Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Electrical Generation of Stress
References
- Hassan, O.; Faria, R.; Camsari, K.Y.; Sun, J.Z.; Datta, S. Low barrier magnet design for efficient hardware binary stochastic neurons. IEEE Magn. Lett. 2019, 10, 4502805. [Google Scholar] [CrossRef]
- Hassan, O.; Datta, S.; Camsari, K.Y. Quantitative evaluation of hardware binary stochastic neurons. Phys. Rev. Appl. 2021, 15, 064046. [Google Scholar] [CrossRef]
- Khilwani, D.; Moghe, V.; Saraswat, V.; Kumbhare, P.; Baghini, M.J.; Jandhyala, S.; Subramoney, S.; Ganguly, U. PrxCa1-xMnO3 based neuron for Boltzmann machine to solve “maximum cut” problem. APL Mater. 2019, 7, 091112. [Google Scholar] [CrossRef]
- Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, G.; Bandyopadhyay, S.; Lin, P.; Pan, G.; Yang, J.J.; Tomasello, R.; Panagopoulos, C.; Carpentieri, M.; Puliafito, V.; Åkerman, J.; et al. Roadmap for unconventional computing with nanotechnology. Nano Futures 2024, 8, 012001. [Google Scholar] [CrossRef]
- Ganguly, S.; Camsari, K.Y.; Ghosh, A.W. Analog signal processing using stochastic magnets. IEEE Access 2021, 9, 92640–92650. [Google Scholar] [CrossRef]
- Morshed, M.G.; Ganguly, S.; Ghosh, A.W. Choose your tools carefully: A comparative evaluation of deterministic vs. stochastic and binary vs. analog neuron models for implementing emerging computing paradigms. Front. Nanotechnol. 2023, 5, 1146852. [Google Scholar] [CrossRef]
- Nasrin, S.; Drobitch, J.L.; Bandyopadhyay, S.; Trivedi, A.R. Low-power restricted Boltzmann machine using mixed mode magneto-tunneling junctions. IEEE Trans. Electron Dev. 2019, 40, 345–348. [Google Scholar] [CrossRef]
- Rahman, R.; Ganguly, S.; Bandyopadhyay, S. Reconfigurable stochastic neurons based on strain engineered low barrier nanomagnets. Nanotechnology 2024, 35, 325205. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S. Magnetic straintronics for ultra-energy-efficient unconventional computing: A review. IEEE Trans. Magn. 2024; early access. [Google Scholar] [CrossRef]
- Galati, G.; Pavan, G.; Wasserzier, C. Signal design and processing for noise radar. EURASIP J. Adv. Signal Process. 2022, 2022, 52. [Google Scholar] [CrossRef]
- Lukin, K.; Zemlyanyi, O.; Lukin, S. Generation of chaotic and random signals for noise radar-brief overview. In Proceedings of the 23rd International Radar Symposium (IRS), Gdansk, Poland, 12–14 September 2022. [Google Scholar]
- Brown, J.; Zhang, J.F.; Zhou, B.; Mehzabeen, M.; Freitas, P.; Marsland, J.; Ji, Z. Random-telegraph-noise-enabled true random number generator for hardware security. Sci. Rep. 2020, 10, 17210. [Google Scholar] [CrossRef] [PubMed]
- Petrie, C.S.; Connelly, J.A. A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 615. [Google Scholar] [CrossRef]
- Santan, R.; Coelho, R. Low-frequency ambient noise generator with application to automatic speaker classification. EURASIP J. Adv. Signal Process. 2012, 2012, 175. [Google Scholar] [CrossRef]
- Mohsen Nia, A.; Jha, N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016, 5, 586–602. [Google Scholar] [CrossRef]
- Beirami, A.; Nejati, H.; Massoud, Y. A performance metric for discrete-time chaos-based truly random number generators. Midwest Symp. Circuits Syst. 2008, 77005, 133–136. [Google Scholar]
- Soucarros, M.; Clediere, J.; Dumas, C.; Elbaz-Vincent, P. Fault analysis and evaluation of a true random number generator embedded in a processor. J. Electron. Test. 2013, 29, 367–381. [Google Scholar] [CrossRef]
- Yang, B.; Rozic, V.; Mentens, N.; Verbauwhede, I. On-the-fly tests for non-ideal true random number generators. Proc.—IEEE Int. Symp. Circuits Syst. 2015, 2015, 2017–2020. [Google Scholar]
- Rahman, R.; Bandyopadhyay, S. The strong sensitivity of the characteristics of binary stochastic neurons employing low barrier nanomagnets to small geometrical variations. IEEE Trans. Nanotechnol. 2023, 22, 112–119. [Google Scholar] [CrossRef]
- Rahman, R.; Bandyopadhyay, S. Increasing flips per second and speed of p-computers by using dilute magnetic semiconductors. IEEE Magn. Lett. 2023, 14, 4500604. [Google Scholar] [CrossRef]
- Miller, S.; Childers, D.G. Probability and Random Processes: With Applications to Signal Processing and Communications; Elsevier-Academic Press: Cambridge, MA, USA, 2004; Chapter 10. [Google Scholar]
- Sutton, B.; Faria, R.; Ghantasala, L.A.; Jaiswal, R.; Camsari, K.Y.; Datta, S. Autonomous probabilistic coprocessing with petaflips per second. IEEE Access 2020, 8, 157238–157252. [Google Scholar] [CrossRef]
Stress (MPa) | (MHz) | FWHM (s) |
---|---|---|
0 | 2.67 | 0.200 |
2 | 3.68 | 0.070 |
5 | 5.41 | 0.025 |
6 | 5.41 | 0.009 |
Stress (MPa) | (Arb. Units) |
---|---|
0 | 0.2090 |
2 | 0.2149 |
5 | 0.1983 |
6 | 0.1836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, R.; Bandyopadhyay, S. Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines 2024, 15, 1174. https://doi.org/10.3390/mi15091174
Rahman R, Bandyopadhyay S. Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines. 2024; 15(9):1174. https://doi.org/10.3390/mi15091174
Chicago/Turabian StyleRahman, Rahnuma, and Supriyo Bandyopadhyay. 2024. "Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons" Micromachines 15, no. 9: 1174. https://doi.org/10.3390/mi15091174
APA StyleRahman, R., & Bandyopadhyay, S. (2024). Stress Engineering of Magnetization Fluctuation and Noise Spectra in Low-Barrier Nanomagnets Used as Analog and Binary Stochastic Neurons. Micromachines, 15(9), 1174. https://doi.org/10.3390/mi15091174