for Real-Time Multicores. In Proceedings of the 12th International Workshop on Network on Chip Architectures, Columbus, OH, USA, 13 October 2019; ACM: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Hammami, O.; Li, X.; Burgun, L.; Delerse, S.; Hammami, O.; Paristech, E.; Victor, B.; France, P. Automatic Embedded Multicore Generation and Evaluation Methodology: A Case Study of a NOC Based 2400-Cores on Very Large Scale Emulator; HAL: Lyon, France, 2010. [Google Scholar]
- Pastrnak, M.; De With, P.H.N.; Van Meerbergen, J. Qos Concept for Scalable MPEG-4 Video Object Decoding on Multimedia (NoC) Chips. IEEE Trans. Consum. Electron. 2006, 52, 1418–1426. [Google Scholar] [CrossRef]
- Moore, S.K. Cerebras’ New Monster AI Chip Adds 1.4 Trillion Transistors. IEEE Spectrum, 20 April 2021. [Google Scholar]
- Ditzel, D.; Espasa, R.; Aymerich, N.; Baum, A.; Berg, T.; Burr, J.; Hao, E.; Iyer, J.; Izquierdo, M.; Jayaratnam, S.; et al. Accelerating ML Recommendation with over a Thousand RISC-V/Tensor Processors on Esperanto’s ET-SoC-1 Chip. In Proceedings of the 2021 IEEE Hot Chips 33 Symposium (HCS), Palo Alto, CA, USA, 22–24 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–23. [Google Scholar]
- Passas, G.; Katevenis, M.; Pnevmatikatos, D. Crossbar NoCs Are Scalable Beyond 100 Nodes. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2012, 31, 573–585. [Google Scholar] [CrossRef]
- Sibai, F.N. Low Diameter Unicast On-Chip Interconnection Networks for Many-Core Embedded Systems. In Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, Krakow, Poland, 15–18 February 2010; IEEE: New York, NY, USA, 2010; pp. 944–949. [Google Scholar]
- Kozhin, E.; Kozhin, A.; Shpagilev, D. Performance Analysis of Network-on-Chip Topologies for Elbrus Multi-Core Processors. In Proceedings of the 2020 International Conference Engineering and Telecommunication (En&T), Dolgoprudny, Russia, 25–26 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Sibai, F.N. Which On-Chip Interconnection Network for 16-Core MPSoCs? In Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, Krakow, Poland, 15–18 February 2010; IEEE: New York, NY, USA, 2010; pp. 625–630. [Google Scholar]
- GitHub–MIPSfpga/SchoolMIPS: CPU Microarchitecture, Step by Step. Available online: https://github.com/MIPSfpga/schoolMIPS (accessed on 9 May 2025).
- GitHub–Zhelnio/SchoolRISCV: CPU Microarchitecture, Step by Step. Available online: https://github.com/zhelnio/schoolRISCV (accessed on 9 May 2025).
- Corporation, A. Nios II Processor Reference Handbook; Altera: San Jose, CA, USA, 2008. [Google Scholar]
- Terasic-SoC Platform-Cyclone-DE1-SoC Development and Education Kit. Available online: https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4#contents (accessed on 9 May 2025).
- Lezhnev, E.V.; Zunin, V.V.; Amerikanov, A.A.; Romanov, A.Y. Electronic Computer-Aided Design for Low-Level Modeling of Networks-on-Chip. IEEE Access 2024, 12, 48750–48763. [Google Scholar] [CrossRef]
- Monakhov, O.G.; Monakhova, E.A.; Romanov, A.Y.; Sukhov, A.M.; Lezhnev, E.V. Adaptive Dynamic Shortest Path Search Algorithm in Networks-on-Chip Based on Circulant Topologies. IEEE Access 2021, 9, 160836–160846. [Google Scholar] [CrossRef]
- Romanov, A.Y. Development of Routing Algorithms in Networks-on-Chip Based on Ring Circulant Topologies. Heliyon 2019, 5, e01516. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, E.A.; Monakhov, O.G.; Romanov, A.Y.; Lezhnev, E.V. Analytical Routing Algorithm for Networks-on-Chip with the Three-Dimensional Circulant Topology. In Proceedings of the 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 11–13 March 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Monakhova, E.A.; Romanov, A.Y.; Lezhnev, E.V. Shortest Path Search Algorithm in Optimal Two-Dimensional Circulant Networks: Implementation for Networks-on-Chip. IEEE Access 2020, 8, 215010–215019. [Google Scholar] [CrossRef]
- Monakhova, E.A.; Monakhov, O.G.; Romanov, A.Y. Routing Algorithms in Optimal Degree Four Circulant Networks Based on Relative Addressing: Comparative Analysis for Networks-on-Chip. IEEE Trans. Netw. Sci. Eng. 2022, 165, 282–293. [Google Scholar] [CrossRef]
Soft-Core Processor | ALM | REG |
---|---|---|
schoolRISCV | 99 | 768 |
schoolMIPS | 137 | 768 |
Nios II | 751 | 8192 |
SCR1 | 4464 | 4059 |
Soft-Core Processor | schoolRISCV | schoolMIPS | Nios II | SCR1 |
---|---|---|---|---|
CYCLONE IV EP4CGX150DF31IAD, Altera, San Jose, CA, USA | 363 | 264 | 47 | 8 |
CYCLONE V 5CSEMA5F31C6, Altera, San Jose, CA, USA | 252 | 183 | 33 | 5 |
MAX 10 10M50DAF484C7G, Altera, San Jose, CA, USA | 120 | 87 | 15 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezhnev, E.V.; Romanov, A.Y.; Telpukhov, D.V.; Solovyev, R.A.; Romashikhin, M.Y. Reduction Method for a Network-on-Chip Low-Level Modeling. Micromachines 2025, 16, 1096. https://doi.org/10.3390/mi16101096
Lezhnev EV, Romanov AY, Telpukhov DV, Solovyev RA, Romashikhin MY. Reduction Method for a Network-on-Chip Low-Level Modeling. Micromachines. 2025; 16(10):1096. https://doi.org/10.3390/mi16101096
Chicago/Turabian StyleLezhnev, Evgeny V., Aleksandr Y. Romanov, Dmitry V. Telpukhov, Roman A. Solovyev, and Mikhail Y. Romashikhin. 2025. "Reduction Method for a Network-on-Chip Low-Level Modeling" Micromachines 16, no. 10: 1096. https://doi.org/10.3390/mi16101096
APA StyleLezhnev, E. V., Romanov, A. Y., Telpukhov, D. V., Solovyev, R. A., & Romashikhin, M. Y. (2025). Reduction Method for a Network-on-Chip Low-Level Modeling. Micromachines, 16(10), 1096. https://doi.org/10.3390/mi16101096